

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UFQFN Exposed Pad
Supplier Device Package	16-UQFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1503t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 5-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

8.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a **SLEEP** instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. $\overline{\text{TO}}$ bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
- 7. ADC is unaffected, if the dedicated FRC oscillator is selected.
- 8. I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- · I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- CWG, NCO and CLC modules using HFINTOSC

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include the FVR module. See **Section 13.0 "Fixed Voltage Reference (FVR)"** for more information on this module.

8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 6.12 "Determining the Cause of a Reset**".

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

8.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

11.0 I/O PORTS

Each port has three standard registers for its operation. These registers are:

- · TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

- · ANSELx (analog select)
- · WPUx (weak pull-up)

In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

TABLE 11-1:PORT AVAILABILITY PER
DEVICE

Device	PORTA	РОКТВ	PORTC
PIC16(L)F1503	•		•

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

FIGURE 11-1: GE

GENERIC I/O PORT OPERATION

12.6 Register Definitions: Interrupt-on-Change Control

REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
		IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bi	t	U = Unimplemented bit, read as '0'				
u = Bit is unchan	= Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleare	ed					

bit 7-6 Unimplemented: Read as '0'

bit 5-0

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-6 Unimplemented: Read as '0'

IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected, or the user cleared the detected change.

18.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 3-bit prescaler (independent of Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow
- · TMR0 can be used to gate Timer1

Figure 18-1 is a block diagram of the Timer0 module.

18.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

18.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note:	The value written to the TMR0 register
	can be adjusted, in order to account for
	the two instruction cycle delay when
	TMR0 is written.

FIGURE 18-1: TIMER0 BLOCK DIAGRAM

18.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set	
bit 7	GCEN: Gene	ral Call Enable	e bit (in I ² C Sla	ve mode only)			
	1 = Enable in 0 = General c	terrupt when a call address dis	general call a sabled	ddress (0x00 d	or 00h) is receiv	ed in the SSP	(SR
bit 6	ACKSTAT: Ad	cknowledge St	atus bit (in I ² C	mode only)			
	1 = Acknowle	dge was not re	eceived				
hit 5		owlodgo Data	veu . hit (in I ² C mo	do only)			
bit 5	In Receive m	nde.		ue only)			
	Value transmi	itted when the	user initiates a	an Acknowledg	je sequence at t	he end of a re	ceive
	1 = Not Ackno	owledge			•		
	0 = Acknowle	dge					
bit 4	ACKEN: Acki	nowledge Seq	uence Enable	bit (in I ² C Mas	ter mode only)		
	1 = Initiate A	<u>ceive mode:</u> Acknowledge	sequence on	SDAx and S	Clypins and	transmit AC	KDT data bit
	Automati	cally cleared b	y hardware.		OLX pino, and		
	0 = Acknowle	edge sequence	eidle				
bit 3	RCEN: Recei	ve Enable bit	(in I ² C Master	mode only)			
	1 = Enables F	Receive mode	for I ² C				
hit 2	PEN. Stop Co	uie Indition Enable	hit (in I ² C Ma	ister mode only	v)		
Dit 2	SCKx Releas	e Control:			y)		
	1 = Initiate St	op condition o	n SDAx and S	CLx pins. Auto	matically cleare	d by hardware	
	0 = Stop cond	dition idle					
bit 1	RSEN: Repea	ated Start Con	dition Enable b	oit (in I ² C Mast	er mode only)		
	 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Automatically cleared by hardware. 0 = Repeated Start condition idle 						y hardware.
bit 0	SEN: Start Co	ondition Enable	e/Stretch Enab	le bit			
	In Master mod	<u>de:</u>				al Ia Ia a nali a na	
	\perp = initiate State 0 = Start cond	art condition o dition idle	n SDAX and S	CLX pins. Auto	matically cleare	a by hardware	
	In Slave mode	<u>e:</u> stabing is an	lad for bath -!	wo trop and t =-	ad alawa receive	(atratak anal-	
	$\perp = Clock stree 0 = Clock stree$	etching is enab	bled for both sla bled	ave transmit ar	iu slave receive	(stretch enabl	eu)
				2			

REGISTER 21-3: SSPxCON2: SSP CONTROL REGISTER 2⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG4D4T:	Gate 4 Data 4 T	rue (non-inver	ted) bit			
	1 = ICXd4I is 0 = ICXd4T is	gated into loxg	j4 Icxa4				
bit 6		Gate 4 Data 4 I	Vegated (inver	ted) bit			
Sito	1 = lcxd4N is	aated into Icxo	10guiou (iiitoi 14				
	0 = lcxd4N is	not gated into	lcxg4				
bit 5	LCxG4D3T: 0	Gate 4 Data 3 T	rue (non-inver	ted) bit			
	1 = Icxd3T is	gated into lcxg	j4				
	0 = 100031 is	not gated into	ICXG4	(
DIT 4	LCXG4D3N: (Jate 4 Data 3 I	vegated (inver	ted) bit			
	0 = Icxd3N is	not gated into	lcxg4				
bit 3	LCxG4D2T: G	Gate 4 Data 2 T	rue (non-inver	ted) bit			
	1 = Icxd2T is	gated into lcxg	14	,			
	0 = Icxd2T is	not gated into	lcxg4				
bit 2	LCxG4D2N:	Gate 4 Data 2 I	Negated (inver	ted) bit			
	1 = lcxd2N is 0 = lcxd2N is	gated into Icxo	j4 Jeva4				
hit 1		Sate 4 Data 1 T	īcīja (non-invei	ted) hit			
Sit 1	1 = lcxdT is gated into lcxg4						
	0 = lcxd1T is	not gated into	lcxg4				
bit 0	LCxG4D1N:	Gate 4 Data 1 I	Negated (inver	ted) bit			
1 = Icxd1N is gated into Icxg4							
	0 = Icxd1N is	not gated into	lcxg4				

REGISTER 23-8: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

25.5 Dead-Band Control

Dead-band control provides for non-overlapping output signals to prevent shoot-through current in power switches. The CWG contains two 6-bit dead-band counters. One dead-band counter is used for the rising edge of the input source control. The other is used for the falling edge of the input source control.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers (Register 25-4 and Register 25-5, respectively).

25.6 Rising Edge Dead Band

The rising edge dead-band delays the turn-on of the CWGxA output from when the CWGxB output is turned off. The rising edge dead-band time starts when the rising edge of the input source signal goes true. When this happens, the CWGxB output is immediately turned off and the rising edge dead-band delay time starts. When the rising edge dead-band delay time is reached, the CWGxA output is turned on.

The CWGxDBR register sets the duration of the deadband interval on the rising edge of the input source signal. This duration is from 0 to 64 counts of dead band.

Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present.

If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

25.7 Falling Edge Dead Band

The falling edge dead band delays the turn-on of the CWGxB output from when the CWGxA output is turned off. The falling edge dead-band time starts when the falling edge of the input source goes true. When this happens, the CWGxA output is immediately turned off and the falling edge dead-band delay time starts. When the falling edge dead-band delay time is reached, the CWGxB output is turned on.

The CWGxDBF register sets the duration of the deadband interval on the falling edge of the input source signal. This duration is from 0 to 64 counts of dead band.

Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present.

If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

Refer to Figure 25-3 and Figure 25-4 for examples.

Mnemonic,		Description			14-Bit Opcode			Status	Notos
Oper	Operands		Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED SKIP (PERATIO	ONS					
DECESZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE REGIST			IS				
BCE	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED SKIP O	PERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
		LITERAL OPERA	TIONS						
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

TABLE 27-3: ENHANCED MID-RANGE INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

28.2 Standard Operating Conditions

The standard operating conditions for any device are defined as:

Operating Voltage: Operating Temperature:	$\label{eq:VDDMin} \begin{array}{l} \forall VDD \leq VDDMAX \\ TA_MIN \leq TA \leq TA_MAX \end{array}$	
VDD — Operating Supply	^y Voltage ⁽¹⁾	
PIC16LF1503		
VDDMIN (F	osc ≤ 16 MHz)	+1.8V
VDDMIN (10	$6 \text{ MHz} < \text{Fosc} \le 20 \text{ MHz}$)	+2.5V
VDDMAX		+3.6V
PIC16F1503		
VDDMIN (F	osc ≤ 16 MHz)	+2.3V
VDDMIN (1)	$6 \text{ MHz} < \text{Fosc} \le 20 \text{ MHz}$)	
VDDMAX		+5.5V
TA — Operating Ambient	Temperature Range	
Industrial Temperate	ure	
TA_MIN		40°C
Та_мах		+85°C
Extended Temperat	ure	
TA_MIN		40°C
Та_мах		+125°C

Note 1: See Parameter D001, DC Characteristics: Supply Voltage.

TABLE 28-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF1503		Standard Operating Conditions (unless otherwise stated)					
PIC16F1503							
Param. No.	Device Characteristics	Min.	Тур†	Max.	Units	Conditions	
						VDD	Note
D013		_	30	65	μA	1.8	Fosc = 1 MHz, External Clock (ECM), Medium Power mode
		—	55	100	μA	3.0	
D013		_	65	110	μA	2.3	Fosc = 1 MHz,
		_	85	140	μA	3.0	External Clock (ECM),
		—	115	190	μA	5.0	Medium Power mode
D014		—	115	190	μA	1.8	Fosc = 4 MHz, External Clock (ECM), Medium Power mode
			210	310	μA	3.0	
D014		—	180	270	μA	2.3	Fosc = 4 MHz,
		—	240	365	μA	3.0	External Clock (ECM), Medium Power mode
		—	295	460	μA	5.0	
D015		-	3.2	12	μA	1.8	Fosc = 31 kHz, LFINTOSC, $-40^{\circ}C \le TA \le +85^{\circ}C$
			5.4	20	μA	3.0	
D015		_	13	28	μA	2.3	Fosc = 31 kHz,
		—	15	30	μA	3.0	
		—	17	36	μA	5.0	-40 C \leq TA \leq $+85$ C
D016		—	215	360	μA	1.8	Fosc = 500 kHz, HFINTOSC
		—	275	480	μA	3.0	
D016		_	270	450	μA	2.3	Fosc = 500 kHz,
		—	300	500	μA	3.0	HFINTOSC
		—	350	620	μA	5.0	
D017*		_	410	660	μA	1.8	Fosc = 8 MHz, HFINTOSC
		—	630	970	μA	3.0	
D017*			530	750	μA	2.3	Fosc = 8 MHz,
		—	660	1100	μA	3.0	HFINTOSC
		—	730	1200	μA	5.0	
D018			600	940	μA	1.8	Fosc = 16 MHz, HFINTOSC
		_	970	1400	μA	3.0	
D018			780	1200	μA	2.3	Fosc = 16 MHz,
		_	1000	1550	μA	3.0	HFINTOSC
		_	1090	1700	μA	5.0	

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

FIGURE 29-3: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC16LF1503 ONLY

FIGURE 29-4: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC16F1503 ONLY

FIGURE 29-39: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V, PIC16LF1503 ONLY

