E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1503-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/DACOUT1/	RA0	TTL	CMOS	General purpose I/O.
ICSPDAT	AN0	AN	_	A/D Channel input.
	C1IN+	AN	_	Comparator C1 positive input.
	DACOUT1		AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/C1IN0-/C2IN0-/	RA1	TTL	CMOS	General purpose I/O.
ICSPCLK	AN1	AN	—	A/D Channel input.
	VREF+	AN	—	A/D Positive Voltage Reference input.
	C1IN0-	AN	—	Comparator C1 negative input.
	C2IN0-	AN	_	Comparator C2 negative input.
	ICSPCLK	ST	—	Serial Programming Clock.
RA2/AN2/C1OUT/DACOUT2/	RA2	ST	CMOS	General purpose I/O.
CWG1FLT	AN2	AN	_	A/D Channel input.
	C10UT	_	CMOS	Comparator C1 output.
	DACOUT2	_	AN	Digital-to-Analog Converter output.
	TOCKI	ST	—	Timer0 clock input.
	INT	ST	—	External interrupt.
	PWM3	_	CMOS	Pulse Width Module source output.
	CLC1	_	CMOS	Configurable Logic Cell source output.
	CWG1FLT	ST	—	Complementary Waveform Generator Fault input.
RA3/CLC1IN0/VPP/T1G ⁽¹⁾ /SS ⁽¹⁾ /	RA3	TTL	_	General purpose input.
MCLR	CLC1IN0	ST	_	Configurable Logic Cell source input.
	VPP	HV	—	Programming voltage.
	T1G	ST	—	Timer1 Gate input.
	SS	ST	—	Slave Select input.
(1) (1)	MCLR	ST	—	Master Clear with internal pull-up.
RA4/AN3/NCO1 ¹ /SDO ¹ /	RA4	TTL	CMOS	General purpose I/O.
CERCOTITIG	AN3	AN	—	A/D Channel input.
	NCO1	_	CMOS	Numerically Controlled Oscillator output.
	SDO	_	CMOS	SPI data output.
	CLKOUT		CMOS	Fosc/4 output.
	I 1G	51	—	Timer1 Gate input.
RA5/CLKIN/T1CKI/NCO1CLK/	RA5	IIL	CMOS	General purpose I/O.
		CMOS	—	External clock input (EC mode).
		SI		
	NCO1CLK	SI		Numerically Controlled Oscillator Clock source input.
	CLC1IN1	51	—	
RCU/AN4/CZIN+/CLC2/SCL/ SCK	RCU		CMOS	General purpose I/O.
	AN4	AN		
	CZIN+	AN	-	Comparator C2 positive input.
	CLC2	-	CMOS	
	SCL			
	SCK		CMOS	
TTL = TTL compatible ii HV = High Voltage	nput ST XTAI	 CIVIOS Schmit Crystal 	t Trigger	input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C levels

TABLE 1-2. PIC16(L)F1503 PINOUT DESCRIPTION

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

6.0 RESETS

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Low-Power Brown-out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- · Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-chip Reset Circuit is shown in Figure 6-1.

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 8.0 "Power-Down Mode (Sleep)"** for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

PIC16(L)F1503

7.6 Register Definitions: Interrupt Control

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0 GIE⁽¹⁾ PEIE⁽²⁾ IOCIF⁽³⁾ INTF TMR0IE INTE IOCIE TMR0IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other Resets u = Bit is unchanged x = Bit is unknown '0' = Bit is cleared '1' = Bit is set GIE: Global Interrupt Enable bit⁽¹⁾ bit 7 1 = Enables all active interrupts 0 = Disables all interrupts bit 6 PEIE: Peripheral Interrupt Enable bit⁽²⁾ 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts TMR0IE: Timer0 Overflow Interrupt Enable bit bit 5 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt **INTE:** INT External Interrupt Enable bit bit 4 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt bit 3 IOCIE: Interrupt-on-Change Enable bit 1 = Enables the interrupt-on-change 0 = Disables the interrupt-on-change TMR0IF: Timer0 Overflow Interrupt Flag bit bit 2 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow bit 1 INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur IOCIF: Interrupt-on-Change Interrupt Flag bit⁽³⁾ bit 0 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

- 2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.
- **3:** The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCxF registers have been cleared by software.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
		_		—		CLC2IE	CLC1IE
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unkn			nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is :	set	'0' = Bit is clea	ared				
bit 7-2	Unimplemen	ted: Read as '	0'				
bit 1	CLC2IE: Con	figurable Logic	Block 2 Inter	rupt Enable bit			
	1 = Enables	the CLC 2 inter	rupt				
	0 = Disables	the CLC 2 inte	rrupt				
bit 0	CLC1IE: Con	figurable Logic	Block 1 Inter	rupt Enable bit			
1 = Enables the CLC 1 interrupt							
	0 = Disables	the CLC 1 inte	rrupt				
Note:	Bit PEIE of the IN	TCON register	must be				

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note: Bit PEIE of the INICON register must be set to enable any peripheral interrupt.

PIC16(L)F1503

10.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 10-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions immediately following the WR bit set instruction. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

FLASH PROGRAM MEMORY ERASE FLOWCHART

12.6 Register Definitions: Interrupt-on-Change Control

REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bi	t	U = Unimplemented bit, read as '0'			
u = Bit is unchan	ged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-6 Unimplemented: Read as '0'

bit 5-0

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-6 Unimplemented: Read as '0'

IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected, or the user cleared the detected change.

15.3 Register Definitions: ADC Control

CH3<4.02 GO/L	
Dit 7	
Legend:	
R = Readable bit $W = Writable bit$ $II = I Inimplemented bit read as '0'$	
$\mu = Bit is unchanged$ $x = Bit is unknown$ $-n/n = Value at POR and BOR/Value$	e at all other Resets
(1) = Bit is unionality of a matrix of a	
hit 7 Unimplemented: Read as '0'	
bit 6-2 CHS<4·0>: Analog Channel Select bits	
aaaaa = ANO	
00001 = AN1	
00010 = AN2	
00011 = AN3	
00100 = AN4	
00101 = AN5	
00110 = AN6	
00111 = AN7	
01000 = Reserved. No channel connected.	
•	
11100 = Reserved. No channel connected.	
11101 = Temperature Indicator ⁽¹⁾	
11110 = DAC (Digital-to-Analog Converter) ⁽³⁾	
11111 = FVR (Fixed Voltage Reference) Buffer 1 Output ⁽²⁾	
bit 1 GO/DONE: ADC Conversion Status bit	
1 = ADC conversion cycle in progress. Setting this bit starts an ADC conversior	n cycle.
This bit is automatically cleared by hardware when the ADC conversion has	s completed.
0 = ADC conversion completed/not in progress	
bit 0 ADON: ADC Enable bit	
1 = ADC is enabled	
0 = ADC is disabled and consumes no operating current	
Note 1: See Section 14.0 "Temperature Indicator Module" for more information.	
2: See Section 13.0 "Fixed Voltage Reference (FVR)" for more information.	

REGISTER 15-1: ADCON0: ADC CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	99
ANSELC	—	—	—	_	ANSC3	ANSC2	ANSC1	ANSC0	103
CM1CON0	C10N	C1OUT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	134
CM2CON0	C2ON	C2OUT	C2OE	C2POL		C2SP	C2HYS	C2SYNC	134
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>			C1NCH<2:0>	>	135
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>			C2NCH<2:0>	>	135
CMOUT	_	_	—			—	MC2OUT	MC10UT	135
DAC1CON0	DACEN	_	DACOE1	DACOE2		DACPSS		—	129
DAC1CON1	_	_	—			DACR<4:0>			129
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	110
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE2	_	C2IE	C1IE	—	BCL1IE	NCO1IE	—	_	66
PIR2	_	C2IF	C1IF	-	BCL1IF	NCO1IF	-	—	69
PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	98
PORTC	_	—	RC5	RC4	RC3	RC2	RC1	RC0	102
LATA	_	—	LATA5	LATA4	_	LATA2	LATA1	LATA0	99
LATC	_	_	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	102
TRISA	—	—	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	98
TRISC	_	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	102

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

Note 1: Unimplemented, read as '1'.

19.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- · Programmable internal or external clock source
- · 2-bit prescaler
- · Optionally synchronized comparator out
- · Multiple Timer1 gate (count enable) sources

- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- ADC Auto-Conversion Trigger(s)
- · Selectable Gate Source Polarity
- · Gate Toggle mode
- · Gate Single-Pulse mode
- Gate Value Status
- · Gate Event Interrupt

Figure 19-1 is a block diagram of the Timer1 module.

FIGURE 19-1: TIMER1 BLOCK DIAGRAM

21.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

21.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- Daisy-chain connection of slave devices

Figure 21-1 is a block diagram of the SPI interface module.

FIGURE 21-1: MSSP BLOCK DIAGRAM (SPI MODE)

21.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—			ANSA4	—	ANSA2	ANSA1	ANSA0	99
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE1	TMR1GIE	ADIE	_	-	SSP1IE	_	TMR2IE	TMR1IE	65
PIR1	TMR1GIF	ADIF	_	_	SSP1IF	_	TMR2IF	TMR1IF	68
SSP1BUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				158*
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		204
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	206
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	203
TRISA	—	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	98
TRISC	_		TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	102

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

21.4 I²C MODE OPERATION

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDAx and SCLx, are exercised by the module to communicate with other external I²C devices.

21.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCLx line, the device outputting data on the SDAx changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCLx, is provided by the master. Data is valid to change while the SCLx signal is low, and sampled on the rising edge of the clock. Changes on the SDAx line while the SCLx line is high define special conditions on the bus, explained below.

21.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I²C communication that have definitions specific to I²C. That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I²CTM specification.

21.4.3 SDAX AND SCLX PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCLx and SDAx pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note: Data is tied to output zero when an I²C mode is enabled.

21.4.4 SDAX HOLD TIME

The hold time of the SDAx pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDAx is held valid after the falling edge of SCLx. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 21-2: I²C BUS TERMS

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDAx and SCLx lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCLx low to stall communication.
Bus Collision	Any time the SDAx line is sampled low by the module while it is out- putting and expected high state

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCLx line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the Master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

21.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCLx. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 21-16 displays a module using both address and data holding. Figure 21-17 includes the operation with the SEN bit of the SSPxCON2 register set.

- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the eighth falling edge of SCLx.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPxCON3 register to determine if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPxIF.

Note: SSPxIF is still set after the ninth falling edge of SCLx even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSPxIF not set

- 11. SSPxIF set and CKP cleared after eighth falling edge of SCLx for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSPSTAT register.

PIC16(L)F1503

REGISTER 22-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
PWMxDCH<7:0>								
bit 7							bit 0	
Legend:								
R = Readable b	it	W = Writable bit		U = Unimpleme	ented bit, read as	· 'O'		
u = Bit is uncha	nged	x = Bit is unknow	n	-n/n = Value at	POR and BOR/V	alue at all other	Resets	
'1' = Bit is set		'0' = Bit is cleared	I					

bit 7-0

PWMxDCH<7:0>: PWM Duty Cycle Most Significant bits

These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL register.

REGISTER 22-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxDCL<7:6>		—	—	—	—	—	—
bit 7						bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **PWMxDCL<7:6>:** PWM Duty Cycle Least Significant bits These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register.

bit 5-0 Unimplemented: Read as '0'

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PR2	Timer2 module Period Register								
PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL	_	_	_	_	212
PWM1DCH				PWM1D0	CH<7:0>				213
PWM1DCL	PWM1D	CL<7:6>	_	_	_	_	_	_	213
PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	_	_	_	_	212
PWM2DCH	PWM2DCH<7:0>							213	
PWM2DCL	PWM2D	CL<7:6>	_	_	_	_	—	_	213
PWM3CON	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	_	_	_	_	212
PWM3DCH				PWM3D0	CH<7:0>				213
PWM3DCL	PWM3D	CL<7:6>	_	_	_	_	_	_	213
PWM4CON	PWM4EN	PWM4OE	PWM4OUT	PWM4POL	_	_	_	_	212
PWM4DCH				PWM4D0	CH<7:0>				213
PWM4DCL	PWM4D	CL<7:6>	_	_	_	_	_	_	213
T2CON							153		
TMR2	Timer2 module Register							151*	
TRISA	_	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	98
TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	102

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

REGISTER 25-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—		CWGxDBR<5:0>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as	ʻ0'

bit 5-0 **CWGxDBR<5:0>:** Complementary Waveform Generator (CWGx) Rising Counts 11 1111 = 63-64 counts of dead band

11 1110 = 62-63 counts of dead band

- ٠
- •
- •

00 0010 = 2-3 counts of dead band

- 00 0001 = 1-2 counts of dead band
- 00 0000 = 0 counts of dead band

REGISTER 25-5: CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—		CWGxDBF<5:0>						
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling Counts

11 1111 = 63-64 counts of dead band

- 11 1110 = 62-63 counts of dead band
- •
- •
- 00 0010 = 2-3 counts of dead band
- 00 0001 = 1-2 counts of dead band
- 00 0000 = 0 counts of dead band. Dead-band generation is bypassed.

28.0 ELECTRICAL SPECIFICATIONS

28.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C			
Storage temperature	65°C to +150°C			
Voltage on pins with respect to Vss				
on VDD pin				
PIC16F1503	0.3V to +6.5V			
PIC16LF1503	0.3V to +4.0V			
on MCLR pin	0.3V to +9.0V			
on all other pins	.3V to (VDD + 0.3V)			
Maximum current				
on Vss pin ⁽¹⁾				
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	250 mA			
+85°C \leq TA \leq +125°C	85 mA			
on VDD pin ⁽¹⁾				
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	250 mA			
+85°C \leq TA \leq +125°C	85 mA			
Sunk by any standard I/O pin	50 mA			
Sourced by any standard I/O pin	50 mA			
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA			
Total power dissipation ⁽²⁾				

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 28-6 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

PIC16LF1503 PIC16F1503		Stand	Standard Operating Conditions (unless otherwise stated)						
Param.	Device	Min	Turnet	Max			Conditions		
No.	Characteristics	wiin.	турт	wax.	Units	VDD	Note		
D019C		-	1030	1500	μA	3.0	Fosc = 20 MHz, External Clock (ECH), High-Power mode		
D019C		_	1060	1600	μA	3.0	Fosc = 20 MHz,		
		—	1220	1800	μA	5.0	External Clock (ECH), High-Power mode		
D019A		—	6	16	μA	1.8	Fosc = 32 kHz,		
		—	8	22	μA	3.0	External Clock (ECL), Low-Power mode		
D019A		_	13	28	μA	2.3	Fosc = 32 kHz,		
			15	31	μA	3.0	External Clock (ECL),		
		—	16	36	μA	5.0	Low-Power mode		
D019B		—	19	35	μA	1.8	Fosc = 500 kHz,		
		—	32	55	μA	3.0 External Clock (ECL), Low-Power mode	External Clock (ECL), Low-Power mode		
D019B		—	31	52	μA	2.3	Fosc = 500 kHz,		
		—	38	65	μA	3.0	External Clock (ECL),		
		—	44	74	μA	5.0			

TABLE 28-2: SUPPLY CURRENT (IDD)^(1,2) (CONTINUED)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

