

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

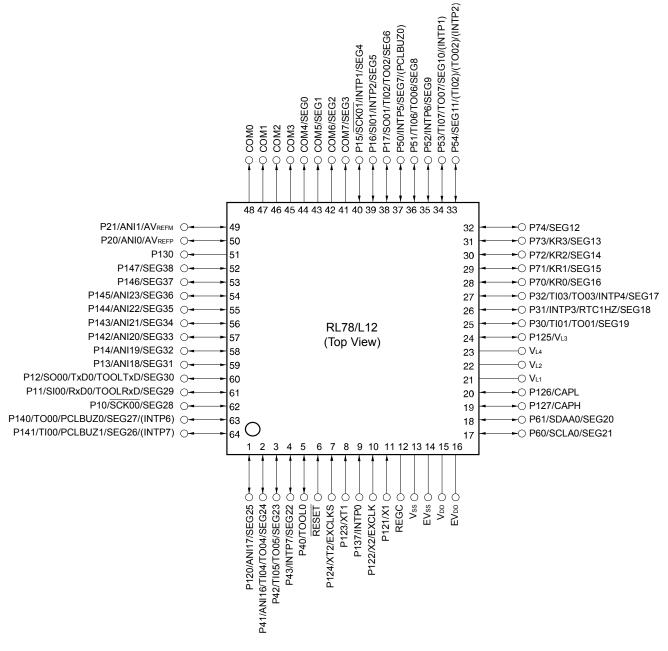
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 4x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rb8afp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data flash	RAM			RL78/L12		
			32 pins	44 pins	48 pins	52 pins	64 pins
32 KB	2 KB	1.5 KB ^{Note}	R5F10RBC	R5F10RFC	R5F10RGC	R5F10RJC	R5F10RLC
16 KB		1 KB ^{Note}		R5F10RFA	R5F10RGA	R5F10RJA	R5F10RLA
8KB	2 KB	1 KB ^{Note}	R5F10RB8	R5F10RF8	R5F10RG8	R5F10RJ8	-


Note In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.

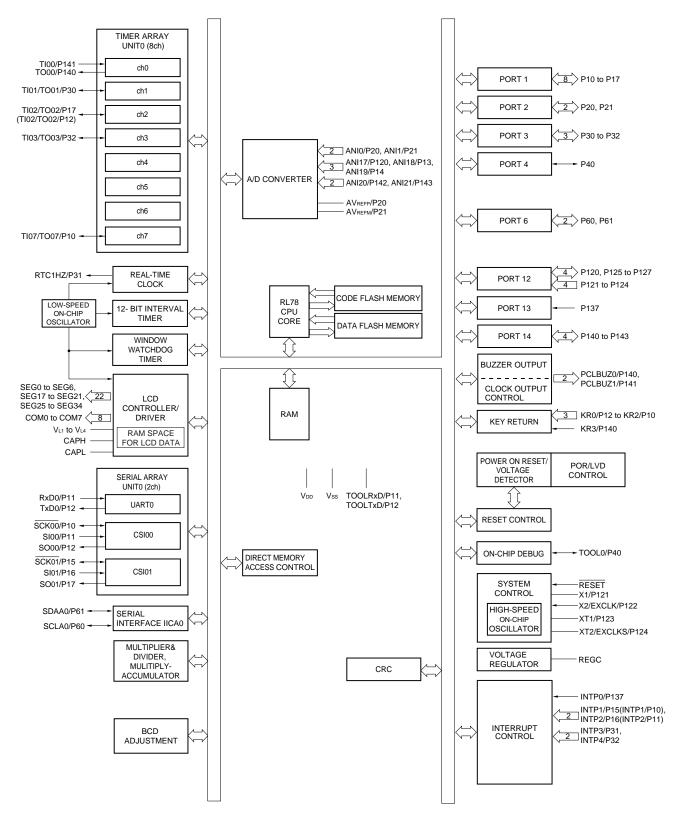
Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

- 64-pin plastic LQFP (fine pitch) (10×10)
- 64-pin plastic LQFP (12 × 12)

<R>

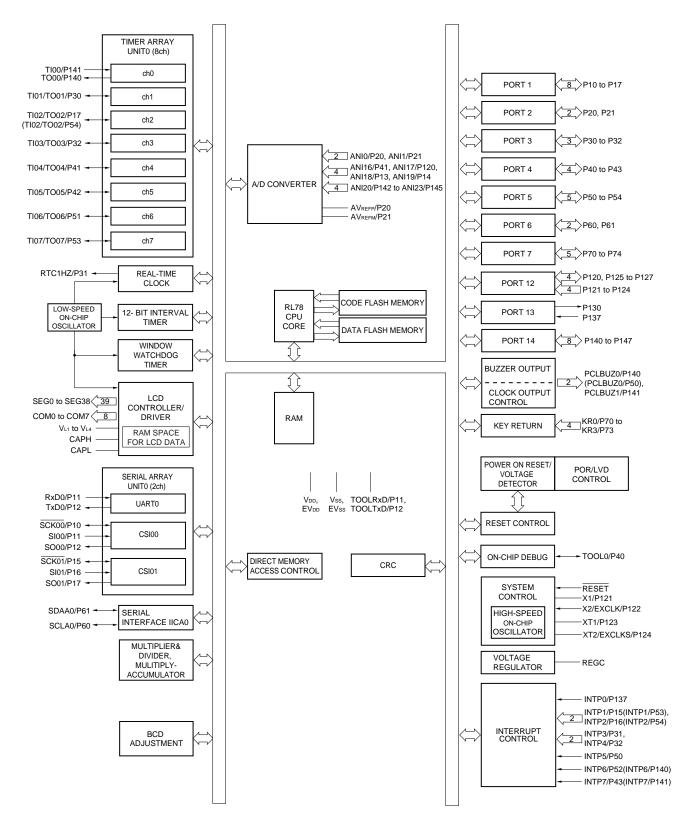
Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).


RENESAS

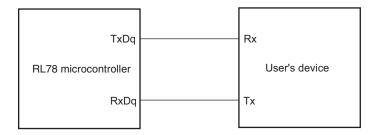
1.4 Pin Identification

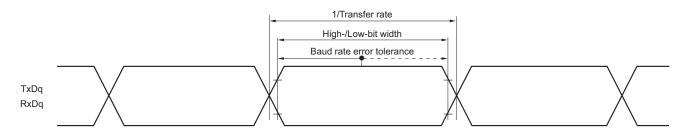
ANI0, ANI1,		P130, P137:	Port 13
ANI16 to ANI23:	Analog Input	P140 to P147:	Port 14
AVREFM:	Analog Reference	PCLBUZ0, PCLBUZ1:	Programmable Clock
	Voltage Minus		Output/Buzzer Output
AVREFP:	Analog Reference	REGC:	Regulator Capacitance
	Voltage Plus	RESET:	Reset
CAPH, CAPL:	Capacitor for LCD	RTC1HZ:	Real-time Clock Correction Clock
COM0 to COM7,			(1 Hz) Output
EVDD:	Power Supply for Port	RxD0:	Receive Data
EVss:	Ground for Port	SCK00, SCK01:	Serial Clock Input/Output
EXCLK:	External Clock Input	SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SDAA0:	Serial Data Input/Output
EXCLKS:	External Clock Input	SEG0 to SEG38:	LCD Segment Output
	(Subsystem Clock)	SI00, SI01:	Serial Data Input
INTP0 to INTP7:	Interrupt Request From	SO00, SO01:	Serial Data Output
	Peripheral	TI00 to TI07:	Timer Input
KR0 to KR3:	Key Return	TO00 to TO07:	Timer Output
P10 to P17:	Port 1	TOOL0:	Data Input/Output for Tool
P20, P21:	Port 2	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P30 to P32:	Port 3	TxD0:	Transmit Data
P40 to P43:	Port 4	VDD:	Power Supply
P50 to P54:	Port 5	VL1 to VL4:	LCD Power Supply
P60, P61:	Port 6	Vss:	Ground
P70 to P74:	Port 7	X1, X2:	Crystal Oscillator (Main System Clock)
P120 to P127:	Port 12	XT1, XT2:	Crystal Oscillator (Subsystem Clock)


1.5.2 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

RENESAS


1.5.5 64-pin products

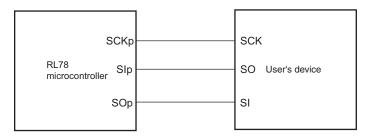

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

UART mode connection diagram (during communication at same potential)

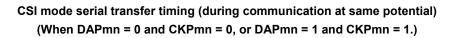
UART mode bit width (during communication at same potential) (reference)

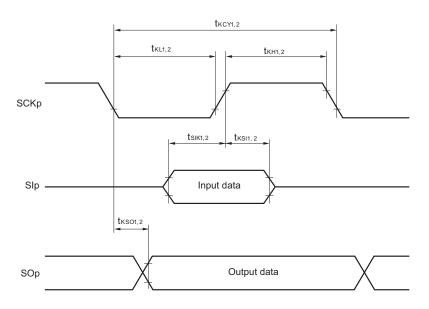
Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

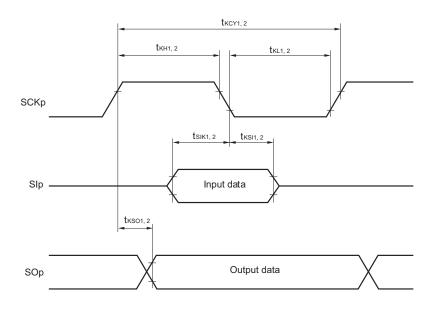

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

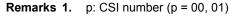
Parameter	Symbol	(Conditions	• •	h-speed Mode		v-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$			500 Note 1		1000 Note 1		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					1000 Note 1		ns
SCKp high-/low-level width	tкн1, tк∟1	4.0 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 - 50		tксү1/2 - 50		ns
		2.4 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 - 50		ns
		1.8 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$			tксү1/2 – 50		tксү1/2 - 50		ns
		$1.6~V \leq EV_{\text{DD}} \leq 5.5~V$						tксү1/2 - 100		ns
SIp setup time (to SCKp↑) Note 2	tsik1	2.7 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	44		110		110		ns
Note 2		2.4 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ EV	$I_{DD} \leq 5.5 \text{ V}$			110		110		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					220		ns
SIp hold time (from SCKp [↑])	t KSI1	$2.4 \text{ V} \le \text{EV}$	$I_{\text{DD}} \leq 5.5 \text{ V}$	19		19		19		ns
NOLE J		1.8 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$			19		19		
		1.6 V ≤ EV	$V_{DD} \leq 5.5 \text{ V}$					19		
Delay time from SCKp↓ to	t KSO1		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		25		25		25	ns
SOp output Note 4		Note 5	$1.8~V \le EV_{\text{DD}} \le 5.5~V$				25		25	
			$1.6~V \le EV_{\text{DD}} \le 5.5~V$						25	


Notes 1. For CSI00, set a cycle of 2/fмск or longer. For CSI01, set a cycle of 4/fмск or longer.


- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)




CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Conditions			h-speed Mode	-	w-speed) Mode	-	v-voltage) Mode	Unit
						MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n	$4.0 V \le EV_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			Note 1		Note 1		Note 1	bps
				$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \\ V_b = 2.7 \ V \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
				EVdd < 4.0 V, ∕⊳≤2.7 V		Note 3		Note 3		Note 3	bps
				$\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_{b} = 50 \mbox{ pF}, \mbox{ R}_{b} = 2.7 \mbox{ k}\Omega \\ \mbox{V}_{b} = 2.3 \mbox{ V} \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
				EVdd < 3.3 V, /₅≤2.0 V		Note 6		Note 6		Note 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V_b = 1.6 V		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps
				EVdd < 3.3 V, /b ≤ 2.0 V				Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V				0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

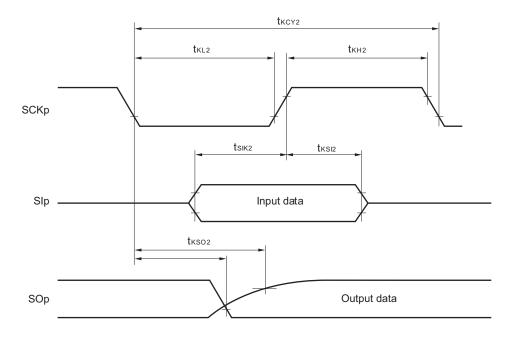
Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

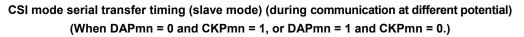
Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

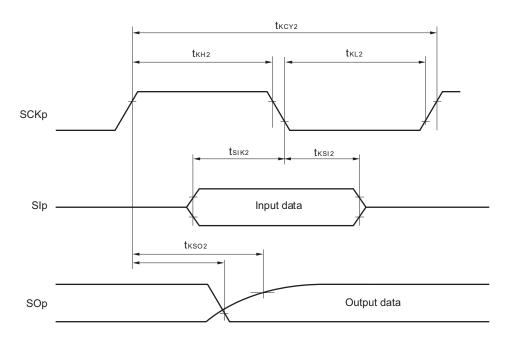
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.


2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.


Parameter	Symbol	Con	Conditions			main)	/-speed mode	voltage mo	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0 V \le EV_{DD} \le 5.5 V$,	20 MHz < fмск ≤ 24 MHz	12/fмск						ns
		$2.7 V \le V_b \le 4.0 V$	8 MHz < fмск ≤ 20 MHz	10/ f мск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск				ns
			fмск≤4 MHz	6/fмск		10/f мск		10/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	16/ f мск						ns
		$2.3 V \le V_b \le 2.7 V$	$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	14/ f мск						ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	12/fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск				ns
			fмск ≤4 MHz	6/ f мск		10/fмск		10/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	36/fмск						ns
		$1.6 V {\leq} V_b {\leq} 2.0 V$	16 MHz < fмск ≤ 20 MHz	32/fмск						ns
			8 MHz < fмск ≤ 16 MHz	26/fмск						ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск				ns
		$\begin{array}{l} 1.8 \ V \leq E V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	fмcк≤4 MHz	10/fмск		10/fмск		10/f мск		ns
			4 MHz < fмск ≤ 8 MHz			16/f мск				ns
			fмск≤4 MHz			10/fмск		10/fмск		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V$				tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns	
		$1.8 V \le EV_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{No}$	$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$ $1.6 \text{ V} \le V_{\text{b}} \le 2.0 \text{ V}^{\text{Note 2}}$			tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$V, 2.7 V \le V_b \le 4.0 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm r}, 1.6 \ V \le V_{\rm b} \le 2.0 \ V_{\rm b}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} < 3.3 \ V \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{No}} \end{array}$				1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$V, 2.7 V \le V_b \le 4.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V, 1.6 V \le V_b \le 2.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{No}} \end{array}$				1/fмск + 31		1/fмск + 31		ns


(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(Notes, Caution and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	(Conditions				/-speed Mode	voltage	low- e main) ode	Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscl	Fast mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fclк≥ 3.5	$2.4~V \le EV_{\text{DD}} \le 5.5~V$	0	400	0	400	0	400	
		MHz	$1.8~V \le EV_{\text{DD}} \le 5.5~V$			0	400	0	400	
Setup time of restart condition	tsu:sta	$2.7 \; V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		
		$1.8 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V			0.6		0.6		
Hold time Note 1	thd:sta	$2.7~V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		
		$1.8 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V			0.6		0.6		
Hold time when SCLA0 = "L"	tLOW	$2.7 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V	1.3		1.3		1.3		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	1.3		1.3		1.3		
		$1.8 \ V \leq EV_{\text{DD}}$	≤ 5.5 V			1.3		1.3		
Hold time when SCLA0 = "H"	t HIGH	$2.7 \; V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		
		$1.8 \ V \leq EV_{\text{DD}}$	≤ 5.5 V			0.6		0.6		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	100		100		100		ns
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	100		100		100		
		$1.8 \ V \leq EV_{\text{DD}}$	≤ 5.5 V			100		100		
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	0	0.9	0	0.9	0	0.9	
		$1.8 \text{ V} \leq EV_{DD}$	≤ 5.5 V			0	0.9	0	0.9	
Setup time of stop condition	tsu:sto	$2.7 \; V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		
		$1.8 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V			0.6		0.6		
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V	1.3		1.3		1.3		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	1.3		1.3		1.3		
		$1.8 \text{ V} \leq EV_{DD}$	≤ 5.5 V			1.3		1.3		

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

RemarkThe maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up
resistor) at that time in each mode are as follows.Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (−) = V_{ss} (ADREFM = 0), target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}},$	Reference voltage (-)
= Vss)	

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±0.85	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±4.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±2.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±2.5	LSB
Analog input voltage	VAIN	ANIO, ANI1		0		VDD	V
		ANI16 to ANI23		0		EVDD	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (hig	gh-speed main) mode)		V _{BGR} Note 4		V
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (high	0		VTMPS25 Note 4		V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2,	VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB1	VPOC2,	VPOC1, VPOC0 = 0, 0, 1	1.80	1.84	1.87	V	
	VLVDB2		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
VLVE	VLVDB4		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time

(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
 - For derating with T_A = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

		•, =:= • =		$0 \leq 5.5 \text{ V}, \text{ VSS} = \text{EVS}$					(Z/S)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	f⊪ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	2.3	mA
Current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.44	2.3	mA
				fi⊢ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.7	mA
					V _{DD} = 3.0 V		0.40	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	2.0	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	2.0	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	1.02	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	1.10	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA
	Subsystem	fsue = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.57	μA		
		clock	T _A = −40°C	Resonator connection		0.50	0.76	μA	
			operation	fsue = 32.768 kHz ^{Note 5}	Square wave input		0.37	0.57	μA
				T _A = +25°C	Resonator connection		0.56	0.76	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.17	μA
				T _A = +50°C	Resonator connection		0.65	1.36	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.57	1.97	μA
				T _A = +70°C	Resonator connection		0.76	2.16	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.85	3.37	μA
				T _A = +85°C	Resonator connection		1.04	3.56	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		3.04	15.37	μA
				T _A = +105°C	Resonator connection		3.23	15.56	μA
	IDD3 ^{Note 6}	STOP	T _A = -40°C				0.17	0.50	μA
mode ^{Note}	mode ^{Note 8}	T _A = +25°C				0.23	0.50	μA	
		T _A = +50°C				0.32	1.10	μA	
		T _A = +70°C				0.43	1.90	μA	
		T _A = +85°C				0.71	3.30	μA	
			T _A = +105°C				2.90	15.30	μA

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(2/3)

(Notes and $\ensuremath{\textit{Remarks}}$ are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

3.7 LCD Characteristics

3.7.1 Resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +105^{\circ}C, V_{L4} \text{ (MIN.)} \le V_{DD}^{Note} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

Note Must be 2.4 V or higher.

(2) 1/2 bias method, 1/4 bias method

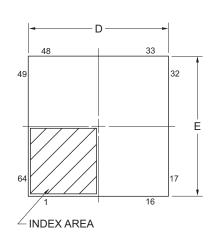
(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

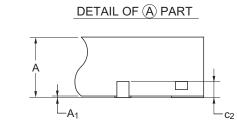
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

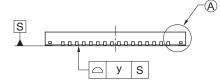
(3) 1/3 bias method

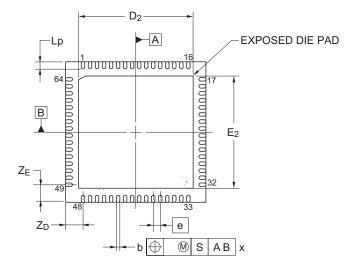
(T_A = -40 to +105°C, V_L4 (MIN.) \leq V_DD \leq 5.5 V, V_SS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V




R5F10RLAANB, R5F10RLCANB R5F10RLAGNB, R5F10RLCGNB


<r></r>	JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
	P-HWQFN64-8x8-0.40	PWQN0064LA-A	P64K8-40-9B5-4	0.16



Unit: mm

Reference	Dimensions in millimeters				
Symbol	Min	Nom	Max		
D	7.95	8.00	8.05		
E	7.95	8.00	8.05		
A	_		0.80		
A ₁	0.00		—		
b	0.17	0.20	0.23		
е	_	0.40	—		
Lp	0.30	0.40	0.50		
x	—	_	0.05		
У	_		0.05		
ZD	_	1.00	—		
ZE	_	1.00	_		
C2	0.15	0.20	0.25		
D ₂	_	6.50	—		
E ₂	_	6.50	—		

© 2015 Renesas Electronics Corporation. All rights reserved.

		Description		
Rev.	Date	Page	Summary	
2.00	Jan 10, 2014	35	Modification of table in 2.4 AC Characteristics	
		36	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		37	Modification of AC Timing Test Points and External System Clock Timing	
		39	Modification of AC Timing Test Points	
		39	Modification of description, notes 1 and 2 in (1) During communication at same potential (UART mode)	
		41, 42	Modification of description, remark 2 in (2) During communication at same potential (CSI mode)	
		42, 43	Modification of description in (3) During communication at same potential (CSI mode)	
		45	Modification of description, notes 1 and 3, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		46, 48	Modification of description, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		49, 50	Modification of table, and note 1, caution, and remark 3 in (5) Communication at different potential (2.5 V, 3 V) (CSI mode)	
		51	Modification of table and note in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (1/3)	
		52	Modification of table and notes 1 to 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (2/3)	
		53, 54	Modification of table, note 3, and remark 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (3/3)	
		56	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)	
		57	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)	
		59, 60	Addition of (1) I ² C standard mode	
		61	Addition of (2) I ² C fast mode	
		62	Addition of (3) I ² C fast mode plus	
		63	Addition of table in 2.6.1 A/D converter characteristics	
		63, 64	Modification of description and notes 3 to 5 in 2.6.1 (1)	
		65	Modification of description, notes 3 and 4 in 2.6.1 (2)	
		66	Modification of description, notes 3 and 4 in 2.6.1 (3)	
		67	Modification of description, notes 3 and 4 in 2.6.1 (4)	
		67	Modification of the table in 2.6.2 Temperature sensor/internal reference voltage characteristics	
		68	Modification of the table and note in 2.6.3 POR circuit characteristics	
		70	Modification of the table of LVD Detection Voltage of Interrupt & Reset Mode	
		70	Modification from VDD rise slope to Power supply voltage rising slope in 2.6.5 Supply voltage rise time	
		75	Modification of description in 2.10 Dedicated Flash Memory Programmer Communication (UART)	
		76	Modification of the figure in 2.11 Timing Specifications for Switching Flash Memory Programming Modes	
		77 to 126	Addition of products for industrial applications (G: T _A = -40 to +105°C)	
		127 to 133	Addition of product names for industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)	
2.10	Sep 30, 2016	5	Modification of pin configuration in 1.3.1 32-pin products	
		6	Modification of pin configuration in 1.3.2 44-pin products	
		7	Modification of pin configuration in 1.3.3 48-pin products	
		8	Modification of pin configuration in 1.3.4 52-pin products	
		9, 10 17	Modification of pin configuration in 1.3.5 64-pin products	
		17 74	Modification of description of main system clock in 1.6 Outline of Functions	
		74	Modification of title of 2.8 RAM Data Retention Characteristics, Note, and figure Modification of table of 2.9 Flash Memory Programming Characteristics	
		123	Modification of title of 3.8 RAM Data Retention Characteristics, Note, and figure	
		123	Modification of table of 3.9 Flash Memory Programming Characteristics and addition of Note 4	
		131	Modification of 4.5 64-pin Products	
		151		