

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1503-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.0	Device Overview	7					
2.0	Enhanced Mid-Range CPU	11					
3.0	Memory Organization	13					
4.0	Device Configuration	37					
5.0	Oscillator Module	42					
6.0	Resets	51					
7.0	Interrupts	59					
8.0	Power-Down Mode (Sleep)	72					
9.0	Watchdog Timer (WDT)	75					
10.0	Flash Program Memory Control	79					
11.0	I/O Ports	95					
12.0	Interrupt-On-Change	104					
13.0	Fixed Voltage Reference (FVR)	108					
14.0	Temperature Indicator Module	111					
15.0	Analog-to-Digital Converter (ADC) Module	113					
16.0	5-Bit Digital-to-Analog Converter (DAC) Module	127					
17.0	Comparator Module	130					
18.0	Timer0 Module	137					
19.0	Timer1 Module with Gate Control	140					
20.0	Timer2 Module	151					
21.0	Master Synchronous Serial Port (MSSP) Module	154					
22.0	Pulse-Width Modulation (PWM) Module	208					
23.0	Configurable Logic Cell (CLC)	214					
24.0	Numerically Controlled Oscillator (NCO) Module	230					
25.0	Complementary Waveform Generator (CWG) Module	237					
26.0	In-Circuit Serial Programming™ (ICSP™)	249					
27.0	Instruction Set Summary	251					
28.0	Electrical Specifications	265					
29.0	DC and AC Characteristics Graphs and Charts	293					
30.0	Development Support	328					
31.0	Packaging Information	332					
Appe	ndix A: Data Sheet Revision History	347					
The M	Nicrochip Website	348					
Custo	stomer Change Notification Service						
Custo	omer Support	348					
Produ	uct Identification System	349					

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-5:**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Bank 4												
20Ch	WPUA	—	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111	
20Dh to 212h	_	Unimplemen	Unimplemented									
213h	SSP1MSK				MS	< <7:0>			•	1111 1111	1111 1111	
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000	
215h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSF	PM<3:0>	•	0000 0000	0000 0000	
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000	
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000	
218h to 21Fh	_	Unimplemen	Unimplemented —								_	
Bank 5												
28Ch to 29Fh	_	Unimplemen	Unimplemented —								—	
Bank 6	5											
30Ch to 31Fh	_	Unimplemer	Unimplemented — —									
Bank 7												
38Ch to 390h	_	Unimplemen	ited							_	_	
391h	IOCAP	—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000	
392h	IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000	
393h	IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000	
394h to 39Fh	_	Unimplemen	Unimplemented								_	
Bank 8	8											
40Ch to 41Fh	—	Unimplemented -							-	—		
Bank 9)											
48Ch to 497h	_	Unimplemen	Unimplemented								_	
498h	NCO1ACCL		NCO1ACC<7:0> 0000 0000 0000 0000								0000 0000	
499h	NCO1ACCH				NCO1A	CC<15:8>				0000 0000	0000 0000	
49Ah	NCO1ACCU				NCO1A	CC<19:16>				0000 0000	0000 0000	
49Bh	NCO1INCL	NCO1INC<7:0> 0000 0001 0000 0001										
49Ch	NCO1INCH				NCO1I	NC<15:8>				0000 0000	0000 0000	
49Dh	_	Unimplemen	ited							—	_	
49Eh	NCO1CON	N1EN	N10E	N1OUT	N1POL	_	_	_	N1PFM	00000	00000	
49Fh	NCO1CLK		N1PWS<2:0>		_	—	—	N1CF	(S<1:0>	000000	000000	

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1503 only.

 2:
 Unimplemented, read as '1'.

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from an external clock or from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fast start-up oscillator allows internal circuits to power-up and stabilize before switching to the 16 MHz HFINTOSC

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 20 MHz)
- 4. INTOSC Internal oscillator (31 kHz to 16 MHz)

Clock Source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces a low and high-frequency clock source, designated LFINTOSC and HFINTOSC. (See Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these two clock sources.

(27.97777) - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2	.PINTOSC (NOT disabled)
HFINTOSC _	
LFINTOSC	
IRCF <3:0>	$\neq 0$ χ = 0
System Clock	
19100770990	SUSTONE (WET enabled)
HFINTOSC	
LFINTOSC -	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
1910990000	IFINYOSC UNITYOSC have off unless WOT is enabled ⁹³
LENEOSC	
5597702C	Orshindra Osloy''''''''''''''''''''''''''''''''''''
	* 9 X
System Clock	

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>				ADPRE	F<1:0>
bit 7				·	·		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncl	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
loaded. 0 = Left justified. Six Least Significant bits of ADRESL are set t loaded.					are set to '0' w	when the conve	rsion result is
bit 6-4	ADCS<2:0>: ADC Conversion Clock Select bits 000 = Fosc/2 001 = Fosc/8 010 = Fosc/32 011 = FRC (clock supplied from an internal RC oscillator) 100 = Fosc/4 101 = Fosc/16 110 = Fosc/16 110 = Fosc/64						
bit 3-2	Unimplemented: Read as '0'						
bit 1-0	ADPREF<1:0>: ADC Positive Voltage Reference Configuration bits 00 = VRPOS is connected to VDD 01 = Reserved 10 = VRPOS is connected to external VREF+ pin ⁽¹⁾ 11 = Reserved						

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See **Section 28.0 "Electrical Specifications"** for details.

FIGURE 21-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	• • •										 }
	· · · ·		×	, , ,			· · · · · · · · · · · · · · · · · · · ·				1 1 1 1 1 1
80%s (CRF = 3 (CRF = 6)	· · · ·	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · · · · · · · · · · · · · · · · · · ·	, ,	• •)
Verse es Sereses Verse Seres			, , , , , , , , , , , , , , , , , , ,	; ; ; ;		; ; ; ; ; ; ; ; ; ; ; ;	, , , , , , , , , , , , , , , , , , ,	X 822 3			
- 55785	· · · · · · · · · · · · · · · · · · ·		; ; ; ; ;	; ; ; ; ; ;						, ////////////////////////////////////	5 5 5 7 7
inori Saropia	4 4 4	4	с с с с с с	, , , , , , , , , , , , , , , , , , , ,			с с - Др с - Др с - Цр с	, , 4, ,			
isteraupa Interaupa Pag	5 5 5 6 5 5	5 - - - - - - - - -	\$ \$ \$ * *	5 5 5 7 7	: : : :	5 2 2 2 2 2 2 2	\$ \$ \$ \$ \$	4 5 5 5 7 7 7 7 7			
	, , ,	· · · · · · · · · · · · · · · · · · · ·	?	· / / /	· · · · · · · · · · · · · · · · · · · ·	, 5 5 	- - 	· · · · · · · · · · · · · · · · · · · ·	· · ·		
detection active		ł									

FIGURE 21-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

21.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCLx line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCLx.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. Setting CKP will release SCLx and allow more communication.

21.5.6.1 Normal Clock Stretching

Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready, CKP is set by software and communication resumes.

- **Note 1:** The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPxBUF was read before the ninth falling edge of SCLx.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPxBUF was loaded before the ninth falling edge of SCLx. It is now always cleared for read requests.

21.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCLx is stretched without CKP being cleared. SCLx is released immediately after a write to SSPxADD.

Note:	Previous versions	of the	module	did	not
	stretch the clock if	the sec	ond addr	ess l	oyte
	did not match.				

21.5.6.3 Byte NACKing

When the AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the eighth falling edge of SCLx for a received matching address byte. When the DHEN bit of SSPxCON3 is set, CKP is cleared after the eighth falling edge of SCLx for received data.

Stretching after the eighth falling edge of SCLx allows the slave to look at the received address or data and decide if it wants to ACK the received data.

21.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I²C master device has already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I²C bus have released SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 21-23).

FIGURE 21-23: CLOCK SYNCHRONIZATION TIMING

21.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 21-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 21-27: REPEAT START CONDITION WAVEFORM

21.6.7 I²C MASTER MODE RECEPTION

Master mode reception (Figure 21-29) is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

Note:	The MSSPx module must be in an Idle					
	state before the RCEN bit is set or the					
	RCEN bit will be disregarded.					

The Baud Rate Generator begins counting and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

21.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

21.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

21.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

- 21.6.7.4 Typical Receive Sequence:
- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDAx pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit of the SSPxCON2 register and the master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCLx, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxBUF, clears BF.
- 11. Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Masters ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

23.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- Data selection
- Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

23.1.1 DATA SELECTION

There are 16 signals available as inputs to the configurable logic. Four 8-input multiplexers are used to select the inputs to pass on to the next stage. The 16 inputs to the multiplexers are arranged in groups of four. Each group is available to two of the four multiplexers, in each case, paired with a different group. This arrangement makes possible selection of up to two from a group without precluding a selection from another group.

Data selection is through four multiplexers as indicated on the left side of Figure 23-2. Data inputs in the figure are identified by a generic numbered input name.

Table 23-1 correlates the generic input name to the actual signal for each CLC module. The columns labeled lcxd1 through lcxd4 indicate the MUX output for the selected data input. D1S through D4S are abbreviations for the MUX select input codes: LCxD1S<2:0> through LCxD4S<2:0>, respectively. Selecting a data input in a column excludes all other inputs in that column.

Data inputs are selected with CLCxSEL0 and CLCxSEL1 registers (Register 23-3 and Register 23-5, respectively).

Note: Data selections are undefined at power-up.

Data Input	lcxd1 D1S	lcxd2 D2S	lcxd3 D3S	lcxd4 D4S	CLC 1	CLC 2
LCx_in[0]	000	_	_	100	CLC1IN0	CLC2IN0
LCx_in[1]	001	_	_	101	CLC1IN1	CLC2IN1
LCx_in[2]	010	_	_	110	C1OUT_sync	C1OUT_sync
LCx_in[3]	011	_	_	111	C2OUT_sync	C2OUT_sync
LCx_in[4]	100	000	_	—	Fosc	Fosc
LCx_in[5]	101	001	_	—	T0_overflow	T0_overflow
LCx_in[6]	110	010	_	—	T1_overflow	T1_overflow
LCx_in[7]	111	011	_	—	T2_match	T2_match
LCx_in[8]	_	100	000	—	LC1_out	LC1_out
LCx_in[9]	_	101	001	_	LC2_out	LC2_out
LCx_in[10]	_	110	010	—	Reserved	Reserved
LCx_in[11]	_	111	011	—	Reserved	Reserved
LCx_in[12]	_	_	100	000	NCO1_out	LFINTOSC
LCx_in[13]	_	_	101	001	HFINTOSC	FRC
LCx_in[14]	_	_	110	010	PWM3_out	PWM1_out
LCx_in[15]	_	_	111	011	PWM4_out	PWM2_out

TABLE 23-1: CLCx DATA INPUT SELECTION

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7	LCxG3D4T: (Gate 3 Data 4 1	True (non-inve	rted) bit							
	1 = lcxd4T is	gated into loxo	j3 Java 2								
hit C	0 = 100041 is	Thot gated into	icxys Negotod (invo	rtad) bit							
DILO	LCXG3D4N:	Gale 3 Dala 4	negateu (invei	ned) bit							
	1 = 10x04N is 0 = 10x04N is	not gated into icx	JS Icxa3								
bit 5	LCxG3D3T: (Gate 3 Data 3 1	True (non-inve	rted) bit							
	1 = lcxd3T is gated into lcxg3										
	0 = Icxd3T is	= lcxd3T is not gated into lcxg3									
bit 4	LCxG3D3N:	Gate 3 Data 3 I	Negated (inver	rted) bit							
	1 = Icxd3N is gated into Icxg3										
	0 = lcxd3N is	not gated into	lcxg3								
bit 3	LCxG3D2T: (Gate 3 Data 2 1	rue (non-inve	rted) bit							
	$\perp = cxd2 \text{ is gated into } cxg3 $ $\alpha = cxd2T \text{ is not gated into } cxg3 $										
hit 2		Gate 3 Data 2 I	Negated (inve	rted) hit							
Sit 2	1 = lcxd2N is gated into lcxg3										
	0 = Icxd2N is not gated into Icxg3										
bit 1	LCxG3D1T: (Gate 3 Data 1 1	True (non-inve	rted) bit							
	1 = lcxd1T is gated into lcxg3										
	0 = Icxd1T is	not gated into	lcxg3								
bit 0	LCxG3D1N:	Gate 3 Data 1 I	Negated (inver	rted) bit							
	1 = lcxd1N is	gated into lcx	g3								
	0 = 10001 N is	not gated into	icxg3								

REGISTER 23-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

TABLE 28-5:	MEMORY PROGRAMMING SPECIFICATIONS
-------------	-----------------------------------

	-	. .		1		1	1
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	—	9.0	V	(Note 2)
D112	VPBE	VDD for Bulk Erase	2.7		VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	1.0	_	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K			E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

TABLE 28-6: THERMAL CONSIDERATIONS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	70	°C/W	14-pin PDIP package		
			95.3	°C/W	14-pin SOIC package		
			100	°C/W	14-pin TSSOP package		
			55.3	°C/W	16-pin QFN 3X3X0.9mm package		
			52.3	°C/W	16-pin UQFN 3X3X0.5mm package		
TH02	θJC	Thermal Resistance Junction to Case	32.75	°C/W	14-pin PDIP package		
			31	°C/W	14-pin SOIC package		
			24.4	°C/W	14-pin TSSOP package		
			10	°C/W	16-pin QFN 3X3X0.9mm package		
			11	°C/W	16-pin UQFN 3X3X0.5mm package		
TH03	Тјмах	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation	—	W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	—	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	PDER	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾		

Note 1:IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

3: T_J = Junction Temperature.

TABLE 28-14: ADC CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD130*	TAD	ADC Clock Period (TADC)	1.0	—	6.0	μS	Fosc-based		
		ADC Internal FRC Oscillator Period (TFRC)	1.0	2.0	6.0	μS	ADCS<2:0> = \times 11 (ADC FRC mode)		
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	—	11		TAD	Set GO/DONE bit to conversion complete		
AD132*	TACQ	Acquisition Time	-	5.0	—	μS			
AD133*	Тнср	Holding Capacitor Disconnect Time		1/2 TAD 1/2 TAD + 1TCY			Fosc-based ADCS<2:0> = x11 (ADC FRC mode)		
* These parameters are characterized but not tested									

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

TABLE 28-15: COMPARATOR SPECIFICATIONS⁽¹⁾

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25°C							
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage		±7.5	±60	mV	CxSP = 1, Vicм = VDD/2
CM02	VICM	Input Common Mode Voltage	0	_	Vdd	V	
CM03	CMRR	Common Mode Rejection Ration	-	50		dB	
CM04A		Response Time Rising Edge		400	800	ns	CxSP = 1
CM04B	TDE0D(2)	Response Time Falling Edge	_	200	400	ns	CxSP = 1
CM04C	TRESPY	Response Time Rising Edge	_	1200		ns	CxSP = 0
CM04D]	Response Time Falling Edge	_	550	_	ns	CxSP = 0
CM05*	Тмс2оv	Comparator Mode Change to Output Valid		—	10	μs	
CM06	CHYSTER	Comparator Hysteresis	_	25	_	mV	CxHYS = 1, CxSP = 1

* These parameters are characterized but not tested.

Note 1: See Section 29.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Response time measured with one comparator input at VDD/2, while the other input transitions from VSS to 2: VDD.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS					
Dimension Lin	nits	MIN	NOM	MAX			
Number of Pins	N	14					
Pitch	е	1.27 BSC					
Overall Height	Α	-	1.75				
Molded Package Thickness	A2	1.25	-	-			
Standoff §	A1	0.10	-	0.25			
Overall Width	Е	6.00 BSC					
Molded Package Width	E1	3.90 BSC					
Overall Length	D	8.65 BSC					
Chamfer (Optional)	h	0.25	-	0.50			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.04 REF					
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.10	-	0.25			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2