

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1503t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		139
PIE1	TMR1GIE	ADIE	_	—	SSP1IE	_	TMR2IE	TMR1IE	65
PIE2	—	C2IE	C1IE	_	BCL1IE	NCO1IE	_	—	66
PIE3	—	_	_	_	_	_	CLC2IE	CLC1IE	67
PIR1	TMR1GIF	ADIF		_	SSP1IF		TMR2IF	TMR1IF	68
PIR2	—	C2IF	C1IF	—	BCL1IF	NCO1IF	_	—	69
PIR3	_	_		_	_		CLC2IF	CLC1IF	70

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 15.2.6 "ADC Conver-
	sion Procedure".

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their									
	Reset state. Thus, the ADC module is									
	turned off and any pending conversion is									
	terminated.									

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. Performing the ADC conversion during Sleep can reduce system noise. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

15.2.5 AUTO-CONVERSION TRIGGER

The auto-conversion trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The auto-conversion trigger source is selected with the TRIGSEL<3:0> bits of the ADCON2 register.

Using the auto-conversion trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Table 15-2 for auto-conversion sources.

TABLE 15-2: AUTO-CONVERSION SOURCES

Source Peripheral	Signal Name
Timer0	T0_overflow
Timer1	T1_overflow
Timer2	T2_match
Comparator C1	C1OUT_sync
Comparator C2	C2OUT_sync
CLC1	LC1_out
CLC2	LC2_out

17.8 Register Definitions: Comparator Control

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0		
CxON	CxOUT	CxOE	CxPOL	—	CxSP	CxHYS	CxSYNC		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7 CxON: Comparator Enable bit 1 = Comparator is enabled									
bit 6	CxOUT: Com	inarator Output	hit						
	$\frac{\text{If CxPOL} = 1}{1 = \text{CxVP} < 0}$ $0 = \text{CxVP} > 0$ $\frac{\text{If CxPOL} = 0}{1 = \text{CxVP} > 0}$ $0 = \text{CxVP} < 0$	(inverted polar CxVN CxVN (non-inverted p CxVN CxVN	<u>ity):</u> polarity):						
bit 5	CxOE: Comp	arator Output I	Enable bit						
	1 = CxOUT is drive the 0 = CxOUT i	s present on th pin. Not affect s internal only	e CxOUT pin. F ed by CxON.	Requires that t	he associated T	RIS bit be clea	red to actually		
bit 4	CxPOL: Com	parator Output	Polarity Selec	t bit					
	1 = Compara 0 = Compara	tor output is inv tor output is no	verted t inverted						
bit 3	Unimplemen	ted: Read as '	0'						
bit 2	CxSP: Comp 1 = Compara 0 = Compara	arator Speed/F tor mode in no tor mode in lov	Power Select bi rmal power, hig v-power, low-sp	it gher speed beed					
bit 1	CxHYS: Com	parator Hyster	esis Enable bit	t					
	1 = Compara 0 = Compara	ator hysteresis ator hysteresis	enabled disabled						
bit 0	CxSYNC: Co	mparator Outp	ut Synchronou	s Mode bit					
	1 = Compara Output u 0 = Compara	ator output to T pdated on the r ator output to T	Fimer1 and I/O falling edge of imer1 and I/O	pin is synchu Timer1 clock s pin is asynchr	ronous to chang source. onous	ges on Timer1	clock source.		

REGISTER 17-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	99
APFCON	—	—	SDOSEL	SSSEL	T1GSEL	—	CLC1SEL	NCO1SEL	96
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE1	TMR1GIE	ADIE	_	—	SSP1IE	—	TMR2IE	TMR1IE	65
PIR1	TMR1GIF	ADIF	_	—	SSP1IF	—	TMR2IF	TMR1IF	68
TMR1H	Holding Regi	ister for the M	ost Significan	t Byte of the	16-bit TMR1 (Count			144*
TMR1L	Holding Regi	ister for the Le	east Significa	nt Byte of the	16-bit TMR1	Count			144*
TRISA	—	—	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	98
T1CON	TMR1C	S<1:0>	T1CKP	T1CKPS<1:0>		T1SYNC	_	TMR10N	148
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS<1:0>		149

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

20.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see **Section 20.2 "Timer2 Interrupt**").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMR2 register
- · a write to the T2CON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

20.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (T2_match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

20.3 Timer2 Output

The output of TMR2 is T2_match. T2_match is available to the following peripherals:

- Configurable Logic Cell (CLC)
- Master Synchronous Serial Port (MSSP)
- Numerically Controlled Oscillator (NCO)
- · Pulse Width Modulator (PWM)

The T2_match signal is synchronous with the system clock. Figure 20-3 shows two examples of the timing of the T2_match signal relative to Fosc and prescale value, T2CKPS<1:0>. The upper diagram illustrates 1:1 prescale timing and the lower diagram, 1:X prescale timing.

T2_MATCH TIMING DIAGRAM

20.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

20.5 Register Definitions: Timer2 Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
		T2OUT	PS<3:0>		TMR2ON	T2CKP	'S<1:0>				
oit 7							bit				
egend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
ı = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets				
1' = Bit is set	t	'0' = Bit is cle	ared								
oit 7	Unimpleme	nted: Read as '	0'								
oit 6-3	T2OUTPS<3	3:0>: Timer2 Ou	tput Postscale	er Select bits							
	0000 = 1:1 F	Postscaler									
	0001 = 1:2 +	Postscaler									
	0010 = 1.3 F	Postscaler									
	0011 = 1.4 F	Postscaler									
	0100 = 1.51	0101 = 1.6 Postscaler									
	0110 = 1:7 F	0110 = 1.7 Postscaler									
	0111 = 1:8 F	Postscaler									
	1000 = 1:9 F	Postscaler									
	1001 = 1:10	Postscaler									
	1010 = 1:11	Postscaler									
	1011 = 1:12	Postscaler									
	1100 = 1.13	Postscaler									
	1110 = 1.14	Postscaler									
	1111 = 1:16	Postscaler									
oit 2	TMR2ON: T	imer2 On bit									
	1 = Timer2 i	is on									
	0 = Timer2	is off									
oit 1-0	T2CKPS<1:	0>: Timer2 Cloc	k Prescale Se	elect bits							
	00 = Presca	ler is 1									
	01 = Presca	ler is 4									
	10 = Presca	ler is 16									
	11 = Presca	ler is 64									
ABLE 20-1	: SUMMAR	RY OF REGIS	TERS ASSO	CIATED WIT	H TIMER2						

REGISTER 20-1: T2CON: TIMER2 CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE1	TMR1GIE	ADIE	-		SSP1IE	_	TMR2IE	TMR1IE	65
PIR1	TMR1GIF	ADIF	_	-	SSP1IF	—	TMR2IF	TMR1IF	65
PR2	Timer2 Mod	ule Period Re	gister						151*
T2CON	_		T2OUTPS<3:0> TMR2ON T2CKPS<1:0>						
TMR2	Holding Reg	ister for the 8	-bit TMR2 Co	unt					151*

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

Page provides register information.

FIGURE 21-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	• • •										 }
	· · · ·		×	, , ,			· · · · · · · · · · · · · · · · · · · ·				1 1 1 1 1 1
80%s (CRF = 3 (CRF = 6)	· · ·	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · · · · · · · · · · · · · · · · · · ·	, ,	• •)
Verse es Sereses Verse Seres			, , , , , , , , , , , , , , , , , , ,	; ; ; ;		; ; ; ; ; ; ; ; ; ; ; ;	, , , , , , , , , , , , , , , , , , ,	X 822 3			
- 55785	· · · · · · · · · · · · · · · · · · ·		; ; ; ; ;	; ; ; ; ; ;						, ////////////////////////////////////	5 5 5 7 7
inoni Saropia	4 4 4	4	с с с с с с	, , , , , , , , , , , , , , , , , , , ,			с с - Др с - Др с - Цр с	, , 4, ,			
isteraupa Interaupa Pag	5 1 2 2 4 4 5	5 - - - - - - - -	\$ \$ \$ * *	5 5 5 7 7	: : : :	5 2 2 2 2 2 2 2	\$ \$ \$ \$ \$	4 5 5 5 7 7 7 7 7			
	, , ,	· · · · · · · · · · · · · · · · · · · ·	?	· / / /	· · · · · · · · · · · · · · · · · · · ·	, 5 5 	- - 	· · · · · · · · · · · · · · · · · · · ·	· · ·		
deteción aceve		ł									

FIGURE 21-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

21.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDAx from a high to a low state while SCLx line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 21-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDAx line low before asserting it low. This does not conform to the I²C Specification that states no bus collision can occur on a Start.

21.4.6 STOP CONDITION

A Stop condition is a transition of the SDAx line from low-to-high state while the SCLx line is high.

Note: At least one SCLx low time must appear before a Stop is valid, therefore, if the SDAx line goes low then high again while the SCLx line stays high, only the Start condition is detected.

21.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 21-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/\overline{W} bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

21.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
MSK<7:0>										
bit 7 bit 0										
Legend:										
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-1 MSK<7:1>: Mask bits 1 = The received address bit n is compared to SSPxADD <n> to detect I²C address match</n>										

REGISTER 21-5: SSPxMSK: SSP MASK REGISTER

	1 = The received address bit n is compared to SSPxADD <n> to detect I²C address match</n>
	0 = The received address bit n is not used to detect I ² C address match
bit 0	MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSPxADD<0> to detect I ² C address match
	0 = The received address bit 0 is not used to detect I ² C address match
	I ² C Slave mode. 7-bit address, the bit is ignored

REGISTER 21-6: SSPxADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			ADD	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			pit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged $x = Bit$ is unknown $-n/n = Value$ at POR and BOR/Value at all other Re							other Resets	

Master mode:

'1' = Bit is set

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits					
	SCLx pin clock period = ((ADD<7:0> + 1) *4)/Fosc					

'0' = Bit is cleared

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode – Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

REGISTER 23-9: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0			
_	_	_	_	_	_	MLC2OUT	MLC10UT			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unc	hanged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set '0' = Bit is cleared			ared							
bit 7-2 Unimplemented: Read as '0'										
bit 1 MLC2OUT: Mirror copy of LC2OUT bit										

bit 0 MLC1OUT: Mirror copy of LC1OUT bit

REGISTER 24-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0 R/W-0/0		R/W-0/0	R/W-1/1		
NCOxINC<7:0>									
bit 7							bit 0		
Legend:									

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<7:0>: NCOx Increment, Low Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 24.1.4 "Increment Registers" for more information.

REGISTER 24-7: NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0 R/W-0/0		R/W-0/0	R/W-0/0		
NCOxINC<15:8>									
bit 7 bit									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<15:8>: NCOx Increment, High Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 24.1.4 "Increment Registers" for more information.

TABLE 24-1:	SUMMARY C	OF REGISTERS	ASSOCIATED	WITH NCOx
-------------	-----------	--------------	------------	-----------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	—	SDOSEL	SSSEL	T1GSEL	—	CLC1SEL	NCO1SEL	96
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
NCO1ACCH	NCO1ACC<15:8>								235
NCO1ACCL				NCO1A	CC<7:0>				235
NCO1ACCU	— NCO1ACC<19:16>						235		
NCO1CLK	N1PWS<2:0> —			—	_	— N1CKS<1:0>			
NCO1CON	N1EN	N10E	N1OUT	N1POL	—	_	—	N1PFM	234
NCO1INCH				NCO1IN	C<15:8>				236
NCO1INCL				NCO1IN	NC<7:0>				236
PIE2	—	C2IE	C1IE	—	BCL1IE	NCO1IE	—	—	66
PIR2	_	C2IF	C1IF		BCL1IF	NCO1IF	—	—	69
TRISA	—	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	98
TRISC	_	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	102
Legend: x =	unknown. u =	unchanged	= unimplement	ed read as '0'.	a = value depe	ends on conditi	on. Shaded ce	lls are not used	for NCOx

module. Note 1: Unimplemented, read as '1'.

TABLE 28-4: I/O PORTS

Standard Operating Conditions (unless otherwise stated)

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions					
	VIL	Input Low Voltage										
		I/O PORT:										
D030		with TTL buffer	_	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$					
D030A			_	_	0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$					
D031		with Schmitt Trigger buffer	_	_	0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$					
		with I ² C™ levels	—	_	0.3 Vdd	V						
		with SMbus levels	—		0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$					
D032		MCLR	—		0.2 Vdd	V						
	Vih	Input High Voltage										
		I/O PORT:										
D040		with TTL buffer	2.0		—	V	$4.5V \leq V\text{DD} \leq 5.5V$					
D040A			0.25 VDD + 0.8		_	V	$1.8V \le V\text{DD} \le 4.5V$					
D041		with Schmitt Trigger buffer	0.8 VDD			V	$2.0V \leq V\text{DD} \leq 5.5V$					
		with I ² C™ levels	0.7 Vdd		—	V						
		with SMbus levels	2.1	—	—	V	$2.7V \leq V\text{DD} \leq 5.5V$					
D042		MCLR	0.8 VDD			V						
	lı∟	Input Leakage Current ⁽¹⁾			-							
D060		I/O Ports	—	± 5	± 125	nA	VSS \leq VPIN \leq VDD, Pin at high-impedance, 85°C					
			_	± 5	± 1000	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 125°C					
D061		MCLR ⁽²⁾	_	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C					
	IPUR	Weak Pull-up Current										
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS					
			25	140	300	μΑ	VDD = 5.0V, VPIN = VSS					
	Vol	Output Low Voltage										
D080		I/O Ports	_	_	0.6	V	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V					
	Voн	Output High Voltage			•		•					
D090		I/O Ports	Vdd - 0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8V					
		Capacitive Loading Specification	tions on Out	put Pins								
D101A*	CIO	All I/O pins	—		50	pF						
+												

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

TABLE 28-5:	MEMORY PROGRAMMING SPECIFICATIONS
-------------	-----------------------------------

	-	. .		1		1	1
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	—	9.0	V	(Note 2)
D112	VPBE	VDD for Bulk Erase	2.7		VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	1.0	_	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K			E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

TABLE 28-6: THERMAL CONSIDERATIONS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Тур.	Units	Conditions				
TH01	θJA	Thermal Resistance Junction to Ambient	70	°C/W	14-pin PDIP package				
			95.3	°C/W	14-pin SOIC package				
			100	°C/W	14-pin TSSOP package				
			55.3	°C/W	16-pin QFN 3X3X0.9mm package				
			52.3	°C/W	16-pin UQFN 3X3X0.5mm package				
TH02	θJC	Thermal Resistance Junction to Case	32.75	°C/W	14-pin PDIP package				
			31	°C/W	14-pin SOIC package				
			24.4	°C/W	14-pin TSSOP package				
			10	°C/W	16-pin QFN 3X3X0.9mm package				
			11	°C/W	16-pin UQFN 3X3X0.5mm package				
TH03	Тјмах	Maximum Junction Temperature	150	°C					
TH04	PD	Power Dissipation	—	W	PD = PINTERNAL + PI/O				
TH05	PINTERNAL	Internal Power Dissipation	—	W	PINTERNAL = IDD x VDD ⁽¹⁾				
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$				
TH07	PDER	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾				

Note 1:IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

3: T_J = Junction Temperature.

TABLE 28-18: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Symbol	Charac	Min.	Тур	Max.	Units	Conditions			
SP90*	TSU:STA	Start condition	100 kHz mode	4700	—	—	ns	Only relevant for Repeated		
		Setup time	400 kHz mode	600				Start condition		
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	-	ns	After this period, the first		
		Hold time	400 kHz mode	600		—		clock pulse is generated		
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	_		ns			
		Setup time	400 kHz mode	600						
SP93	THD:STO	Stop condition	100 kHz mode	4000	—	—	ns			
		Hold time	400 kHz mode	600	—	—				
* These parameters are characterized but not tested.										

St. -1-- -.... 1. -1 ~

These parameters are characterized but not tested.

I²C BUS DATA TIMING **FIGURE 28-19:**

FIGURE 29-3: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC16LF1503 ONLY

FIGURE 29-4: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC16F1503 ONLY

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - T Tape and Reel	- <u>X</u> Temperature	/XX Package	XXX Pattern	Exa	i mp Pl	bles: IC16I F1503T - I/SI
Device: Tape and Reel Option: Temperature Range:	Option PIC16LF1503, Blank = Stan T = Tape I = -40 E = -40	Range , PIC16F1503 idard packaging (and Reel ⁽¹⁾)°C to +85°C)°C to +125°C	tube or tray) (Industrial) (Extended)		b) c)	Ta In SC PI In PI ED Q	ape and Reel, dustrial temperature, OIC package (C16F1503 - I/P dustrial temperature DIP package (C16F1503 - E/MG 298 ktended temperature, FN package TP pattern #298
Package: Pattern:	MG = Mic MV = Ultr P = Pla SL = SO ST = TSS QTP, SQTP, C (blank otherwis	ro Lead Frame (('a Thin Micro Leas stic DIP IC SOP Code or Special Ro se)	QFN) 3x3x0.9 d Frame (UQFN) equirements) 3x3x0.5	Note	e 1: 2:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.