

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UFQFN Exposed Pad
Supplier Device Package	16-UQFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1503t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2:	ACCESSING PROGRAM
	MEMORY VIA FSR

constants	
DW DATA0	;First constant
DW DATA1	;Second constant
DW DATA2	
DW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_INDEX	
ADDLW LOW constants	
MOVWF FSR1L	
MOVLW HIGH constants	;MSb sets
	automatically
MOVWF FSR1H	
BTFSC STATUS, C	;carry from ADDLW?
INCF FSR1h, f	;yes
MOVIW 0[FSR1]	
;THE PROGRAM MEMORY IS 1	IN W

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.6 "Indirect Addressing"** for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-4.

TABLE 3-2:	CORE REGISTERS

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

TABLE 3-3: PIC16(L)F1503 MEMORY MAP (CONTINUED)

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
C0Ch	_	C8Ch	-	D0Ch	—	D8Ch	_	E0Ch	—	E8Ch	—	F0Ch		F8Ch	
C0Dh	—	C8Dh	—	D0Dh	—	D8Dh	—	E0Dh	—	E8Dh		F0Dh		F8Dh	
C0Eh	—	C8Eh	_	D0Eh	—	D8Eh	—	E0Eh	_	E8Eh	_	F0Eh		F8Eh	
C0Fh	—	C8Fh	—	D0Fh	—	D8Fh	—	E0Fh	—	E8Fh	—	F0Fh		F8Fh	
C10h	—	C90h	_	D10h	—	D90h	—	E10h	_	E90h	_	F10h		F90h	
C11h	_	C91h	—	D11h	—	D91h	_	E11h	—	E91h	_	F11h		F91h	
C12h	_	C92h	—	D12h	—	D92h	_	E12h	—	E92h	—	F12h		F92h	
C13h	_	C93h	—	D13h	—	D93h	_	E13h	—	E93h	—	F13h		F93h	
C14h	_	C94h	—	D14h	_	D94h	_	E14h	—	E94h	—	F14h		F94h	
C15h	_	C95h	—	D15h	_	D95h	_	E15h	—	E95h		F15h		F95h	
C16h	_	C96h	—	D16h	—	D96h	_	E16h	—	E96h	—	F16h		F96h	
C17h	_	C97h	—	D17h	—	D97h	_	E17h	—	E97h	—	F17h	See Table 3-3 for	F97h	See Table 3-3 for
C18h	—	C98h	—	D18h	—	D98h	_	E18h	—	E98h		F18h	register mapping	F98h	register mapping
C19h	—	C99h	—	D19h	_	D99h	_	E19h	—	E99h	_	F19h	details	F99h	details
C1Ah	—	C9Ah	—	D1Ah	—	D9Ah	_	E1Ah	—	E9Ah	—	F1Ah		F9Ah	
C1Bh	_	C9Bh	—	D1Bh	_	D9Bh	_	E1Bh	—	E9Bh		F1Bh		F9Bh	
C1Ch	—	C9Ch	—	D1Ch	—	D9Ch	_	E1Ch	—	E9Ch	—	F1Ch		F9Ch	
C1Dh	—	C9Dh	—	D1Dh	_	D9Dh	_	E1Dh	—	E9Dh	_	F1Dh		F9Dh	
C1Eh	—	C9Eh	—	D1Eh	—	D9Eh	_	E1Eh	—	E9Eh	—	F1Eh		F9Eh	
C1Fh	—	C9Fh	—	D1Fh	—	D9Fh	_	E1Fh	—	E9Fh	—	F1Fh		F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
	Unimplemented Read as '0'														
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h CFFh	Common RAM (Accesses 70h – 7Fh)	CF0h CFFh	Common RAM (Accesses 70h – 7Fh)	D70h D7Fh	Common RAM (Accesses 70h – 7Fh)	DF0h DFFh	Common RAM (Accesses 70h – 7Fh)	E70h E7Fh	Common RAM (Accesses 70h – 7Fh)	EF0h EFFh	Common RAM (Accesses 70h – 7Fh)	F70h F7Fh	Common RAM (Accesses 70h – 7Fh)	FF0h FFFh	Common RAM (Accesses 70h – 7Fh)

Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4		•		•				•	•	•	•
20Ch	WPUA	—	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
20Dh to 212h	_	Unimplemen	implemented								_
213h	SSP1MSK				MS	K<7:0>				1111 1111	1111 1111
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSF	PM<3:0>		0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h to 21Fh	_	Unimplemen	ted							-	_
Bank 5											
28Ch to 29Fh	_	Unimplemen	ted							-	_
Bank 6											
30Ch to 31Fh	_	Unimplemen	ted							-	_
Bank 7											
38Ch to 390h	_	Unimplemen	ted							-	_
391h	IOCAP	—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF	—	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h to 39Fh	_	Unimplemen	ted							-	_
Bank 8		_									
40Ch to 41Fh	_	Unimplemen	ted							-	-
Bank 9											
48Ch to 497h	_	Unimplemen	ted							-	_
498h	NCO1ACCL				NCO1/	ACC<7:0>				0000 0000	0000 0000
499h	NCO1ACCH									0000 0000	0000 0000
49Ah	NCO1ACCU				NCO1A	CC<19:16>				0000 0000	0000 0000
49Bh	NCO1INCL									0000 0001	
49Ch	NCO1INCH				NCO1I	NC<15:8>				0000 0000	0000 0000
49Dh	—	Unimplemen	ted							_	_
49Eh	NCO1CON	N1EN	N1OE	N1OUT	N1POL	_	_	_	N1PFM	00000	00000
				•	1						1

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1503 only.

 2:
 Unimplemented, read as '1'.

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Prog	ram Memory	/ Control Regis	ter 2		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimple	mented bit, read	1 as '0'	
S = Bit can onl	y be set	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PMCON1	_(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	93
PMCON2	Program Memory Control Register 2								94
PMADRL				PMAD	RL<7:0>				92
PMADRH	_(1)			F	MADRH<6:0	>			92
PMDATL	PMDATL<7:0>							92	
PMDATH	—	— — PMDATH<5:0>							92

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

Note 1: Unimplemented, read as '1'.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH RESETS

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		_	_	- CLKOUTEN		KOUTEN BOREN<1:0> —		_	20
CONFIG1	7:0	CP	MCLRE	PWRTE	WE)TE<1:0>	—	FOSC<1:0>		38
	13:8	_	_	LVP	DEBUG	LPBOR	BORV	STVREN	_	
CONFIG2	7:0	_	_	_	_	_	_	WRT	<1:0>	39

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0				CHS<4:0>			GO/DONE	ADON	119
ADCON1	ADFM		ADCS<2:0>		—	—	ADPRE	F<1:0>	120
ADCON2		TRIGSE	EL<3:0>		—	—	_	_	121
ADRESH	ADC Result	Register Hig	h						122, 123
ADRESL	ADC Result	Register Lov	v						122, 123
ANSELA	_	_	-	ANSA4	—	ANSA2	ANSA1	ANSA0	99
ANSELC	_	_	-	—	ANSC3	ANSC2	ANSC1	ANSC0	103
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE1	TMR1GIE	ADIE	_	—	SSP1IE	—	TMR2IE	TMR1IE	65
PIR1	TMR1GIF	ADIF	-	—	SSP1IF	—	TMR2IF	TMR1IF	68
TRISA		_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	98
TRISC		_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	102
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFVF	२<1:0>	110

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

Note 1: Unimplemented, read as '1'.

The I^2C interface supports the following modes and features:

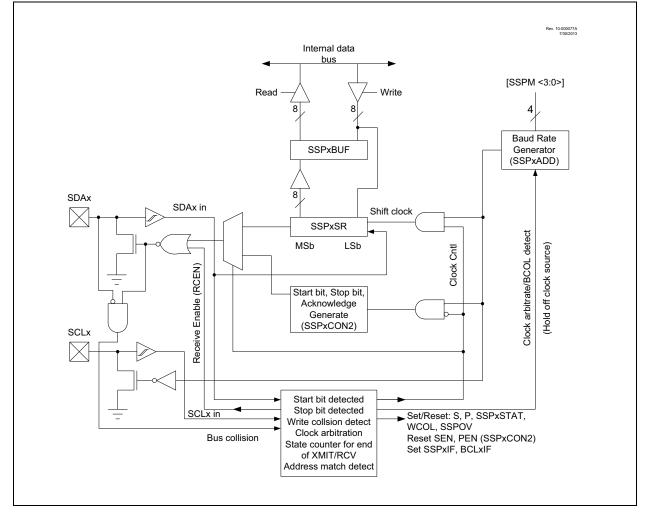
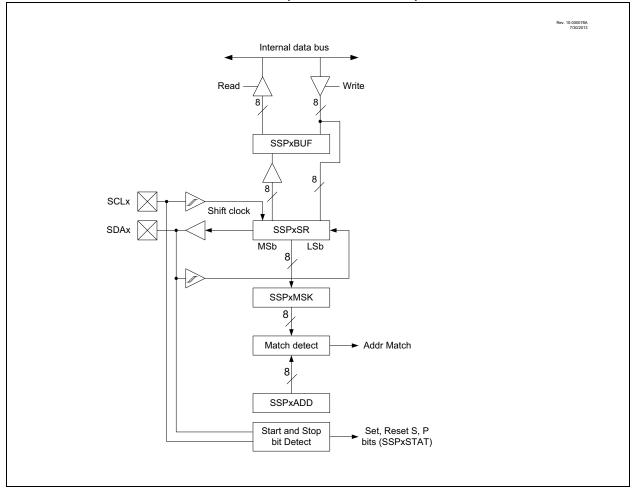

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- · 7-bit and 10-bit addressing
- Start and Stop interrupts
- · Interrupt masking
- Clock stretching
- · Bus collision detection
- General call address matching
- · Address masking
- Address Hold and Data Hold modes
- Selectable SDAx hold times

Figure 21-2 is a block diagram of the I^2C interface module in Master mode. Figure 21-3 is a diagram of the I^2C interface module in Slave mode.


Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSPxCON1 and SSPxCON2 registers control different operational aspects of the same module, while SSPxCON1 and SSP2CON1 control the same features for two different modules.

2: Throughout this section, generic references to an MSSPx module in any of its operating modes may be interpreted as being equally applicable to MSSPx or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

FIGURE 21-3: MSSP BLOCK DIAGRAM (I²C[™] SLAVE MODE)

21.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCKx. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCKx pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCKx pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCKx pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

21.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 21-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

21.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The \overline{SSx} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SSx} pin control enabled (SSPxCON1<3:0> = 0100).

When the \overline{SSx} pin is low, transmission and reception are enabled and the SDOx pin is driven.

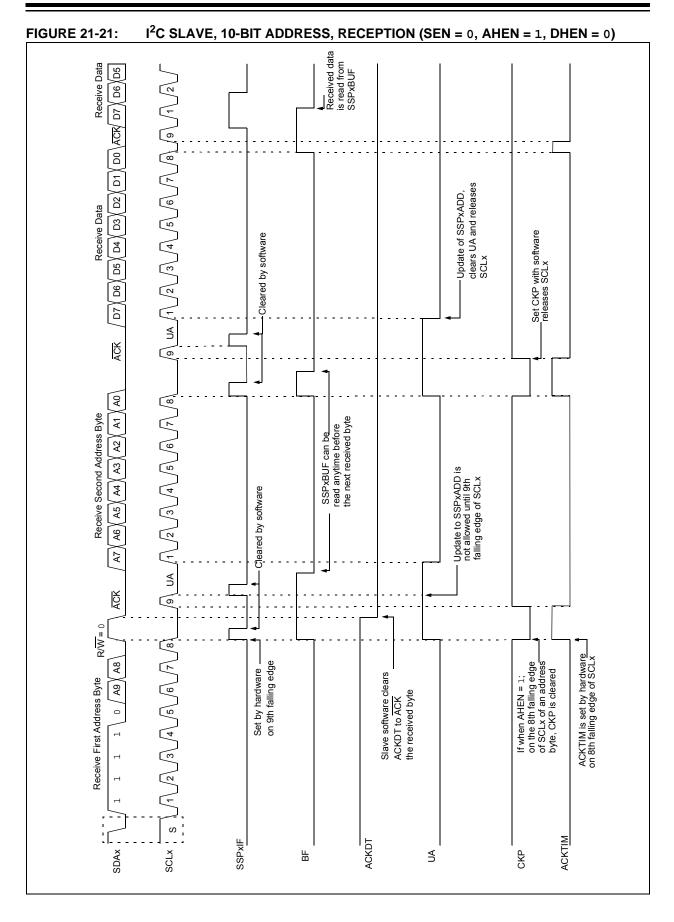
When the $\overline{\text{SSx}}$ pin goes high, the SDOx pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

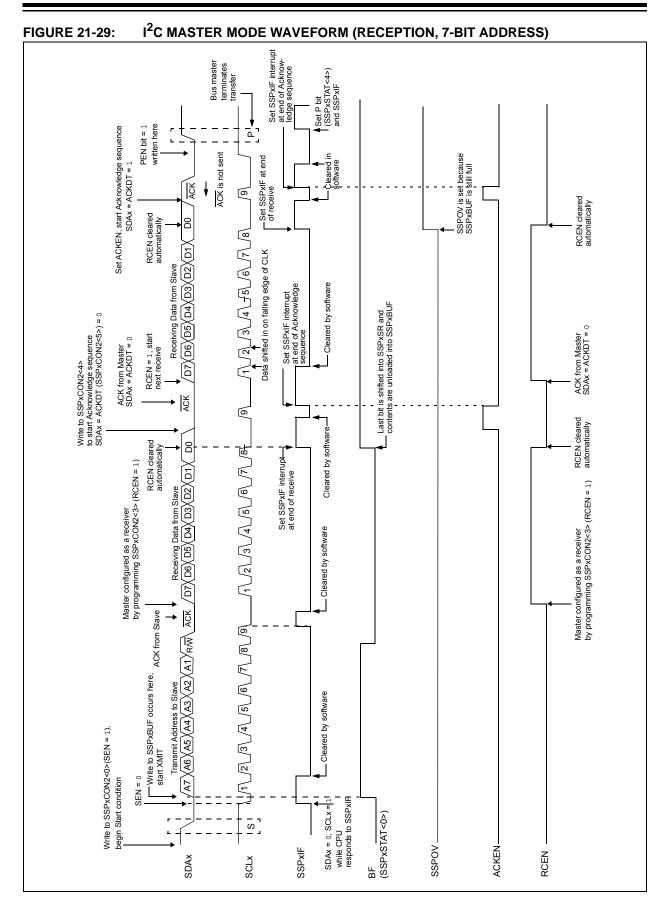
Note 1:	When the SPI is in Slave mode with \overline{SSx} pin control enabled (SSPxCON1<3:0> = 0100), the SPI module will reset if the \overline{SSx} pin is set to VDD.
2:	When the SPI is used in Slave mode with CKE set; the user must enable \overline{SSx} pin control.
3:	While operated in SPI Slave mode the SMP bit of the SSPxSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SSx pin to a high level or clearing the SSPEN bit.

21.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.


Figure 21-19 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.


- 1. Bus starts idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCLx line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- 5. Slave software reads ACKTIM bit of SSPxCON3 register, and R/\overline{W} and D/\overline{A} of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCLx.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: SSPxBUF cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit, releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCLx pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCLx line to receive a Stop.

REGISTER 21-2: SSPxCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPI	M<3:0>	
bit 7	•	·		·			bit
Legend:							
R = Readable bi	t	W = Writable bit		U = Unimplement	ted bit, read as '0'		
u = Bit is unchar	nged	x = Bit is unknow	'n	-n/n = Value at Po	OR and BOR/Value	e at all other Resets	
'1' = Bit is set		'0' = Bit is cleared	d	HS = Bit is set by	hardware	C = User cleared	
bit 7	0 = No collisior Slave mode:	he SSPxBUF regist ו UF register is writter	·	d while the I ² C condi smitting the previous			to be started
bit 6	 SSPOV: Receive Overflow Indicator bit⁽¹⁾ In SPI mode: I = A new byte is received while the SSPxBUF register is still holding the previous data. In case of overflow, the data in SSPxSR is Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPxBUF, even if only transmitting data, to setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing SSPxBUF register (must be cleared in software). O = No overflow In I²C mode: I = A byte is received while the SSPxBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit (must be cleared in software). No overflow 					ting data, to avoid ed by writing to the	
bit 5	In both modes, w In <u>SPI mode:</u> 1 = Enables set 0 = Disables set In I ² C mode: 1 = Enables the	rial port and configu erial port and config	e pins must be pr res SCKx, SDOx, jures these pins igures the SDAx a	and SCLx pins as the	source of the seria		
bit 4	0 = Idle state for In I ² C Slave mod SCLx release co 1 = Enable clock	clock is a high leve clock is a low level le: ntrol ow (clock stretch).		data setup time.)			
bit 3-0	0000 = SPI Mas 0001 = SPI Mas 0010 = SPI Mas 0010 = SPI Mas 0100 = SPI Slav 0101 = SPI Slav 0110 = I ² C Slave 0110 = I ² C Slave 1000 = I ² C Mast 1001 = Reservee 1010 = SPI Mas 1011 = I ² C firmw 1100 = Reservee 1101 = Reservee 1101 = Reservee 1101 = Reservee 1100 = Reservee	e mode, 7-bit addre e mode, 10-bit addr er mode, clock = Fr d ter mode, clock = F vare controlled Mas d d e mode, 7-bit addre	osc/4 osc/16 osc/64 2_match/2 XKx pin, <u>SS</u> pin c SKx pin, <u>SS</u> pin c ss ess osc/(4 * (SSPxAl osc/(4 * (SSPxAl ter mode (Slave ss with Start and	ontrol enabled ontrol disabled, SSx DD+1)) ⁽⁴⁾ DD+1)) ⁽⁵⁾	nabled) pin	
2: W 3: W	Master mode, the ov hen enabled, these p hen enabled, the SD/ SPXADD values of 0,	erflow bit is not set ins must be proper Ax and SCLx pins r	since each new ly configured as i nust be configure	reception (and transi input or output. ed as inputs.		l by writing to the SS	PxBUF register.

- SSPxADD values of 0, 1 or 2 are not supported for I²C mode.
 SSPxADD value of '0' is not supported. Use SSPM = 0000 instead.

27.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 27-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

27.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

DESCRIPTIONS					
Field	Description				
f	Register file address (0x00 to 0x7F)				
W	Working register (accumulator)				
b	Bit address within an 8-bit file register				
k	Literal field, constant data or label				
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.				
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.				
n	FSR or INDF number. (0-1)				
mm	Pre-post increment-decrement mode selection				

TABLE 27-1: OPCODE FIELD DESCRIPTIONS

TABLE 27-2:ABBREVIATIONDESCRIPTIONS

Field	Description	
PC	Program Counter	
TO	Time-Out bit	
С	Carry bit	
DC	Digit Carry bit	
Z	Zero bit	
PD	Power-Down bit	

TABLE 27-3 :	ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)	

TABLE 27-3. ENHANCED					,				
Mnemonic, Operands		Description	Cycles		14-Bit Opcode			Status	Notes
			• • • • • • • • • • • • • • • • • • • •	MSb			LSb	Affected	
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPER	ATIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	lnmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

TABLE 28-5: MEMORY PRO	GRAMMING SPECIFICATIONS
------------------------	--------------------------------

Standard Operating Con	ditions (unless otherwise stated)
------------------------	-----------------------------------

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)
D112	VPBE	VDD for Bulk Erase	2.7	_	VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	_	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
D121	Ер	Program Flash Memory Cell Endurance	10K	_	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	VPRW	VDD for Read/Write	VDDMIN	_	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	Tretd	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K		—	E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

TABLE 28-6: THERMAL CONSIDERATIONS

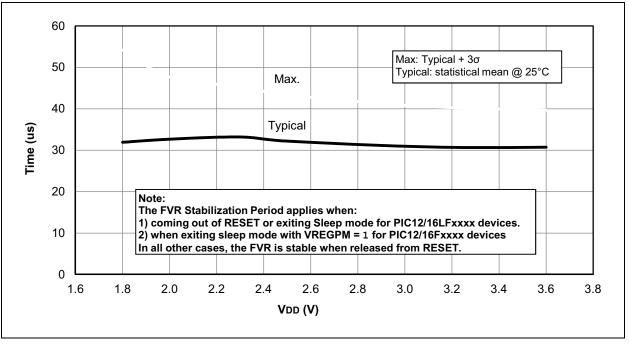
Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	70	°C/W	14-pin PDIP package		
			95.3	°C/W	14-pin SOIC package		
			100	°C/W	14-pin TSSOP package		
			55.3	°C/W	16-pin QFN 3X3X0.9mm package		
			52.3	°C/W	16-pin UQFN 3X3X0.5mm package		
TH02	θJC	Thermal Resistance Junction to Case	32.75	°C/W	14-pin PDIP package		
			31	°C/W	14-pin SOIC package		
			24.4	°C/W	14-pin TSSOP package		
			10	°C/W	16-pin QFN 3X3X0.9mm package		
			11	°C/W	16-pin UQFN 3X3X0.5mm package		
TH03	TJMAX	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾		

Note 1:IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

3: T_J = Junction Temperature.

29.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS


The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - X /XX XXX T Tape and Reel Temperature Package Pattern Option Range	Examples: a) PIC16LF1503T - I/SL Tape and Reel, Industrial temperature, SOIC package
Device:	PIC16LF1503, PIC16F1503	b) PIC16F1503 - I/P Industrial temperature PDIP package
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	c) PIC16F1503 - E/MG 298 Extended temperature, QFN package QTP pattern #298
Temperature Range:	$I = -40^{\circ}C \text{ to } +85^{\circ}C (Industrial)$ $E = -40^{\circ}C \text{ to } +125^{\circ}C (Extended)$	
Package:	MG = Micro Lead Frame (QFN) 3x3x0.9 MV = Ultra Thin Micro Lead Frame (UQFN) 3x3x0.5 P = Plastic DIP SL = SOIC ST = TSSOP	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	 availability with the Tape and Reel option. For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.

NOTES: