

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

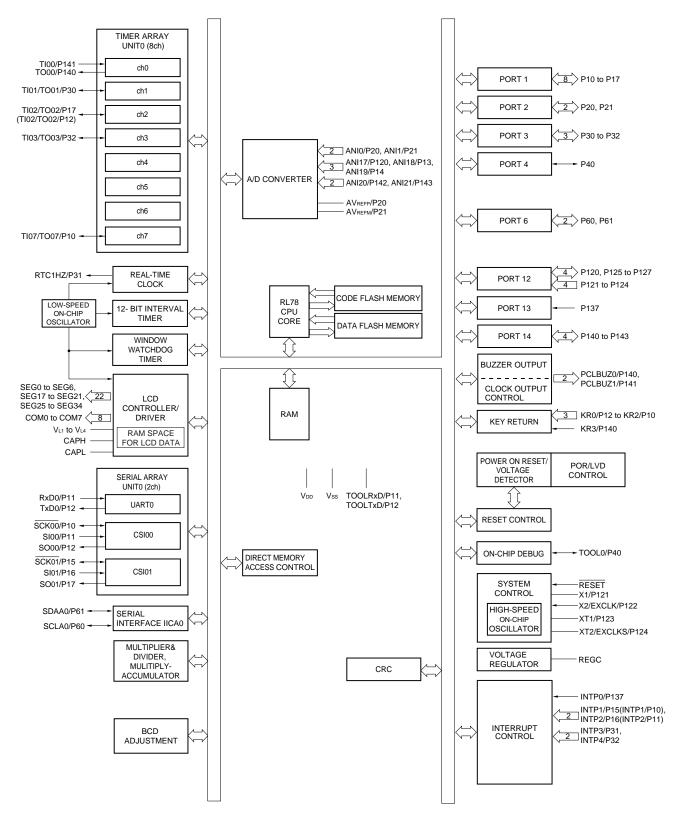
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 4x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rb8afp-x0

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Identification

ANI0, ANI1,		P130, P137:	Port 13
ANI16 to ANI23:	Analog Input	P140 to P147:	Port 14
AVREFM:	Analog Reference	PCLBUZ0, PCLBUZ1:	Programmable Clock
	Voltage Minus		Output/Buzzer Output
AVREFP:	Analog Reference	REGC:	Regulator Capacitance
	Voltage Plus	RESET:	Reset
CAPH, CAPL:	Capacitor for LCD	RTC1HZ:	Real-time Clock Correction Clock
COM0 to COM7,			(1 Hz) Output
EVDD:	Power Supply for Port	RxD0:	Receive Data
EVss:	Ground for Port	SCK00, SCK01:	Serial Clock Input/Output
EXCLK:	External Clock Input	SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SDAA0:	Serial Data Input/Output
EXCLKS:	External Clock Input	SEG0 to SEG38:	LCD Segment Output
	(Subsystem Clock)	SI00, SI01:	Serial Data Input
INTP0 to INTP7:	Interrupt Request From	SO00, SO01:	Serial Data Output
	Peripheral	TI00 to TI07:	Timer Input
KR0 to KR3:	Key Return	TO00 to TO07:	Timer Output
P10 to P17:	Port 1	TOOL0:	Data Input/Output for Tool
P20, P21:	Port 2	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P30 to P32:	Port 3	TxD0:	Transmit Data
P40 to P43:	Port 4	VDD:	Power Supply
P50 to P54:	Port 5	VL1 to VL4:	LCD Power Supply
P60, P61:	Port 6	Vss:	Ground
P70 to P74:	Port 7	X1, X2:	Crystal Oscillator (Main System Clock)
P120 to P127:	Port 12	XT1, XT2:	Crystal Oscillator (Subsystem Clock)

1.5.2 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

RENESAS

1.6 Outline of Functions

RL78/L12

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	32-pin	44-pin	48-pin	52-pin	64-pin			
		R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx			
Code flast	n memory (KB)	8 to 32	8 to 32	8 to 32	8 to 32	16. 32			
	memory (KB)	2	2	2	2	2			
RAM (KB)	,	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}			
Memory s		1 MB	1, 1.0	1, 1.0	1, 1.0	1, 1.0			
Main system clock	High-speed system clock	HS (high-speed HS (high-speed LS (low-speed	amic) oscillation, d main) operation d main) operation main) operation: e main) operation	: 1 to 20 MHz (V : 1 to 16 MHz (V 1 to 8 MHz (VDD	DD = 2.7 to 5.5 V DD = 2.4 to 5.5 V = 1.8 to 5.5 V),),			
	High-speed on-chip oscillator clock	HS (high-speed LS (low-speed	d main) operation d main) operation main) operation: e main) operation	: 1 to 16 MHz (V 1 to 8 MHz (V _{DD}	^{DD} = 2.4 to 5.5 V = 1.8 to 5.5 V),	,.			
Subsyster	n clock	_		cillation , external (P.): V _{DD} = 1.6 to	subsystem clock 5.5 V	input (EXCLKS			
Low-spee	d on-chip oscillator clock	Internal oscillat 15 kHz (TYP.):	ion V _{DD} = 1.6 to 5.5	V					
General-p	urpose register	8 bits \times 32 regis	sters (8 bits $ imes$ 8 r	egisters $ imes$ 4 bank	(s)				
Minimum	instruction execution time	0.04167 <i>μ</i> s (Hig	gh-speed on-chip	o oscillator clock:	f⊮ = 24 MHz ope	eration)			
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)							
		30.5 μ s (Subsystem clock: f _{SUB} = 32.768 kHz operation)							
Instructior	set	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
	ber of I/O port pins and ated to drive an LCD	28	40	44	48	58			
I/O port	Total	20	29	33	37	47			
	CMOS I/O	15	22	26	30	39			
	CMOS input	3	5	5	5	5			
	CMOS output	_	_	_	_	1			
	N-ch open-drain I/O (EV _{DD} tolerance)	2	2	2	2	2			
Pins d	edicated to drive an LCD	8	11	11	11	11			
LCD contr	oller/driver	-	boosting metho are switchable.	d, capacitor split	method, and ext				
	Segment signal output	13	22 (18) Note 2	26 (22) Note 2	30 (26) Note 2	39 (35) Note 2			
	Segment signal output	10	(,		Note 2	00 (00)			

Notes 1. In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.

2. The values in parentheses are the number of signal outputs when 8 com is used.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/5)

	· · , ·		,	,		-		(110
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147					-10.0 Note 2	mA
		Total of P10) to P14, P40 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-40.0	mA
		P130, P140		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA
		(when duty	= 70% ^{Note 3})	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-2.0	mA
		Total of P15 to P17, P30 to P32,		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-60.0	mA
		· · · · · · · · · · · · · · · · · · ·	P70 to P74, P125 to P127 = 70% ^{Note 3})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
		(when duty	= 70%)	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-4.0	mA
-		Total of all pins (When duty = 70% ^{Note 3})					-100.0	mA
	Іон2	P20, P21	P20, P21 Per pin				-0.1	mA
			Total of all pins	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and $I_{OH} = -40.0$ mA

Total output current of pins = $(-40.0 \times 0.7)/(80 \times 0.01) \approx -35.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	f⊪ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.28	mA
Current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.44	1.28	mA
			mode	f⊪ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	f⊪ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		V _{DD} = 2.0 V		260	530	μA
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			voltage main) mode ^{Note 7}		V _{DD} = 2.0 V		420	640	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
		f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA		
			V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA	
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA	
			V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA	
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
			speed main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		145	380	μA
			mode	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.57	μA
			clock operation	T _A = -40°C	Resonator connection		0.50	0.76	μA
			operation	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.37	0.57	μA
				T _A = +25°C	Resonator connection		0.56	0.76	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.17	μA
				T _A = +50°C	Resonator connection		0.65	1.36	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.57	1.97	μA
				T _A = +70°C	Resonator connection		0.76	2.16	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.85	3.37	μA
				T _A = +85°C	Resonator connection		1.04	3.56	μA
	DD3 Note 6	STOP	$T_A = -40^{\circ}C$				0.17	0.50	μA
		mode Note 8	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.32	1.10	μA
			T _A = +70°C				0.43	1.90	μA
			T _A = +85°C				0.71	3.30	μA

(TA = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

(2/3)

(Notes and $\ensuremath{\textit{Remarks}}$ are listed on the next page.)

(TA = –40 to +	85°C, 1.6	$V \leq EV_{DD} = V_{DD} \leq 5.5 V$, Vss = EVss = 0 V)						
Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL Note 1					0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped				0.08		μA
12-bit interval timer current	I⊤ Notes 1, 2, 4					0.08		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊩ = 15 kHz				0.24		μA
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, A		1.3 0.5	1.7 0.7	mA mA	
A/D converter reference voltage current	ADREF Note 1					75.0		μA
Temperature sensor operating current	ITMPS Note 1					75.0		μΑ
LVD operating current	ILVD Notes 1, 7					0.08		μA
Self- programming operating current	IFSP Notes 1, 9					2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8					2.00	12.20	mA
LCD operating current	ILCD1 Notes 11, 12	External resistance	division method	$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	ILCD2 Note 11	Internal voltage boo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.70	μA
				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.20	μA
	ILCD3 Note 11			$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.50	μA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	0.60	mA
operating current			The A/D conversic performed, Low vo = 3.0 V	on operations are oltage mode, AV _{REFP} = V _{DD}		1.20	1.44	mA
		CSI/UART operatio	n			0.70	0.84	mA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(3/3)

(Notes and Remarks are listed on the next page.)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions			h-speed Mode	-	w-speed) Mode	-	v-voltage) Mode	Unit	
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n		$EV_{DD} \le 5.5 V$, $V_b \le 4.0 V$		Note 1		Note 1		Note 1	bps
				$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_{\rm b} = 50 \mbox{ pF}, \ R_{\rm b} = 1.4 \mbox{ k}\Omega, \\ V_{\rm b} = 2.7 \mbox{ V} \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
				EVdd < 4.0 V, ∕⊳≤2.7 V		Note 3		Note 3		Note 3	bps
				$\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_{b} = 50 \mbox{ pF}, \mbox{ R}_{b} = 2.7 \mbox{ k}\Omega \\ \mbox{V}_{b} = 2.3 \mbox{ V} \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
				EVdd < 3.3 V, /₅≤2.0 V		Note 6		Note 6		Note 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V_b = 1.6 V		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps
				EV _{DD} < 3.3 V, /₅ ≤ 2.0 V				Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V				0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	speed	high- main) ode		/-speed Mode	voltage	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 2/f с∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200 Note 1		1150 Note 1		1150 Note 1		ns
			$\begin{array}{l} 2.7 \ V \leq E V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300 Note 1		1150 Note 1		1150 Note 1		ns
SCKp high-level width	tкнı	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 V \le EV_{DD}$ $C_b = 20 pF, R$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120		ns
SCKp low-level width	tĸ∟1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 k Ω	tксү1/2 – 10		tксү1/2 - 50		tксү1/2 - 50		ns
Slp setup time (to SCKp↑) ^{Note 2}	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	58		479		479		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	10		10		10		ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R_{b} = 2.7 k Ω	10		10		10		ns
Delay time from SCKp \downarrow to SOp output Note 2	tkso1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$		60		60		60	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 3}	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	23		110		110		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 3}	tksi1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	10		10		10		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, $k_{\rm b}$ = 2.7 k Ω	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 3}	tkso1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$		10		10		10	ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 k Ω		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EV_{ss} = 0 V)

(Notes, Caution and Remarks are listed on the next page.)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

	Reference Voltage						
Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM				
ANIO, ANI1	-	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).				
ANI16 to ANI23	Refer to 2.6.1 (2).						
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_				

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	E _{zs}	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
			$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Full-scale error ^{Notes 1, 2}	E _{FS}	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Integral linearity	ILE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±2.5	LSB
error ^{Note 1}		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 4}}$			±5.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±1.5	LSB
error ^{Note 1}		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	Internal reference voltage			VBGR Note 5		V
		(2.4 V \leq V_{DD} \leq 5.5 V, HS (high-speed main) mode)					
	VBGR	Temperature sensor output vol (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-	5		VTMPS25 Note 5		V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} < V_{DD}, the MAX. values are as follows.
 - Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- 4. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.4 LVD circuit characteristics

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pı	ulse width	tLw		300			μs
Detection d	elay time	t LD				300	μs

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1 Note 4	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 <i>µ</i> F	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} -0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} = 0.47 μ F		3 VL1 - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4 Note 4	C1 to C5 ^{Note 1} = 0.47 μ F		4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between VL1 and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between VL3 and GND

C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

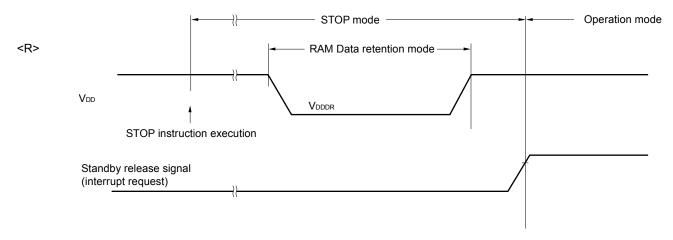
- C1 = C2 = C3 = C4 = C5 = 0.47 µF±30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- 4. VL4 must be 5.5 V or lower.

2.7.3 Capacitor split method

1/3 bias method

(TA = -40 to +85°C, 2.2 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
V∟₂ voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 VL4 - 0.1	1/3 VL4	1/3 V _{L4} + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms


<R>

2.8 RAM Data Retention Characteristics

(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclĸ	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		24	MHz
<r></r>	Number of code flash rewrites Note 1, 2, 3	Cerwr	Retained for 20 years T _A = 85° C	1,000			Times
<r></r>	Number of data flash rewrites Note 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C$		1,000,000		
<r></r>			Retained for 5 years T _A = 85°C	100,000			
<r></r>			Retained for 20 years T _A = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

Parameter	Арр	lication
	A: Consumer applications, G: Industrial applications (with TA = -40 to +85°C)	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz	2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$:	$2.4~V \leq V_{\text{DD}} \leq 5.5~V:$
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -20 to +85°C	
	±5.5%@ T _A = -40 to -20°C	
Serial array unit	UART	UART
	CSI00: fcLk/2 (supporting 16 Mbps), fcLk/4	CSI00: fclк/4
	CSI01	CSI01
	Simplified I ² C communication	Simplified I ² C communication
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(14 levels)	(8 levels)
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(14 levels)	(8 levels)

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and G: Industrial applications ($T_A = -40$ to $+85^{\circ}$ C)".

Remark The electrical characteristics of the products G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$) are different from those of the products "A: Consumer applications, and G: Industrial applications (only with $T_A = -40$ to $+85^{\circ}C$)". For details, refer to **3.1** to **3.10**.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(1/5)

Items	Symbol		Conditions				MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147					-3.0 Note 2	mA
		Total of P10 to P14, F	240 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P130, P140 to P147 (When duty = 70% ^{Note 3})		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA
				$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
		Total of P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
				$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
		(When duty = 70% ^{Not})	$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
		Total of all pins (When duty = 70% ^{Note}	Total of all pins (When duty = 70% ^{Note 3})				-60.0	mA
	Іон2	P20, P21	Per pin				-0.1	mA
			Total of all pins	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

- Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoH = -30.0 mA

Total output current of pins = $(-30.0 \times 0.7)/(80 \times 0.01) \cong -26.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(T _A = –40 to +	105°C, 2.	$4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V$							
Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit	
Low-speed on- chip oscillator operating current	_{FIL} Note 1					0.20		μA	
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped				0.08		μA	
12-bit interval timer current	I⊤ Notes 1, 2, 4					0.08		μA	
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊩ = 15 kHz				0.24		μA	
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed		$V_{REFP} = V_{DD} = 5.0 V$ de, AV _{REFP} = V _{DD} = 3.0 V		1.3 0.5	1.7 0.7	mA mA	
A/D converter reference voltage current	IADREF Note 1		1			75.0		μA	
Temperature sensor operating current	ITMPS Note 1					75.0		μA	
LVD operating current	ILVD Notes 1, 7							μA	
Self- programming operating current	IFSP Notes 1, 9					2.50	12.20	mA	
BGO operating current	BGO Notes 1, 8					2.50	12.20	mA	
LCD operating current	ILCD1 Notes 11, 12	External resistance	division method	$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA	
	ILCD2 Note 11	Internal voltage boo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.70	μA	
				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.20	μA	
	ILCD3 Note 11			$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.50	μA	
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	1.10	mA	
operating current			The A/D conversion			1.20	2.04	mA	
		CSI/UART operatio	n			0.70	1.54	mA	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

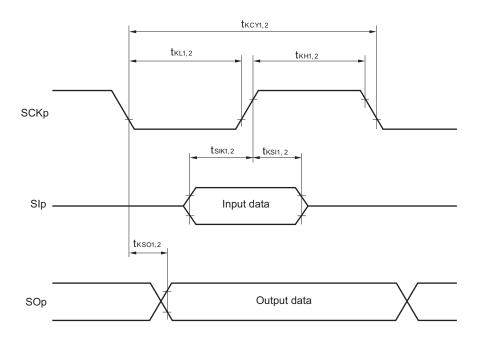
(3/3)

(Notes and Remarks are listed on the next page.)

3.4 AC Characteristics

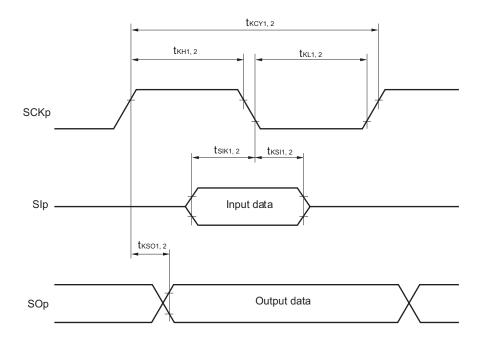
3.4.1 Basic operation

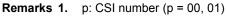
(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)


Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main		$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.04167		1	μs
instruction execution time)		system main clock (f _{MAIN}) operation	main) mode	$2.4 V \le V_{DD} \le 2.7 V$	0.0625		1	μs
		$\begin{array}{llllllllllllllllllllllllllllllllllll$		28.5	30.5	31.3	μs	
		In the self		$2.7 \text{V} \le V_{\text{DD}} \le 5.5 \text{V}$	0.04167		1	μs
		programming mode	main) mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
External system clock frequency	fex	$2.7 \text{ V} \leq V_{\text{DD}} \leq$	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		1.0		20.0	MHz
		$2.4 V \le V_{DD}$	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$				16.0	MHz
	fexs				32		35	kHz
External system clock input high-	texh, texl $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		24			ns		
level width, low-level width		$2.4 V \le V_{DD}$	< 2.7 V		30			ns
	texнs, texls				13.7			μs
TI00 to TI07 input high-level width, low-level width	tт⊪, tт⊫				1/fмск+10			ns
TO00 to TO07 output frequency	fто	HS (high-spe	ed 4.0 V	$\leq EV_{DD} \leq 5.5 V$			16	MHz
		main) mode	2.7 V	≤ EV _{DD} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	ed 4.0 V	$\leq EV_{DD} \leq 5.5 V$			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
low-level width	t intl	INTP1 to INT	P7 2.4 V	$\leq EV_{DD} \leq 5.5 V$	1			μS
Key interrupt input low-level width	t kr	KR0 to KR3	2.4 V	$\leq EV_{DD} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	t RSL				10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n).


n: Channel number (n = 0 to 7))



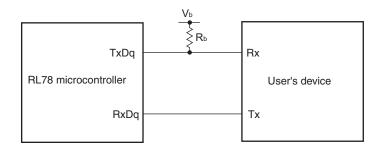
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

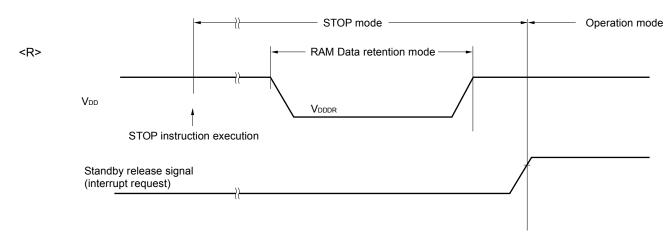

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)



<R> 3.8 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}$)
---	---

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclĸ	$1.8~V \leq V_{DD} \leq 5.5~V$	1		24	MHz
<r></r>	Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	1,000			Times
<r></r>	Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C^{Note 4}$		1,000,000		
<r></r>			Retained for 5 years $T_A = 85^{\circ}C^{Note 4}$	100,000			
<r></r>			Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	10,000			

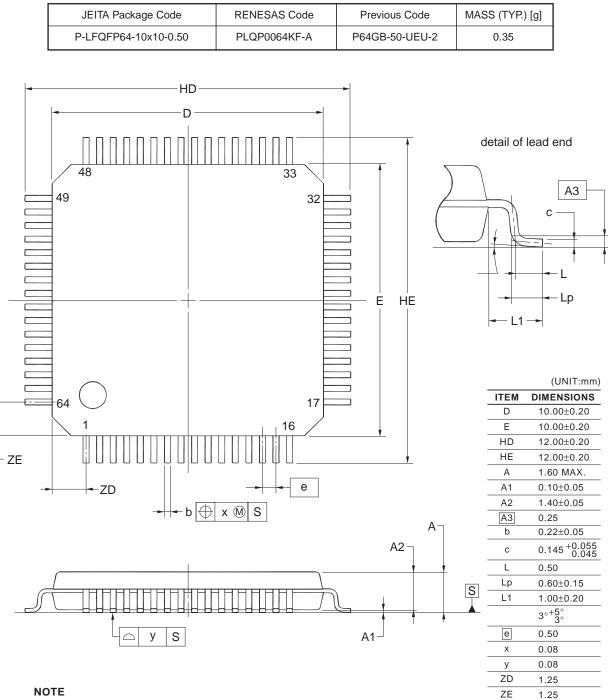
Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

4. This temperature is the average value at which data are retained.

3.10 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

<R>

R5F10RLAAFB, R5F10RLCAFB R5F10RLAGFB, R5F10RLCGFB

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

