

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1503-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.5 DEVICE MEMORY MAPS

The memory maps for Bank 0 through Bank 31 are shown in the tables in this section.

TABLE 3-3: PIC16(L)F1503 MEMORY MAP

	BANK 0	•	BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	_	30Ch	_	38Ch	—
00Dh		08Dh	-	10Dh	-	18Dh		20Dh		28Dh		30Dh		38Dh	—
00Eh	PURIC		TRISC	10EN	LATC	10E0	ANSELC	20EN		20E11	_	30Eh	_	30E11	—
010h		090h		110h		190h		20111 210h		201 H		310h		390h	
011h	PIR1	091h	PIF1	111h	CM1CON0	191h	PMADRI	211h	SSP1BUF	291h	_	311h	_	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	SSP1ADD	292h	_	312h	_	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	SSP1MSK	293h	_	313h	_	393h	IOCAF
014h	_	094h	_	114h	CM2CON1	194h	PMDATH	214h	SSP1STAT	294h	_	314h	_	394h	_
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	SSP1CON1	295h	_	315h	—	395h	_
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	—	316h	—	396h	_
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON	217h	SSP1CON3	297h	—	317h	_	397h	—
018h	T1CON	098h	_	118h	DACCON0	198h		218h	_	298h	—	318h	—	398h	—
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	_	219h	_	299h	_	319h	_	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	—	21Ah	—	29Ah	—	31Ah	—	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	_	19Bh	_	21Bh	_	29Bh	_	31Bh	_	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	—	21Ch	—	29Ch	—	31Ch	—	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	APFCON	19Dh		21Dh	—	29Dh	—	31Dh	—	39Dh	—
01Eh	—	09Eh	ADCON1	11Eh	—	19Eh		21Eh	—	29Eh	—	31Eh	—	39Eh	—
01Fh	—	09Fh	ADCON2	11Fh	_	19Fh		21Fh	—	29Fh	—	31Fh	—	39Fh	-
020h		0A0h	General	120h		1A0h		220h		2A0h		320h		3A0h	
			Register												
	General	0BFh	32 Bytes												l la banda an anta d
	Purpose	0C0h	-		Dnimplemented		Read as '0'		Dnimplemented Read as '0'		Read as '0'		Read as '0'		Read as '0'
	80 Bytes		Unimplemented		iteau as 0		itedd do 0		ricad as 0				itedu do 0		
	,		Read as '0'												
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h	Osman Data	170h		1F0h	Osman Data	270h	Orman Data	2F0h	Osman Data	370h		3F0h	Orman DAM
	Common RAM														
	COMMON NAM		70h – 7Fh)		70h – 7Fh)		70h – 7Fh)		70h - 7Fh		70h – 7Fh)		70h – 7Fh)		70h – 7Fh)
07Fh		0FFh	,	17Fh		1FFh		27Fh		2FFh	,	37Fh		3FFh	,

Legend: = Unimplemented data memory locations, read as '0'

5.4 Register Definitions: Oscillator Control

U-0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
—		IRCF	<3:0>		—	SCS	<1:0>
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	OR/Value at all	other Resets
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-3	IRCF<3:0>: Ir	nternal Oscillat	or Frequency	Select bits			
	1111 = 16 M	Hz					
	1110 = 8 MH	lz					
	1101 = 4 MH	lz					
	1100 = 2 MH	lz					
	1011 = 1 MF	IZ					
	1010 = 500	(HZ ⁽¹⁾					
	1001 = 250	(HZ ⁽¹⁾					
	1000 - 123	∖⊓∠`′ ∕Hz (dofoult un	on Posot)				
	0111 = 300	(Hz (uelault up	on Reset)				
	0101 = 125	(Hz					
	0100 = 62.5	kHz					
	0.01x = 31.25	5 kHz					
	000x = 31 kH	Hz LF					
bit 2	Unimplemen	ted: Read as '	0'				
bit 1-0	SCS<1:0>: S	ystem Clock S	elect bits				
	1x = Internal	, oscillator block					
	01 = Reserve	d					
	00 = Clock de	etermined by F	OSC<1:0> in	Configuration W	/ords.		
Note 1: D	uplicate frequenc	cy derived from	HFINTOSC.				

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

8.2 Low-Power Sleep Mode

This device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

Low-Power Sleep mode allows the user to optimize the operating current in Sleep. Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register, putting the LDO and reference circuitry in a low-power state whenever the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the Default Operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The LDO will remain in the Normal Power mode when those peripherals are enabled. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source)

The Complementary Waveform Generator (CWG), the Numerically Controlled Oscillator (NCO) and the Configurable Logic Cell (CLC) modules can utilize the HFINTOSC oscillator as either a clock source or as an input source. Under certain conditions, when the HFINTOSC is selected for use with the CWG, NCO or CLC modules, the HFINTOSC will remain active during Sleep. This will have a direct effect on the Sleep mode current.

Please refer to sections Section 23.5 "Operation During Sleep", 24.7 "Operation In Sleep" and 25.10 "Operation During Sleep" for more information.

Note:	The PIC16LF1503 does not have a con-
	figurable Low-Power Sleep mode.
	PIC16LF1503 is an unregulated device
	and is always in the lowest power state
	when in Sleep, with no wake-up time pen-
	alty. This device has a lower maximum
	VDD and I/O voltage than the
	PIC16F1503. See Section
	28.0 "Electrical Specifications" for
	more information.

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 28.0 "Electrical Specifications"** for the LFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
10		Awake	Active
TO	X	Sleep	Disabled
01	1	Х	Active
UI	0	Х	Disabled
00	х	Х	Disabled

TABLE 9-2: WDT CLEARING CONDITIONS

ConditionsWDTWDTE<1:0> = 00WDTE<1:0> = 01 and SWDTEN = 0WDTE<1:0> = 10 and enter SleepClearedCLRWDT CommandClearedOscillator Fail DetectedExit Sleep + System Clock = INTOSC, EXTCLKChange INTOSC divider (IRCF bits)Unaffected

9.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- Device wakes up from Sleep
- Oscillator fail
- · WDT is disabled

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See Section 3.0 "Memory Organization" for more information.

TABLE 9-3:	SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON	—		IRCF	<3:0>		_	SCS<1:0>		49	
PCON	STKOVF	STKUNF	-	RWDT	RMCLR	RI	POR	BOR	57	
STATUS	—	—		TO	PD	Z	DC	С	17	
WDTCON	_	_		WDTPS<4:0> SWDTEN						

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		—	—	—	CLKOUTEN	BORE	N<1:0>	_	20
CONFIGT	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC	<1:0>	- 38

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FIGURE 10-1: FLASH PROGRAM MEMORY READ FLOWCHART

13.3 Register Definitions: FVR Control

REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN ⁽¹⁾	FVRRDY ⁽²⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFV	R<1:0> ⁽¹⁾	ADFVR	<1:0> ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7	FVREN: Fixed 1 = Fixed Vol 0 = Fixed Vol	d Voltage Refe tage Referenc tage Referenc	rence Enable e is enabled e is disabled	bit ⁽¹⁾			
bit 6	FVRRDY: Fixed 1 = Fixed Vol 0 = Fixed Vol	ed Voltage Ref tage Referenc tage Referenc	ference Ready e output is rea e output is not	/ Flag bit ⁽²⁾ ady for use t ready or not e	nabled		
bit 5	TSEN: Temperat 1 = Temperat 0 = Temperat	erature Indicato ture Indicator is ture Indicator is	or Enable bit ⁽³⁾ s enabled s disabled)			
bit 4	TSRNG: Tem 1 = Vout = V 0 = Vout = V	perature Indica DD - 4VT (High DD - 2VT (Low	ator Range Se Range) Range)	lection bit ⁽³⁾			
bit 3-2	CDAFVR<1:0 11 = Compara 10 = Compara 01 = Compara 00 = Compara	Comparator ator FVR Buffe ator FVR Buffe ator FVR Buffe ator FVR Buffe ator FVR Buffe	r FVR Buffer (r Gain is 4x, v r Gain is 2x, v r Gain is 1x, v r is off	Gain Selection vith output volta vith output volta vith output volta	bits ⁽¹⁾ age = 4x VFVR (age = 2x VFVR (age = 1x VFVR ((4.096V nomina (2.048V nomina (1.024V nomina	al)(4) al)(4) al)
bit 1-0	ADFVR<1:0> 11 = ADC FV 10 = ADC FV 01 = ADC FV 00 = ADC FV	: ADC FVR Bu R Buffer Gain R Buffer Gain R Buffer Gain R Buffer is off	iffer Gain Sele is 4x, with out is 2x, with out is 1x, with out	ection bit ⁽¹⁾ put voltage = 4 put voltage = 2 put voltage = 1	x Vfvr (4.096V x Vfvr (2.048V x Vfvr (1.024V	′ nominal) (4) ′ nominal)(⁴⁾ ′ nominal)	
Note 1: T	o minimize curren og the Buffer Gain	t consumption Selection bits	when the FVF	R is disabled, th	e FVR buffers	should be turne	ed off by clear-

- 2: FVRRDY is always '1' for the PIC16F1503 devices.
- 3: See Section 14.0 "Temperature Indicator Module" for additional information.
- 4: Fixed Voltage Reference output cannot exceed VDD.

TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR>1:0>		ADFVF	R<1:0>	110

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

REGISTER 15-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 15-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | S<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **ADRES<1:0>**: ADC Result Register bits Lower two bits of 10-bit conversion result

bit 5-0 **Reserved**: Do not use.

17.8 Register Definitions: Comparator Control

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
CxON	CxOUT	CxOE	CxPOL	—	CxSP	CxHYS	CxSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7 CxON: Comparator Enable bit 1 = Comparator is enabled							
bit 6	CxOUT: Com	inarator Output	hit				
	$\frac{\text{If CxPOL} = 1}{1 = \text{CxVP} < 0}$ $0 = \text{CxVP} > 0$ $\frac{\text{If CxPOL} = 0}{1 = \text{CxVP} > 0}$ $0 = \text{CxVP} < 0$	(inverted polar CxVN CxVN (non-inverted p CxVN CxVN	<u>ity):</u> polarity):				
bit 5	CxOE: Comp	arator Output I	Enable bit				
	1 = CxOUT is drive the 0 = CxOUT i	s present on th pin. Not affect s internal only	e CxOUT pin. F ed by CxON.	Requires that t	he associated T	RIS bit be clea	red to actually
bit 4	CxPOL: Com	parator Output	Polarity Selec	t bit			
	1 = Compara 0 = Compara	tor output is inv tor output is no	verted t inverted				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	CxSP: Comparator Speed/Power Select bit 1 = Comparator mode in normal power, higher speed 0 = Comparator mode in low-power, low-speed						
bit 1	CxHYS: Com	parator Hyster	esis Enable bit	t			
	1 = Compara 0 = Compara	ator hysteresis ator hysteresis	enabled disabled				
bit 0	CxSYNC: Co	mparator Outp	ut Synchronou	s Mode bit			
	1 = Compara Output u 0 = Compara	ator output to T pdated on the r ator output to T	Fimer1 and I/O falling edge of imer1 and I/O	pin is synchu Timer1 clock s pin is asynchr	ronous to chang source. onous	ges on Timer1	clock source.

REGISTER 17-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

18.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 3-bit prescaler (independent of Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow
- · TMR0 can be used to gate Timer1

Figure 18-1 is a block diagram of the Timer0 module.

18.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

18.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note:	The value written to the TMR0 register
	can be adjusted, in order to account for
	the two instruction cycle delay when
	TMR0 is written.

FIGURE 18-1: TIMER0 BLOCK DIAGRAM

18.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

18.2 Register Definitions: Option Register

R/W-1/1	R/W-1/1	R/W	/-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR	ROCS	TMR0SE	PSA		PS<2:0>	
bit 7								bit 0
Legend:								
R = Readable	e bit	W = W	/ritable I	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncl	hanged	x = Bit	is unkn	own	-n/n = Value a	at POR and BC	R/Value at all c	other Resets
'1' = Bit is set		'0' = B	it is clea	ared				
bit 7	WPUEN: We	ak Pull-I	Up Enal	ble bit				
	1 = All weak	pull-ups	are dis	abled (except	MCLR, if it is e	enabled)		
	0 = Weak pu	II-ups are	e enable	ed by individu	al WPUx latch	values		
bit 6	INTEDG: Inte	errupt Ec	dge Sele	ect bit				
	1 = Interrupt	on rising	g edge o	of INT pin				
L:1 C			y euge i	ur inn r piri ree Celeet bit				
DIL D	1 = Transitio	meru Cic n on TOC	CK SOU	rce Select bit				
	0 = Internal i	nstructio	n cycle	clock (Fosc/4	1)			
bit 4	TMR0SE: Ti	mer0 So	urce Ed	ae Select bit	,			
	1 = Incremer	nt on hig	h-to-low	transition on	T0CKI pin			
	0 = Incremer	nt on low	-to-high	transition on	T0CKI pin			
bit 3	PSA: Presca	ler Assig	gnment	bit				
	1 = Prescale	r is not a	issigned	to the Timer	0 module			
	0 = Prescale	r is assig	gned to	the limer0 m	odule			
bit 2-0	PS<2:0>: Pr	escaler F	Rate Se	lect bits				
	Bit	Value	Timer0 I	Rate				
		000	1:2					
		001	1:4					
		010	1:8	3				
		100	1:32	2				
		101	1:64	ŧ				

REGISTER 18-1: OPTION_REG: OPTION REGISTER

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

1:128

1:256

110

111

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON2		TRIGSI	EL<3:0>				—	_	121
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		139		
TMR0	Holding Register for the 8-bit Timer0 Count								137*
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	98

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module. * Page provides register information.

Note 1: Unimplemented, read as '1'.

21.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCLx pin (SCLx allowed to float high). When the SCLx pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCLx pin is actually sampled high. When the SCLx pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCLx high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 21-25).

FIGURE 21-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

21.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,									
	writing to the lower five bits of SSPxCON2									
	is disabled until the Start condition is									
	complete.									

21.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 21-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 21-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 21-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

EQUATION 21-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 21-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 21-4: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	Fclock (Two Rollovers of BRG)
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical and timing specifications in Table 28-9 and Figure 28-7 to ensure the system is designed to support the I/O timing requirements.

REGISTER 21-2: SSPxCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPM<3	:0>	1011 0/0
bit 7		1		1			bit 0
L							
Legend:							
R = Readable b	it	W = Writable bit		U = Unimplemen	ted bit, read as '0'		
u = Bit is unchar	nged	x = Bit is unknown	ı	-n/n = Value at P	OR and BOR/Value at	all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	y hardware C	= User cleared	
bit 7	WCOL: Write Co <u>Master mode:</u> 1 = A write to th 0 = No collision <u>Slave mode:</u> 1 = The SSPXB	Ilision Detect bit he SSPxBUF registe 1	er was attempted	I while the I ² C cond	itions were not valid for	a transmission to	be started
bit 6	0 = No collision		write it is suit train	smilling the previous	word (must be cleared in	i soliware)	
DILO	In <u>SPI</u> mode: 1 = A new byte Overflow ca setting over SSPXBUF r 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	is received while the an only occur in Slav flow. In Master mode egister (must be cleav v ecceived while the St eared in software). v	SSPxBUF registe e mode. In Slave t, the overflow bit i ared in software). SPxBUF register	er is still holding the p mode, the user mus s not set since each is still holding the p	revious data. In case of o t read the SSPxBUF, evenew reception (and trans previous byte. SSPOV	overflow, the data ir en if only transmitti mission) is initiated is a "don't care" ir	n SSPxSR is lost. ng data, to avoid d by writing to the n Transmit mode
bit 5	SSPEN: Synchro In both modes, w 1 = Enables set 0 = Disables set <u>In I²C mode</u> : 1 = Enables the 0 = Disables set	nous Serial Port Er hen enabled, these rial port and configur erial port and config e serial port and config erial port and config	able bit pins must be pro- es SCKx, SDOx, ures these pins a gures the SDAx a ures these pins a	operly configured as SDIx and SSx as the as I/O port pins and SCLx pins as the as I/O port pins	s input or output e source of the serial por source of the serial port	t pins ⁽²⁾ pins ⁽³⁾	
bit 4	CKP: Clock Pola In SPI mode: 1 = Idle state for 0 = Idle state for In I ² C Slave mod SCLx release con 1 = Enable clock k 0 = Holds clock k In I ² C Master mo Unused in this m	rity Select bit clock is a high level clock is a low level <u>le:</u> ntrol ow (clock stretch). (<u>de:</u> ode	Used to ensure o	lata setup time.)			
bit 3-0	SSPM<3:0>: Syr 0000 = SPI Masi 0001 = SPI Masi 0010 = SPI Masi 0010 = SPI Masi 0100 = SPI Slav 0101 = SPI Slav 0101 = I ² C Slave 1001 = I ² C Slave 1001 = Reserved 1001 = Reserved 1010 = SPI Masi 1011 = I ² C firmw 1100 = Reserved 1101 = Reserved 1101 = I ² C Slave	herbronous Serial Pecter mode, clock = Fe ter mode, clock = Fe ter mode, clock = Fe ter mode, clock = Ce ter mode, clock = SC e mode, clock = SC e mode, clock = SC e mode, 10-bit addres e mode, clock = Fe d ter mode, clock = Fe d a mode, clock = Fe d e mode, clock = Fe d a mode, 7-bit addres e mode, 7-bit addres e mode, 10-bit addres	ort Mode Select b DSC/4 DSC/16 DSC/64 2_match/2 Kx pin, <u>SS</u> pin co Kx pin, <u>SS</u> pin co SS DSC/(4 * (SSPxAI DSC/(4 * (SSPxAI er mode (Slave i SS with Start and SS with Start and	its ontrol enabled ontrol disabled, SSx DD+1)) ⁽⁴⁾ DD+1)) ⁽⁵⁾ dle) Stop bit interrupts e d Stop bit interrupts e	can be used as I/O pir enabled enabled		
Note 1: In 2: W 3: W	Master mode, the ov hen enabled, these p hen enabled, the SD/	erflow bit is not set ins must be properly Ax and SCLx pins m	since each new r y configured as in nust be configure	eception (and trans nput or output. d as inputs.	mission) is initiated by	writing to the SSF	PxBUF register.

- SSPxADD values of 0, 1 or 2 are not supported for I²C mode.
 SSPxADD value of '0' is not supported. Use SSPM = 0000 instead.

TABLE 28-9:	CLKOUT	AND I/O	TIMING	PARAMETERS
-------------	--------	---------	--------	------------

Standard	Operating C	Conditions (unless otherwise stated)					
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	—	70	ns	$3.3V \leq V\text{DD} \leq 5.0V$
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	—	72	ns	$3.3V \le V\text{DD} \le 5.0V$
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	_		ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)	50	—		ns	$3.3V \leq V\text{DD} \leq 5.0V$
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	_	ns	
OS18*	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V
			—	15	32		$3.3V \leq V\text{DD} \leq 5.0V$
OS19*	TioF	Port output fall time	—	28	55	ns	VDD = 1.8V
			—	15	30		$3.3V \le V\text{DD} \le 5.0V$
OS20*	Tinp	INT pin input high or low time	25	_	_	ns	
OS21*	Tioc	Interrupt-on-change new input level time	25	_	_	ns	

* These parameters are characterized but not tested.

 \dagger Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

FIGURE 29-39: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V, PIC16LF1503 ONLY

16-Lead Ultra Thin Quad Flat Pack, No Lead (MV) - 3x3x0.50 mm Body (UQFN)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	X2			1.70
Optional Center Pad Length	Y2			1.70
Contact Pad Spacing	C1		2.90	
Contact Pad Spacing	C2		2.90	
Contact Pad Width (X16)	X1			0.30
Contact Pad Length (X16)	Y1			0.80

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2211A