

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Obsolete
RL78
16-Bit
24MHz
CSI, I ² C, LINbus, UART/USART
DMA, LCD, LVD, POR, PWM, WDT
20
8KB (8K x 8)
FLASH
2K x 8
1K x 8
1.6V ~ 5.5V
A/D 4x8/10b
Internal
-40°C ~ 85°C (TA)
Surface Mount
32-LQFP
32-LQFP (7x7)
https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rb8afp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Identification

ANIO, ANI1,		P130, P137:	Port 13
ANI16 to ANI23:	Analog Input	P140 to P147:	Port 14
AVREFM:	Analog Reference	PCLBUZ0, PCLBUZ1:	Programmable Clock
	Voltage Minus		Output/Buzzer Output
AVREFP:	Analog Reference	REGC:	Regulator Capacitance
	Voltage Plus	RESET:	Reset
CAPH, CAPL:	Capacitor for LCD	RTC1HZ:	Real-time Clock Correction Clock
COM0 to COM7,			(1 Hz) Output
EVDD:	Power Supply for Port	RxD0:	Receive Data
EVss:	Ground for Port	SCK00, SCK01:	Serial Clock Input/Output
EXCLK:	External Clock Input	SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SDAA0:	Serial Data Input/Output
EXCLKS:	External Clock Input	SEG0 to SEG38:	LCD Segment Output
	(Subsystem Clock)	SI00, SI01:	Serial Data Input
INTP0 to INTP7:	Interrupt Request From	SO00, SO01:	Serial Data Output
	Peripheral	TI00 to TI07:	Timer Input
KR0 to KR3:	Key Return	TO00 to TO07:	Timer Output
P10 to P17:	Port 1	TOOL0:	Data Input/Output for Tool
P20, P21:	Port 2	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P30 to P32:	Port 3	TxD0:	Transmit Data
P40 to P43:	Port 4	VDD:	Power Supply
P50 to P54:	Port 5	VL1 to VL4:	LCD Power Supply
P60, P61:	Port 6	Vss:	Ground
P70 to P74:	Port 7	X1, X2:	Crystal Oscillator (Main System Clock)
P120 to P127:	Port 12	XT1, XT2:	Crystal Oscillator (Subsystem Clock)

1.5.5 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

					-		(2/2			
	Iter	m	32-pin	44-pin	48-pin	52-pin	64-pin			
			R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx			
Time	r 16-b	it timer	8 channels	8 channels	(with 1 channel i	emote control ou	tput function)			
	Wate	chdog timer			1 channel					
	Real-	-time clock (RTC)	1 channel							
	12-bi	t interval timer (IT)	1 channel							
	Time	er output	4 channels (PWM outputs: 3 ^{Note 1})	5 channels (PWM outputs: 4 ^{Note 1})	6 channels (PWM outputs: 5 ^{Note 1})	8 channels (PWN	I outputs: 7 ^{Note 1})			
	RTC	output	-	1 • 1 Hz (subsys	tem clock: fsub =	32.768 kHz or)				
Clock	coutput/buzze	er output	1			2				
			 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz 512 Hz 1 024 kHz 2 048 kHz 4 096 kHz 8 192 kHz 16 384 kHz 							
			32.768 kHz (Subsystem clock: fsuв = 32.768 kHz operation)							
8/10-	bit resolution	A/D converter	4 channels	7 channels	9 channels	10 channels	10 channels			
Seria	l interface		CSI: 2 chann	el/UART (LIN-bu	s supported): 1 o	hannel				
	I ² C bus		1 channel	1 channel	1 channel	1 channel	1 channel			
Multiplier and divider/multiply- accumulator			 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 							
DMA	controller		2 channels							
Vecto	ored interrupt	Internal	23	23	23	23	23			
sourc	es	External	4	6	7	7	9			
Kev i	nterrupt				4	I				
Key interrupt 4 Reset • Reset by RESET pin • Internal reset by watchdog timer • Internal reset by power-on-reset • Internal reset by voltage detector • Internal reset by illegal instruction execution Note 2 • Internal reset by RAM parity error • Internal reset by illegal memory access										
Powe	er-on-reset cir	cuit	Power-on-rese Power-down-r	et: 1.51 ±0.04 eset: 1.50 ±0.04	V V					
Volta	ge detector		Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)							
On-c	hip debug fun	ction	Provided							
Powe	er supply volta	age	V _{DD} = 1.6 to 5.5 V							
Oper	ating ambient	temperature	T _A = -40 to +85 °C							

Notes 1. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

 The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (A, G: $T_A = -40$ to $+85^{\circ}$ C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)" and "G: Industrial applications (with $T_A = -40$ to $+85^{\circ}$ C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD, or EVSS pin, replace EVDD with VDD, or replace EVSS with VSS.

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	Per pin for P50 to P54 P140 to P1	P10 to P17, P30 to P32, P I, P70 to P74, P120, P125 47	40 to P43, to P127, P130,			20.0 Note 2	mA
		Per pin for	P60, P61			15.0 Note 2	mA	
		Total of P1	0 to P14, P40 to P43,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			70.0	mA
		P120, P13	0, P140 to P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		(when dut	y = 70%)	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			9.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			80.0	mA
		P50 to P54	I, P60, P61, P70 to P74,	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
		(When dut	$v = 70\%^{\text{Note 3}}$	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			20.0	mA
			,	$1.6~V \leq EV_{\text{DD}} < 1.8~V$			10.0	mA
		Total of all (When dut	Total of all pins (When duty = 70% ^{Note 3})				150.0	mA
	Iol2 P2	P20, P21	P20, P21 Per pin				0.4	mA
			Total of all pins	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			0.8	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \cong 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	t voltage, VIH1 P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147		Normal input buffer	0.8EVDD		EVDD	V
	VIH2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \le EV_{\text{DD}} \le 5.5 \text{ V}$	2.2		EVDD	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	2.0		EVDD	V
			TTL input buffer $1.6 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}$	1.50		EVDD	V
	VIH3	P20, P21		0.7V _{DD}		VDD	V
ViH4 P60, P61						EVDD	V
	VIH5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0.8V _{DD}		VDD	V
Input voltage, Iow	Input voltage, VIL1 P10 to P17, P30 to P32, P40 to P low P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147		Normal input buffer	0		0.2EV _{DD}	V
	VIL2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \leq EV_{DD} \leq 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V ≤ EVɒ□ < 3.3 V	0		0.32	V
	VIL3	P20, P21		0		0.3VDD	V
	VIL4	P60, P61		0		0.3EVDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0		0.2V _{DD}	V

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz

 $2.4~V \le V_{DD} \le 5.5~V @1~MHz~to~16~MHz$ LS (low-speed main) mode: $1.8~V \le V_{DD} \le 5.5~V @1~MHz~to~8~MHz$

- LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot} 1 \text{ MHz}$ to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	(Conditions	HS (hig main)	h-speed Mode	LS (low main)	S (low-speed LV (low-voltage main) Mode main) Mode			Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	2.7 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$			500 Note 1		1000 Note 1		ns
		1.6 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$					1000 Note 1		ns
SCKp high-/low-level width	tкн1, tк∟1	4.0 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		2.7 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		2.4 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
		1.8 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$			tксү1/2 - 50		tксү1/2 - 50		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$						tксү1/2 - 100		ns
SIp setup time (to SCKp↑)	tsik1	2.7 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	44		110		110		ns
NOTE 2		2.4 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$			110		110		ns
		1.6 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$					220		ns
SIp hold time (from SCKp [↑])	tksi1	2.4 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$	19		19		19		ns
NOLE 5		1.8 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$			19		19		
		1.6 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$					19		
Delay time from SCKp↓ to	tkso1	C = 30 pF 2	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		25		25		25	ns
SOp output Note 4			$1.8~V \le EV_{\text{DD}} \le 5.5~V$				25		25	
			$1.6~V \le EV_{\text{DD}} \le 5.5~V$						25	

Notes 1. For CSI00, set a cycle of 2/fмск or longer. For CSI01, set a cycle of 4/fмск or longer.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{Ss}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-	LS (low-		LV (low-	Unit
			speed	main)	speed	main)	voltage	e main)	
			Mode		Mode		Mode		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
					19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns
		$ \begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array} $				25		25	ns

- **Notes** 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** Use it with $EV_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
 - For derating with T_A = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

(2/3)

Absolute Maximum Ratings (T_A = 25°C)

		-			
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		-0.3 to +2.8 and -0.3 to V _{L4} + 0.3	V
	VL2	VL2 voltage ^{Note 1}		-0.3 to $V_{\rm L4}$ + 0.3 $^{\rm Note\ 2}$	V
	VL3	VL3 voltage ^{Note 1}		-0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
	VL4	VL4 voltage ^{Note 1}		-0.3 to +6.5	V
	VLCAP	CAPL, CAPH vol	tage ^{Note 1}	–0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
``	Vlout	COM0 to COM7, SEG0 to	External resistance division method	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
	SEG38, output voltage		Capacitor split method	-0.3 to V _{DD} + 0.3 ^{Note 2}	
			Internal voltage boosting method	-0.3 to V _{L4} + 0.3 ^{Note 2}	

Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.

- 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss : Reference voltage

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz
 - $2.4~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

3.4 AC Characteristics

3.4.1 Basic operation

(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Items	Symbol		Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-sp	peed	$2.7V\!\le\!V_{DD}\!\le\!5.5V$	0.04167		1	μs
instruction execution time)		system clock (fmain) operation	main) mode	e	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem of	lock (fsub)		$2.4V\!\le\!V_{DD}\!\le\!5.5V$	28.5	30.5	31.3	μs
		operation							
		In the self	HS (high-sp	peed	$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.04167		1	μs
Eutomal austana alaali foo suonau		programming mode	main) mode	e	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
External system clock frequency	f _{EX}	$2.7 \text{ V} \leq V_{\text{DD}} \leq$	≦ 5.5 V			1.0		20.0	MHz
		$2.4 V \le V_{DD}$	< 2.7 V			1.0		16.0	MHz
	fexs			32		35	kHz		
External system clock input high-	texh, texl	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$				24			ns
level width, low-level width		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$	< 2.7 V			30			ns
	texнs, texls				13.7			μs	
TI00 to TI07 input high-level width, low-level width	tт⊪, t⊤⊫					1/fмск+10			ns
TO00 to TO07 output frequency	fто	HS (high-spe	eed 4.0	0 V ≤	$\leq EV_{DD} \leq 5.5 V$			16	MHz
		main) mode	2.7	7 V ≤	EVDD < 4.0 V			8	MHz
			2.4	4 V ≤	SEVDD < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0	0 V ≤	$\leq EV_{DD} \leq 5.5 V$			16	MHz
frequency		main) mode	2.	7 V ≤	SEVDD < 4.0 V			8	MHz
			2.4	4 V ≤	SEVDD < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4	4 V ≤	$\leq V_{DD} \leq 5.5 \text{ V}$	1			μs
low-level width	t intl	INTP1 to INT	P7 2.4	4 V ≤	$\leq EV_{DD} \leq 5.5 V$	1			μs
Key interrupt input low-level width	t kr	KR0 to KR3	2.4	4 V ≤	$\leq EV_{DD} \leq 5.5 V$	250			ns
RESET low-level width	trsl					10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n).

n: Channel number (n = 0 to 7))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0 V \le EV_{DD} \le 5.5 V$,	20 MHz < fмск ≤ 24 MHz	24/f мск		ns
		$2.7V\!\le\!V_b\!\le\!4.0V$	8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			4 MHz < fмск ≤ 8 MHz	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.7 V \le EV_{DD} < 4.0 V$,	20 MHz < fмск ≤ 24 MHz	32/f мск		ns
		$2.3V \!\leq\! V_b \!\leq\! 2.7V$	16 MHz < fмск ≤ 20 MHz	28/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤ 4 MHz	12/f мск		ns
		$2.4 V \le EV_{DD} < 3.3 V$,	20 MHz < fмск ≤ 24 MHz	72/f мск		ns
		$1.6V{\leq}V_b{\leq}2.0V$	16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			$8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/f мск		ns
			fмск ≤4 MHz	20/f мск		ns
SCKp high-/low-level width	tкн2, tкL2		V,	tkcy2/2 - 24		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 $ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 $	V,	tkcy2/2 - 36		ns
	$2.3 V \le V_b \le 2.7 V$ 2.4 V \le EV_DD < 3.3 V, 1.6 V \le V_b < 2.0 V					ns
SIp setup time (to SCKp [↑]) ^{Note2}	tsık2	$4.0 V \le EV_{DD} < 5.5$ $2.7 V \le V_b \le 4.0 V$	V,	1/fмск + 40		ns
		$2.7 V \le EV_{DD} < 4.0 V$ $2.3 V \le V_b \le 2.7 V$	$2.7 V \le V_{D} \le 4.0 V,$ 2.7 V \le V_{DD} < 4.0 V, 2.3 V < V_{b} < 2.7 V			ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	$2.3 V \le V_{D} \le 2.7 V$ 2.4 V \le EV_{DD} < 3.3 V, 1.6 V < V_{D} < 2.0 V			ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2	$\begin{array}{c} 4.0 \; V \leq EV_{DD} < 5.5 \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	V,	1/fмск + 62		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	V,	1/fмск + 62		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	V,	1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2		$V, 2.7 V \le V_b \le 4.0 V,$ 4 kΩ		2/fмск + 240	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ V}$	$V, 2.3 V ≤ V_b ≤ 2.7 V,$ 7 kΩ		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.9 \text{ c}_{\text{b}}$	V, 1.6 V ≤ V₅ ≤ 2.0 V 5 kΩ		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the page after the next page.)

3.7.3 Capacitor split method

1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
V∟₂ voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
V∟1 voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V∟₄ – 0.1	1/3 VL4	1/3 V∟₄ + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{\mbox{\tiny L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F \pm 30%

3.11 Timing Specifications for Switching Flash Memory Programming Modes ($T_A = -40$ to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

R5F10RLAANB, R5F10RLCANB R5F10RLAGNB, R5F10RLCGNB

<r></r>	JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
	P-HWQFN64-8x8-0.40	PWQN0064LA-A	P64K8-40-9B5-4	0.16

Unit: mm

Reference	Dimensions in millimeters			
Symbol	Min	Nom	Max	
D	7.95	8.00	8.05	
E	7.95	8.00	8.05	
A	_	_	0.80	
A ₁	0.00		_	
b	0.17	0.20	0.23	
е	_	0.40	—	
Lp	0.30	0.40	0.50	
х	—	_	0.05	
у	_		0.05	
ZD	_	1.00	—	
ZE	_	1.00	—	
C2	0.15	0.20	0.25	
D ₂	_	6.50	_	
E ₂	—	6.50	_	

© 2015 Renesas Electronics Corporation. All rights reserved.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.