
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VFQFN Exposed Pad
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1503-e-mg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

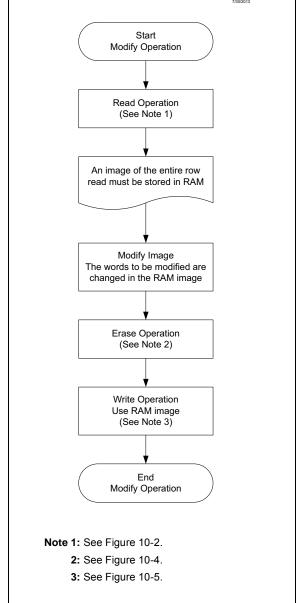
STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	х	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition		STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u muumuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 muumuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.


Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 10-7: FLASH PROGRAM MEMORY MODIFY FLOWCHART

REGISTER 11-10: ANSELC: PORTC ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
_	_	—	_	ANSC3	ANSC2	ANSC1	ANSC0		
bit 7				·	•	•	bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-4 Unimplemented: Read as '0'

bit 3-0

ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- 0 = Digital I/O. Pin is assigned to port or digital special function.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	—			—	ANSC3	ANSC2	ANSC1	ANSC0	103
LATC	_	—	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	102
PORTC	_	—	RC5	RC4	RC3	RC2	RC1	RC0	102
TRISC			TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	102

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined							
	as a digital input may cause the input							
	buffer to conduct excess current.							

15.1.2 CHANNEL SELECTION

There are 11 channel selections available:

- AN<7:0> pins
- · Temperature Indicator
- FVR_buffer1

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay (TACQ) is required before starting the next conversion. Refer to **Section 15.2.6 "ADC Conversion Procedure"** for more information.

15.1.3 ADC VOLTAGE REFERENCE

The ADC module uses a positive and a negative voltage reference. The positive reference is labeled ref+ and the negative reference is labeled ref-.

The positive voltage reference (ref+) is selected by the ADPREF bits in the ADCON1 register. The positive voltage reference source can be:

- VREF+ pin
- Vdd

The negative voltage reference (ref-) source is:

Vss

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- · Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 28.0 "Electrical Specifications"** for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note:	Unless using the FRC, any changes in the						
	system clock frequency will change the						
	ADC clock frequency, which may						
	adversely affect the ADC result.						

21.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 21-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching high address with R/W bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCLx.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCLx pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCLx.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

21.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

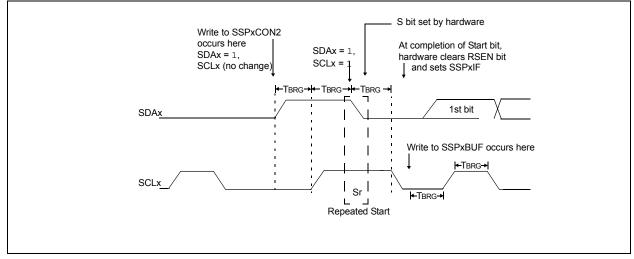
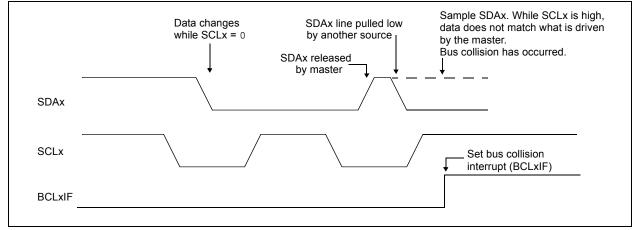

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCLx line is held low are the same. Figure 21-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 21-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

21.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING


A Repeated Start condition (Figure 21-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

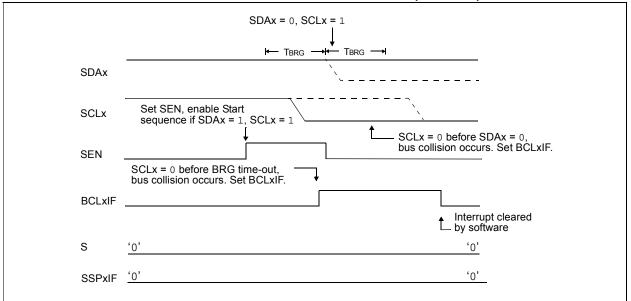
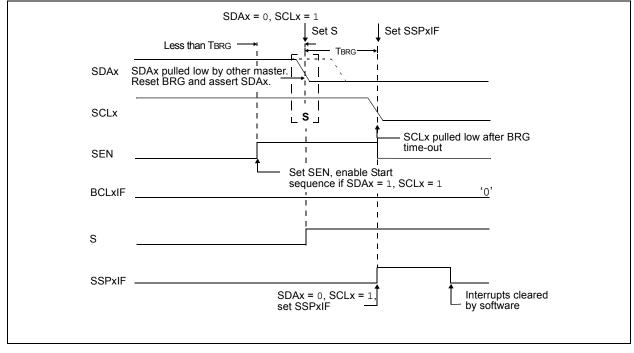
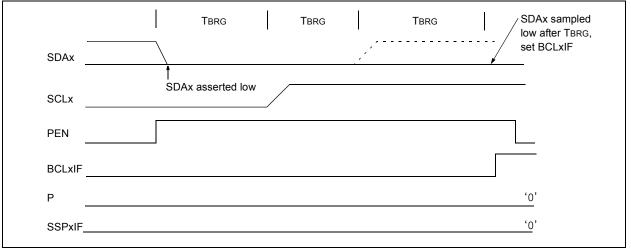
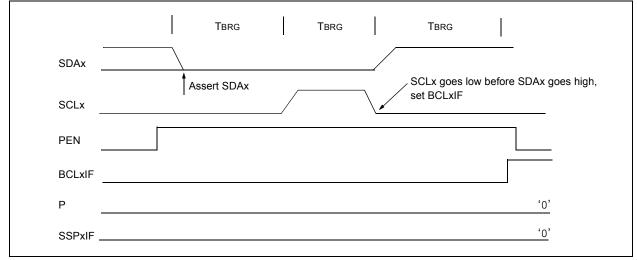


FIGURE 21-27: REPEAT START CONDITION WAVEFORM




21.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out (Case 1).
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high (Case 2).

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to 0. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 21-38). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 21-39).

FIGURE 21-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 21-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

21.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 21-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 21-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

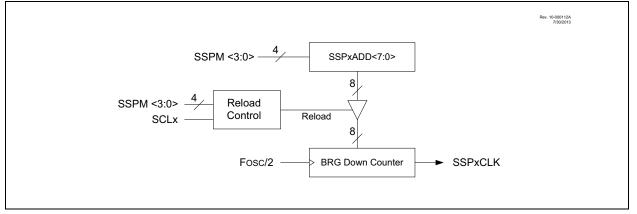

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 21-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

EQUATION 21-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 21-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 21-4: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FcLocк (Two Rollovers of BRG)		
16 MHz	4 MHz	09h	400 kHz		
16 MHz	4 MHz	0Ch	308 kHz		
16 MHz	4 MHz	27h	100 kHz		
4 MHz	1 MHz	09h	100 kHz		

Note: Refer to the I/O port electrical and timing specifications in Table 28-9 and Figure 28-7 to ensure the system is designed to support the I/O timing requirements.

21.8 Register Definitions: MSSP Control

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0			
SMP	CKE	D/A	Р	S	R/W	UA	BF			
bit 7							bit (
Legend:										
R = Readable b	bit	W = Writable b	it	•	nented bit, read as					
u = Bit is uncha	nged	x = Bit is unkno		-n/n = Value a	t POR and BOR/V	alue at all other I	Resets			
'1' = Bit is set		'0' = Bit is clea	red							
bit 7	SPI Master mo									
	0 = Input data	sampled at end o sampled at midd								
	SPI Slave mod SMP must be	<u>de:</u> cleared when SP	I is used in Slav	ve mode						
		or Slave mode: control disabled								
	0 = Slew rate	control enabled								
bit 6	CKE: SPI Clo	ck Edge Select bi	t (SPI mode on	ly)						
	In SPI Master or Slave mode:									
	 1 = Transmit occurs on transition from active to Idle clock state 0 = Transmit occurs on transition from Idle to active clock state 									
				ompliant with SM	Bus specification					
bit 5	D/A: Data/Address bit (I ² C mode only)									
		hat the last byte hat the last byte i								
bit 4	P: Stop bit									
	(I ² C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Stop bit has been detected last (this bit is '0' on Reset)									
		as not detected la		last (this bit is '	0' on Reset)					
bit 3	S: Start bit									
	(I ² C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)									
	 1 = Indicates that a Start bit has been detected last (this bit is '0' on Reset) 0 = Start bit was not detected last 									
bit 2	R/W : Read/Write bit information (I ² C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match									
	This bit holds t to the next Sta In I^2C Slave m 1 = Read 0 = Write	art bit, Stop bit, or	atio <u>n foll</u> owing not ACK bit.	the last address	match. This bit is c	nly valid from the	address match			
	0 = vvnte In I ² C Master mode:									
		is not in progress								
1-14-A	-				will indicate if the	MSSP is in Idle n	node.			
bit 1		ddress bit (10-bit bat the user need			SSPxADD register					
		oes not need to b	•							
bit 0	BF: Buffer Ful	l Status bit								
		and I ² C modes):	15 in 6 11							
		omplete, SSPxBL ot complete, SSP								
	0 = Receive h		ABOF IS empty							
	1 = Data trans	mit in progress (o			top bits), SSPxBU p bits), SSPxBUF					

REGISTER 21-1: SSPxSTAT: SSP STATUS REGISTER

REGISTER 21-2: SSPxCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPI	M<3:0>		
bit 7	•	·		·			bit	
Legend:								
R = Readable bi	t	W = Writable bit		U = Unimplement	ted bit, read as '0'			
u = Bit is unchar	nged	x = Bit is unknow	'n	-n/n = Value at Po	OR and BOR/Value	e at all other Resets		
'1' = Bit is set		'0' = Bit is cleared	b	HS = Bit is set by	hardware	C = User cleared		
bit 7	0 = No collisior Slave mode:	he SSPxBUF regist ו UF register is writter	·	d while the I ² C condi smitting the previous			to be started	
bit 6	 0 = No collision SSPOV: Receive Overflow Indicator bit⁽¹⁾ In SPI mode: 1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of overflow, the data in SSF Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPxBUF, even if only transmitting da setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by w SSPxBUF register (must be cleared in software). 0 = No overflow In I²C mode: 1 = A byte is received while the SSPxBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmitting the cleared in software). 0 = No overflow 							
bit 5	In both modes, w In <u>SPI mode:</u> 1 = Enables set 0 = Disables set In I ² C mode: 1 = Enables the	rial port and configue erial port and configue e serial port and config	e pins must be pr res SCKx, SDOx, jures these pins figures the SDAx a	x and SCLx pins as the source of the serial port pins ⁽³⁾				
bit 4	 0 = Disables serial port and configures these pins as I/O port pins CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I²C Slave mode: SCLx release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I²C Master mode: Unused in this mode 							
bit 3-0	0000 = SPI Mas 0001 = SPI Mas 0010 = SPI Mas 0010 = SPI Mas 0100 = SPI Slav 0101 = SPI Slav 0110 = I ² C Slave 0110 = I ² C Slave 1000 = I ² C Mast 1001 = Reservee 1010 = SPI Mas 1011 = I ² C firmw 1100 = Reservee 1101 = Reservee 1101 = Reservee 1101 = Reservee 1100 = Reservee	e mode, 7-bit addre e mode, 10-bit addr er mode, clock = Fr d ter mode, clock = F vare controlled Mas d d e mode, 7-bit addre	osc/4 osc/16 osc/64 2_match/2 XKx pin, <u>SS</u> pin c SKx pin, <u>SS</u> pin c ss ess osc/(4 * (SSPxAl osc/(4 * (SSPxAl ter mode (Slave ss with Start and	ontrol enabled ontrol disabled, SSx DD+1)) ⁽⁴⁾ DD+1)) ⁽⁵⁾	nabled) pin		
2: W 3: W	Master mode, the ov hen enabled, these p hen enabled, the SD/ SPXADD values of 0,	erflow bit is not set ins must be proper Ax and SCLx pins r	since each new ly configured as i nust be configure	reception (and transi input or output. ed as inputs.		I by writing to the SS	PxBUF register.	

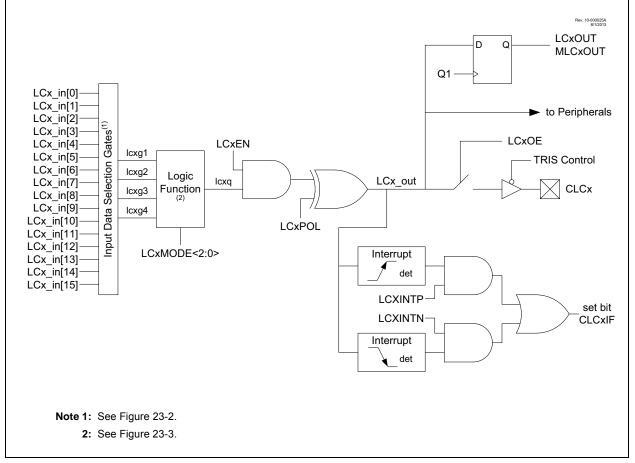
- SSPxADD values of 0, 1 or 2 are not supported for I²C mode.
 SSPxADD value of '0' is not supported. Use SSPM = 0000 instead.

23.0 CONFIGURABLE LOGIC CELL (CLC)

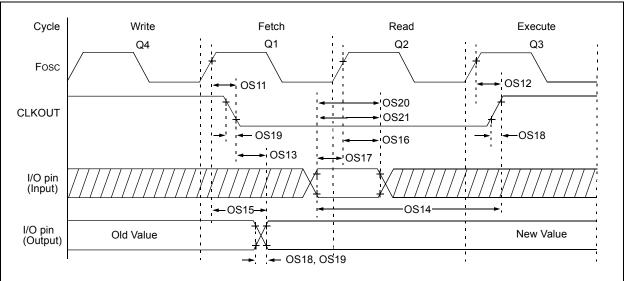
The Configurable Logic Cell (CLCx) provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 16 input signals, and through the use of configurable gates, reduces the 16 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- · I/O pins
- Internal clocks
- · Peripherals
- Register bits

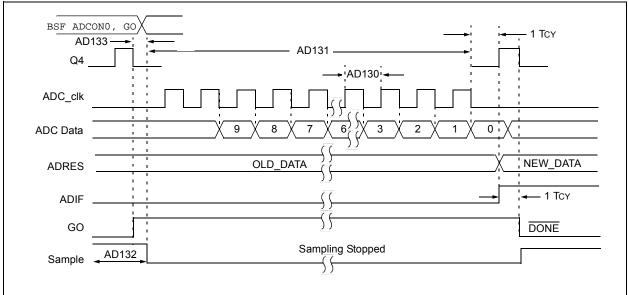

The output can be directed internally to peripherals and to an output pin.

Refer to Figure 23-1 for a simplified diagram showing signal flow through the CLCx.


Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
 - Transparent D with Set and Reset
 - Clocked J-K with Reset

TABLE 28-9:	CLKOUT AND I/O TIMING PARAMETERS
-------------	----------------------------------


Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_	_	70	ns	$3.3V \le V\text{DD} \le 5.0V$		
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	$3.3V \le V\text{DD} \le 5.0V$		
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	-	20	ns			
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns		_	ns			
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$		
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)	50	—	—	ns	$3.3V \le V\text{DD} \le 5.0V$		
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	_	ns			
OS18*	TioR	Port output rise time	_	40 15	72 32	ns	$VDD = 1.8V$ $3.3V \le VDD \le 5.0V$		
OS19*	TioF	Port output fall time	—	28 15	55 30	ns	$\begin{array}{l} VDD \mbox{=} 1.8V \\ 3.3V \le VDD \le 5.0V \end{array}$		
OS20*	Tinp	INT pin input high or low time	25	—	—	ns			
OS21*	Tioc	Interrupt-on-change new input level time	25	—	—	ns			

* These parameters are characterized but not tested.

 \dagger Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

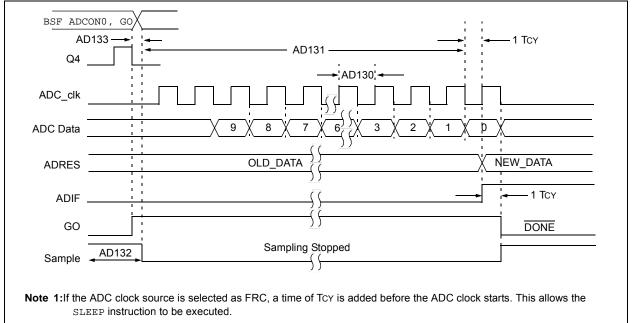
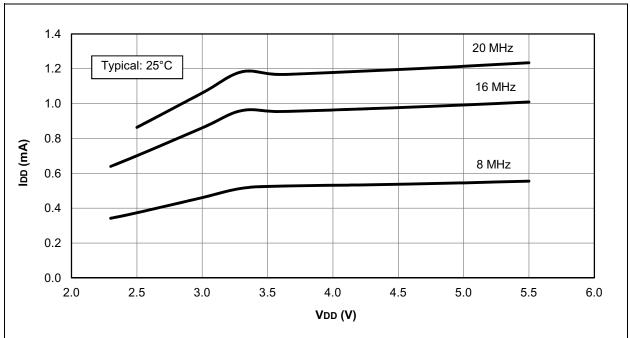
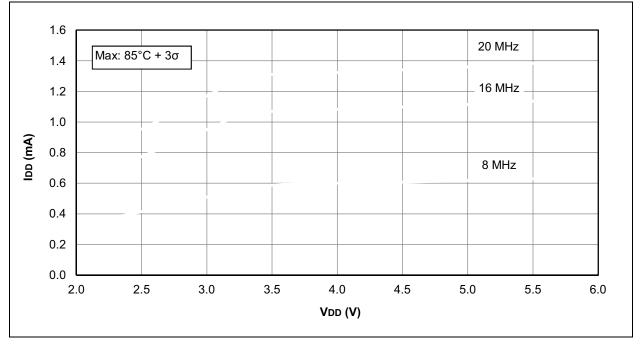
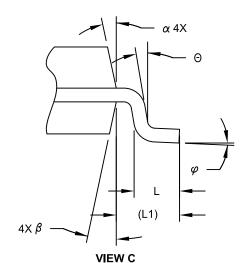
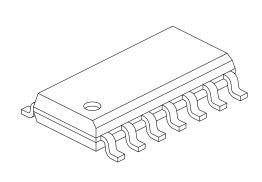


FIGURE 29-11: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16F1503 ONLY

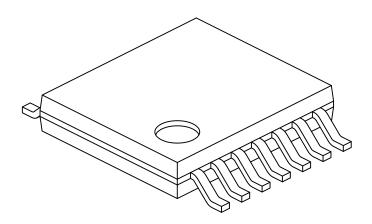





FIGURE 29-12: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16F1503 ONLY

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	14		
Pitch	е	1.27 BSC		
Overall Height	A	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	8.65 BSC		
Chamfer (Optional)	h	0.25	I	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1	1.04 REF		
Lead Angle	Θ	0°	II.	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.10	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

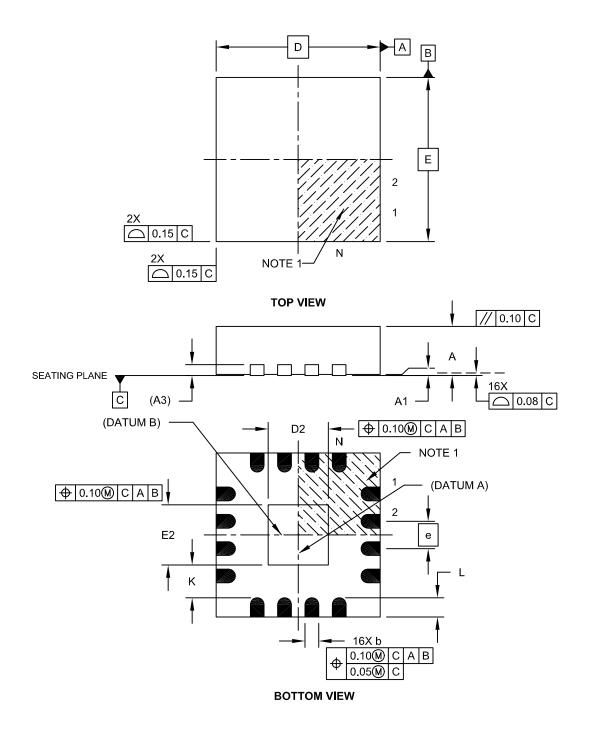
14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		S
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	14		
Pitch	е	0.65 BSC		
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E	6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	(L1)	1.00 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

16-Lead Plastic Quad Flat, No Lead Package (MG) - 3x3x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-142A Sheet 1 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - X /XX XXX T Tape and Reel Temperature Package Pattern Option Range	Examples: a) PIC16LF1503T - I/SL Tape and Reel, Industrial temperature, SOIC package	
Device:	PIC16LF1503, PIC16F1503	b) PIC16F1503 - I/P Industrial temperature PDIP package	
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	c) PIC16F1503 - E/MG 298 Extended temperature, QFN package QTP pattern #298	
Temperature Range:	$I = -40^{\circ}C \text{ to } +85^{\circ}C (Industrial)$ $E = -40^{\circ}C \text{ to } +125^{\circ}C (Extended)$		
Package:	MG = Micro Lead Frame (QFN) 3x3x0.9 MV = Ultra Thin Micro Lead Frame (UQFN) 3x3x0.5 P = Plastic DIP SL = SOIC ST = TSSOP	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package	
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	 availability with the Tape and Reel option. 2: For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office. 	