

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UFQFN Exposed Pad
Supplier Device Package	16-UQFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1503-i-mv

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See Section 7.5 "Automatic Context Saving", for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 3.5** "Stack" for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 27.0** "Instruction **Set Summary**" for more details.

DS40001607D-page 20

Legend:

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers	480h	Core Registers	500h	Core Registers	580h	Core Registers	600h	Core Registers	680h	Core Registers	700h	Core Registers	780h	Core Registers
4001	(Table 3-2)	4001	(Table 3-2)	=001	(Table 3-2)	=001	(Table 3-2)	0001	(Table 3-2)	0001	(Table 3-2)		(Table 3-2)	=001	(Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch		48Ch	_	50Ch	_	58Ch		60Ch	_	68Ch	_	70Ch	_	78Ch	
40Dh		48Dh 48Eh		50Dh 50Eh		58Dh 58Eh		60Dh 60Eh		68Dh 68Eh	<u> </u>	70Dh 70Eh		78Dh 78Eh	
40Eh 40Fh		48En 48Fh		50En 50Fh		58En 58Fh		60Fh		68Fh		70En 70Fh		78En 78Fh	
40FII 410h		490h		510h		590h		610h		690h		70FII 710h		790h	
411h		491h		510h		591h		611h	PWM1DCL	691h	CWG1DBR	711h		791h	
412h		492h		511h		592h		612h	PWM1DCH	692h	CWG1DBR CWG1DBF	712h		792h	_
413h		493h		512h		593h		613h	PWM1CON	693h	CWG1CON0	713h		793h	
414h	_	494h	_	514h	_	594h	_	614h	PWM2DCL	694h	CWG1CON1	714h	_	794h	_
415h	_	495h	_	515h	_	595h	_	615h	PWM2DCH	695h	CWG1CON2	715h	_	795h	_
416h	_	496h	_	516h	_	596h	_	616h	PWM2CON	696h	_	716h	_	796h	_
417h	_	497h	_	517h	_	597h	_	617h	PWM3DCL	697h	_	717h	_	797h	_
418h	_	498h	NCO1ACCL	518h	_	598h	_	618h	PWM3DCH	698h	_	718h	_	798h	_
419h	_	499h	NCO1ACCH	519h	_	599h	_	619h	PWM3CON	699h	_	719h	-	799h	_
41Ah	_	49Ah	NCO1ACCU	51Ah	_	59Ah	_	61Ah	PWM4DCL	69Ah	_	71Ah		79Ah	_
41Bh	_	49Bh	NCO1INCL	51Bh	_	59Bh	_	61Bh	PWM4DCH	69Bh	_	71Bh	_	79Bh	_
41Ch	_	49Ch	NCO1INCH	51Ch	_	59Ch	_	61Ch	PWM4CON	69Ch	_	71Ch		79Ch	_
41Dh	_	49Dh	_	51Dh	_	59Dh	_	61Dh	_	69Dh	_	71Dh	_	79Dh	_
41Eh	_	49Eh	NCO1CON	51Eh	_	59Eh		61Eh	_	69Eh	_	71Eh	_	79Eh	_
41Fh	_	49Fh	NCO1CLK	51Fh	_	59Fh	_	61Fh	_	69Fh	_	71Fh	_	79Fh	_
420h		4A0h		520h		5A0h		620h		6A0h		720h		7A0h	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Common RAM		Common RAM		Common RAM		Common RAM		Common RAM		Common RAM		Common RAM		Common RAM
	(Accesses		(Accesses		(Accesses		(Accesses		(Accesses		(Accesses		(Accesses		(Accesses
47Fh	70h – 7Fh)	4FFh	70h – 7Fh)	57Fh	70h – 7Fh)	5FFh	70h – 7Fh)	67Fh	70h – 7Fh)	6FFh	70h – 7Fh)	77Fh	70h – 7Fh)	7FFh	70h – 7Fh)
				0		0		0] •					
_	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20	_	BANK 21	-	BANK 22		BANK 23
800h	Core Registers	880h	Core Registers	900h	Core Registers	980h	Core Registers	A00h	Core Registers	A80h	Core Registers	B00h	Core Registers	B80h	Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Common RAM		Common RAM		Common RAM		Common RAM		Common RAM		Common RAM		Common RAM		Common RAM
	(10000000		//		//				//		//		//		//
	(Accesses 70h – 7Fh)		(Accesses 70h – 7Fh)		(Accesses 70h – 7Fh)		(Accesses 70h – 7Fh)		(Accesses 70h – 7Fh)		(Accesses 70h – 7Fh)		(Accesses 70h – 7Fh)		(Accesses 70h – 7Fh)

= Unimplemented data memory locations, read as '0'

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-5:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2	2										
10Ch	LATA	_	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
10Dh	_	Unimplemen	ted							-	_
10Eh	LATC	_	_	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xx xxxx	uu uuuu
10Fh	_	Unimplemen	ted							_	_
110h	_	Unimplemen	ted							-	_
111h	CM1CON0	C1ON	C1OUT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h to 114h	_	Unimplemen	ted							_	_
115h	CMOUT	_	_	_	_	_	_	MC2OUT	MC1OUT	00	00
116h	BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	'R<1:0>	0q00 0000	0q00 0000
118h	DAC1CON0	DACEN	_	DACOE1	DACOE2	_	DACPSS	_	I	0-00 -0	0-00 -0
119h	DAC1CON1	_	_	_			DACR<4:	0>		0 0000	0 0000
11Ah to 11Ch	_	Unimplemen	ted							_	_
11Dh	APFCON	_	_	SDOSEL	SSSEL	T1GSEL	_	CLC1SEL	NCO1SEL	00 0-00	00 0-00
11Eh	_	Unimplemen	ted							_	_
11Fh	_	Unimplemen	ted							_	_
Bank 3	3										
18Ch	ANSELA	_	_	_	ANSA4	_	ANSA2	ANSA1	ANSA0	1 -111	1 -111
18Dh	_	Unimplemen	ted							_	_
18Eh	ANSELC	_	_	_	_	ANSC3	ANSC2	ANSC1	ANSC0	1111	1111
18Fh	_	Unimplemen	ted							_	_
190h	_	Unimplemen	ted							_	_
191h	PMADRL	Flash Progra	m Memory A	ddress Regis	ter Low Byte					0000 0000	0000 0000
192h	PMADRH	(2)	Flash Progra	am Memory A	Address Regis	ster High Byte	е			1000 0000	1000 0000
193h	PMDATL	Flash Progra	m Memory R	ead Data Re	gister Low By	rte				xxxx xxxx	uuuu uuuu
194h	PMDATH	_	_	Flash Progr	am Memory F	Read Data Re	egister High I	Byte		xx xxxx	uu uuuu
195h	PMCON1	(2)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Flash Progra	m Memory C	ontrol Regist	er 2					0000 0000	0000 0000
197h	VREGCON ⁽¹⁾	_	_	_	_	_	_	VREGPM	Reserved	01	01
198h to 19Fh	_	Unimplemen	ted							_	_

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. PIC16F1503 only. Unimplemented, read as '1'.

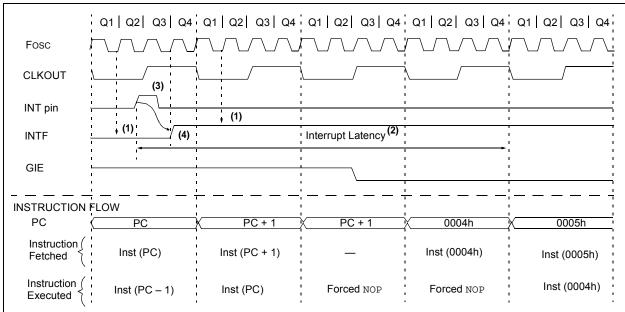
Legend: Note 1:

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	Х	1	1	Power-on Reset
0	0	1	1	1	0	х	0	х	Illegal, TO is set on POR
0	0	1	1	1	0	х	х	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)


TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u muumuu	uu 0uuu
MCLR Reset during Sleep	0000h	1 0uuu	uu 0uuu
WDT Reset	0000h	0 muumuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 0uuu	uu uuuu
Brown-out Reset	0000h	1 1uuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	1u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	u1 uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

FIGURE 7-3: INT PIN INTERRUPT TIMING

- Note 1: INTF flag is sampled here (every Q1).
 - 2: Asynchronous interrupt latency = 3-5 Tcy. Synchronous latency = 3-4 Tcy, where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
 - 3: For minimum width of INT pulse, refer to AC specifications in Section 28.0 "Electrical Specifications".
 - 4: INTF is enabled to be set any time during the Q4-Q1 cycles.

REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	_	_	SSP1IF	_	TMR2IF	TMR1IF
bit 7							bit 0

Legend:

bit 5-4

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

'1' = Bit is set '0' = Bit is cleared

bit 7 TMR1GIF: Timer1 Gate Interrupt Flag bit

1 = Interrupt is pending

0 = Interrupt is not pending

bit 6 ADIF: ADC Interrupt Flag bit

1 = Interrupt is pending0 = Interrupt is not pending

Unimplemented: Read as '0'

bit 3 SSP1IF: Synchronous Serial Port (MSSP) Interrupt Flag bit

1 = Interrupt is pending0 = Interrupt is not pending

bit 2 Unimplemented: Read as '0'

bit 1 TMR2IF: Timer2 to PR2 Interrupt Flag bit

1 = Interrupt is pending0 = Interrupt is not pending

bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit

1 = Interrupt is pending0 = Interrupt is not pending

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global

Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior

to enabling an interrupt.

15.2.6 ADC CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register).
- 2. Configure the ADC module:
 - · Select ADC conversion clock
 - Configure voltage reference
 - · Select ADC input channel
 - · Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - · Clear ADC interrupt flag
 - · Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time(2).
- 5. Start conversion by setting the GO/DONE bit.
- Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: Refer to Section 15.4 "ADC Acquisition Requirements".

EXAMPLE 15-1: ADC CONVERSION

```
;This code block configures the ADC
; for polling, Vdd and Vss references, FRC
;oscillator and ANO input.
;Conversion start & polling for completion
; are included.
BANKSEL ADCON1
         B'11110000' ; Right justify, FRC
MOVLW
                 ;oscillator
         ADCON1
MOVWF
                     ;Vdd and Vss Vref+
BANKSEL
         TRISA
BSF
         TRISA,0
                     ;Set RAO to input
BANKSEL ANSEL
         ANSEL,0
                     ;Set RAO to analog
BSF
BANKSEL
         WPUA
         WPUA,0
BCF
                     ;Disable weak
                     pull-up on RA0
BANKSEL ADCON0
         B'00000001' ;Select channel AN0
MOVLW
         ADCONO ;Turn ADC On
SampleTime ;Acquisiton delay
MOVWF
CALL
         ADCON0, ADGO ; Start conversion
BSF
BTFSC
         ADCON0, ADGO ; Is conversion done?
GOTO
         $-1
                    ;No, test again
BANKSEL ADRESH
MOVF
         ADRESH,W ;Read upper 2 bits
         RESULTHI ;store in GPR space
MOVWF
        ADRESL
BANKSEL
         ADRESL,W
MOVF
                     ;Read lower 8 bits
MOVWF
         RESULTLO
                     ;Store in GPR space
```

15.4 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-4. The maximum recommended impedance for analog sources is 10 kΩ. As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50° C and external impedance of $10k\Omega 5.0V VDD$

$$TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$$

= $TAMP + TC + TCOFF$
= $2\mu s + TC + [(Temperature - 25°C)(0.05\mu s/°C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD}$$
 ;[1] VCHOLD charged to within 1/2 lsb

$$V_{APPLIED} \left(1 - e^{\frac{-Tc}{RC}} \right) = V_{CHOLD}$$
 ;[2] VCHOLD charge response to VAPPLIED

$$V_{APPLIED}\left(1-e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1-\frac{1}{(2^{n+1})-1}\right)$$
 ; combining [1] and [2]

Note: Where n = number of bits of the ADC.

Solving for TC:

$$TC = -C_{HOLD}(RIC + RSS + RS) \ln(1/2047)$$

= $-12.5pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$
= $1.72\mu s$

Therefore:

$$TACQ = 2\mu s + 1.72\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.97\mu s

- Note 1: The reference voltage (VRPOS) has no effect on the equation, since it cancels itself out.
 - 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
 - 3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

20.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 20.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

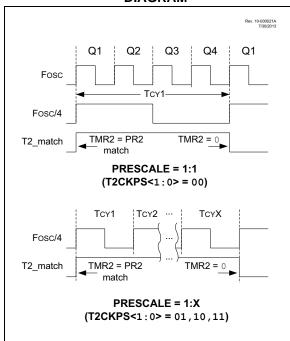
- · a write to the TMR2 register
- a write to the T2CON register
- Power-on Reset (POR)
- · Brown-out Reset (BOR)
- MCLR Reset
- · Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- · Stack Underflow Reset
- RESET Instruction

Note: TMR2 is not cleared when T2CON is written.

20.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (T2_match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

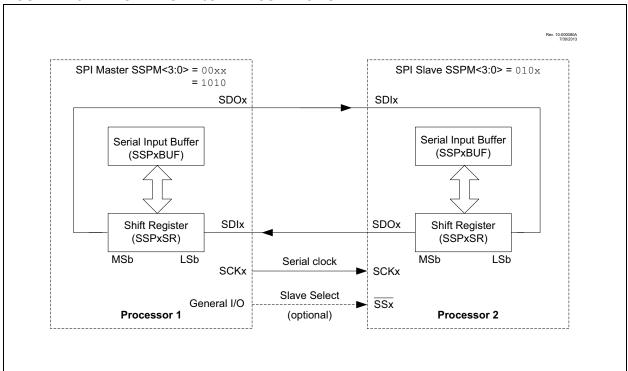
A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.


20.3 Timer2 Output

The output of TMR2 is T2_match. T2_match is available to the following peripherals:

- · Configurable Logic Cell (CLC)
- Master Synchronous Serial Port (MSSP)
- · Numerically Controlled Oscillator (NCO)
- · Pulse Width Modulator (PWM)

The T2_match signal is synchronous with the system clock. Figure 20-3 shows two examples of the timing of the T2_match signal relative to Fosc and prescale value, T2CKPS<1:0>. The upper diagram illustrates 1:1 prescale timing and the lower diagram, 1:X prescale timing.


FIGURE 20-3: T2_MATCH TIMING DIAGRAM

20.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

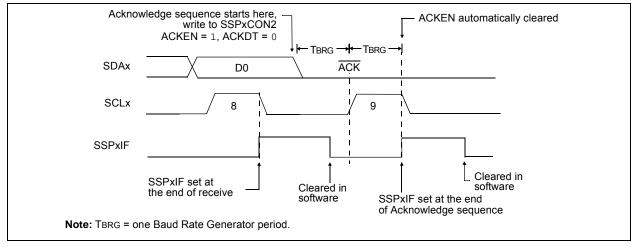
FIGURE 21-5: SPI MASTER/SLAVE CONNECTION

21.6.8 ACKNOWLEDGE SEQUENCE TIMING

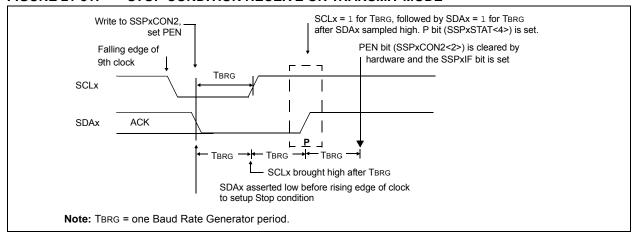
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 21-30).

21.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).


21.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 21-31).


21.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 21-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

21.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

21.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

21.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master mode, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- · A Start Condition
- · A Repeated Start Condition
- · An Acknowledge Condition

21.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 21-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the $\rm I^2C$ bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is idle and the S and P bits are cleared.

22.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- Load the PR2 register with the PWM period value.
- Clear the PWMxDCH register and bits <7:6> of the PWMxDCL register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See note below.
- 7. Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the PWMxOE bit of the PWMxCON register.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - **2:** For operation with other peripherals only, disable PWMx pin outputs.

REGISTER 22-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u					
	PWMxDCH<7:0>											
bit 7							bit 0					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

'1' = Bit is set '0' = Bit is cleared

bit 7-0 PWMxDCH<7:0>: PWM Duty Cycle Most Significant bits

These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL register.

REGISTER 22-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxDCL<7:6>		_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

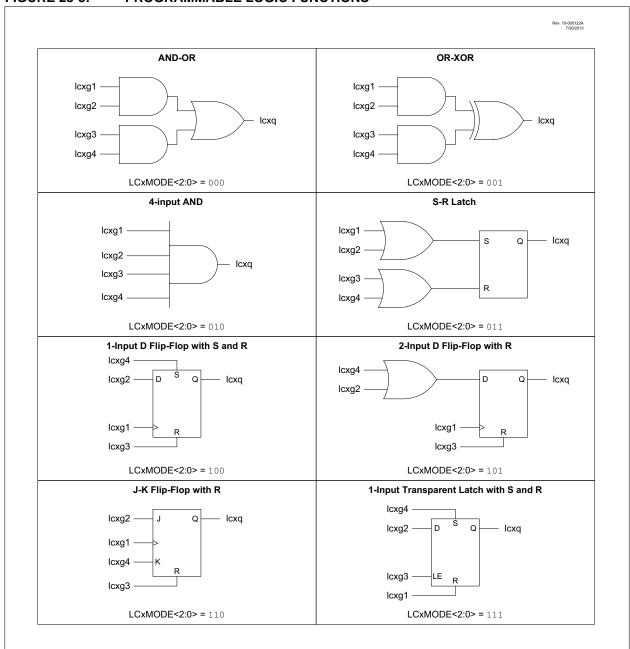
'1' = Bit is set '0' = Bit is cleared

bit 7-6 PWMxDCL<7:6>: PWM Duty Cycle Least Significant bits

These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register.

bit 5-0 **Unimplemented:** Read as '0'

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWM


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PR2				Timer2 module f	Period Register				151*
PWM1CON	PWM1EN	PWM10E	PWM1OUT	PWM1POL	_	_	_	_	212
PWM1DCH				PWM1D0	CH<7:0>				213
PWM1DCL	PWM1D	CL<7:6>	_	_	_	_	_	_	213
PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	_	_	_	_	212
PWM2DCH		PWM2DCH<7:0>							213
PWM2DCL	PWM2D	CL<7:6>	_	_	_	_	_	_	213
PWM3CON	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	_	_	_	_	212
PWM3DCH				PWM3D0	CH<7:0>				213
PWM3DCL	PWM3D	CL<7:6>	_	_	_	_	_	_	213
PWM4CON	PWM4EN	PWM4OE	PWM4OUT	PWM4POL	_	_	_	_	212
PWM4DCH				PWM4D0	CH<7:0>				213
PWM4DCL	PWM4D	CL<7:6>	_	_	_	_	_	_	213
T2CON	_		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	153
TMR2				Timer2 modu	ıle Register				151*
TRISA	_	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	98
TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	102

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

FIGURE 23-3: PROGRAMMABLE LOGIC FUNCTIONS

REGISTER 23-9: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
_	_	_	_			MLC2OUT	MLC1OUT
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

'1' = Bit is set '0' = Bit is cleared

bit 7-2 Unimplemented: Read as '0'

bit 1 MLC2OUT: Mirror copy of LC2OUT bit bit 0 MLC1OUT: Mirror copy of LC1OUT bit

TABLE 27-3: ENHANCED MID-RANGE INSTRUCTION SET

Mnen	nonic,	Description	Cualas		14-Bit	Opcode)	Status	Natas
Oper	ands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	0.0	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	0.0	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	0.0	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	z	2
IORWF	f. d	Inclusive OR W with f	1	00	0100	dfff	ffff	z	2
MOVF	f, d	Move f	1	0.0	1000		ffff	z	2
MOVWF	f	Move W to f	1	0.0	0000	1fff		-	2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff		С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff		C	2
SUBWF	f, d	Subtract W from f	1	00	0010		ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f		11	1011		ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f		00	1110	dfff		0, 00, 2	2
XORWF	f. d	Exclusive OR W with f	1	0.0	0110		ffff	z	2
XOKWI	1, u	BYTE ORIENTED SKIP O	<u>. </u>		0110	ulli	TILL		2
	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
DECFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
INCFSZ	ı, u	· '				alli	TILL		1, 2
		BIT-ORIENTED FILE REGIST	ER OPER	ATION	IS				_
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED SKIP O	PERATIO	NS	•	,		•	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
		LITERAL OPERA	TIONS	I				I	I
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk			
SUBLW	k	Subtract W from literal	1	11	1100	kkkk		C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11		kkkk		Z Z	
		m Counter (PC) is modified, or a conditional test in	-					l .	

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

^{2:} If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

FIGURE 29-31: IPD, COMPARATOR, LOW-POWER MODE (CxSP = 0), PIC16LF1503 ONLY

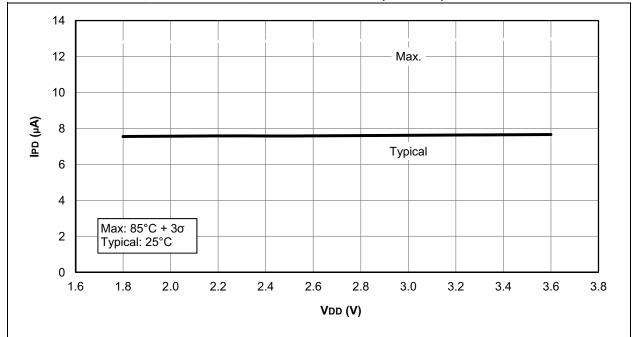
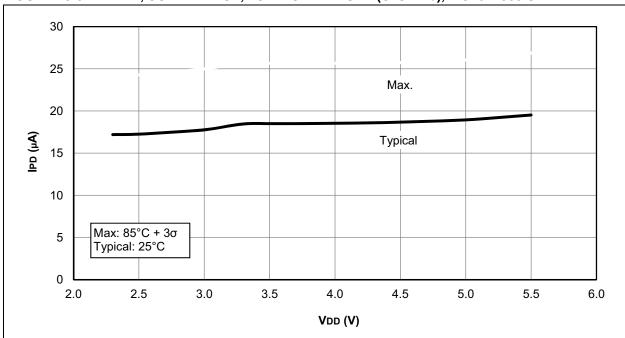
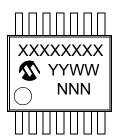
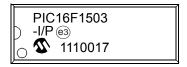



FIGURE 29-32: IPD, COMPARATOR, LOW-POWER MODE (CxSP = 0), PIC16F1503 ONLY

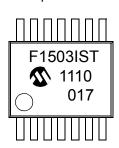
31.0 PACKAGING INFORMATION

31.1 Package Marking Information


14-Lead PDIP


14-Lead SOIC (.150")

14-Lead TSSOP


Example

Example

Example

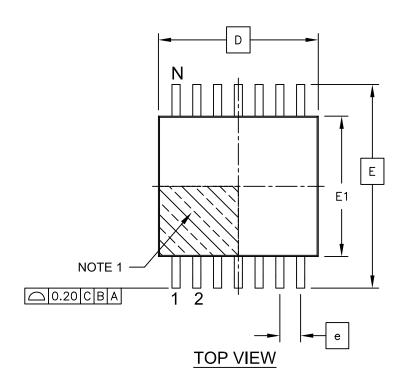
Legend: XX...X Customer-specific information

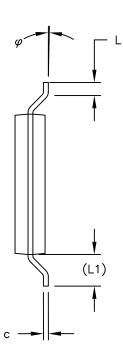
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

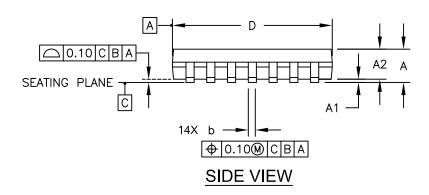
NNN Alphanumeric traceability code

e3 Pb-free JEDEC[®] designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3)


can be found on the outer packaging for this package.


Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.


* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2