

Welcome to E-XFL.COM

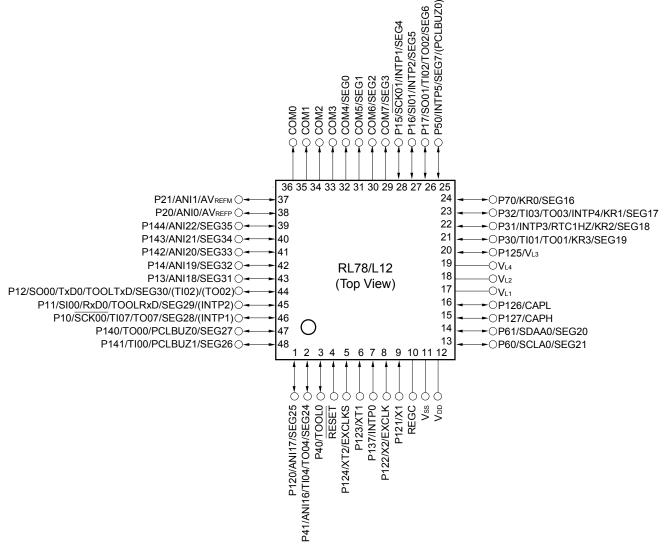
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

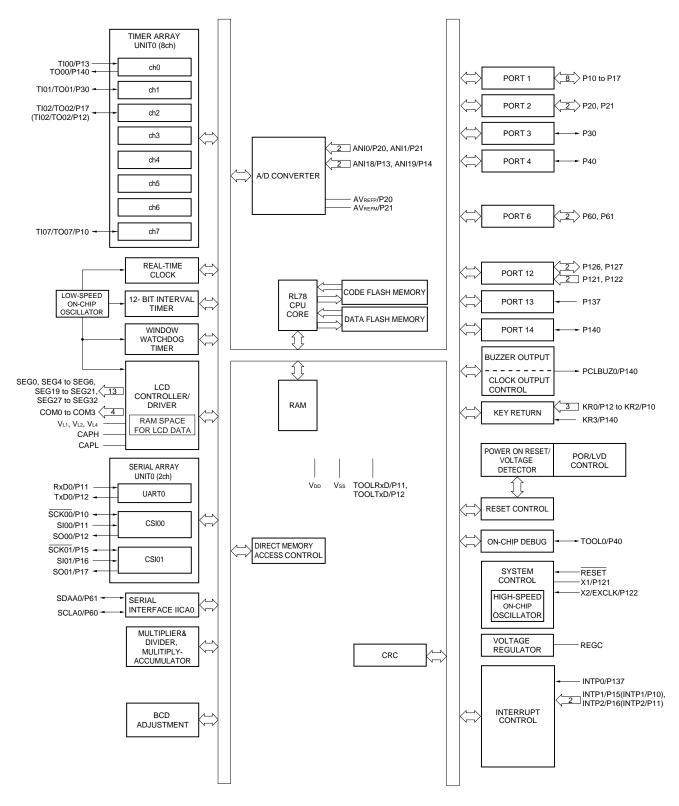
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 4x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rb8gfp-50


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.3 48-pin products

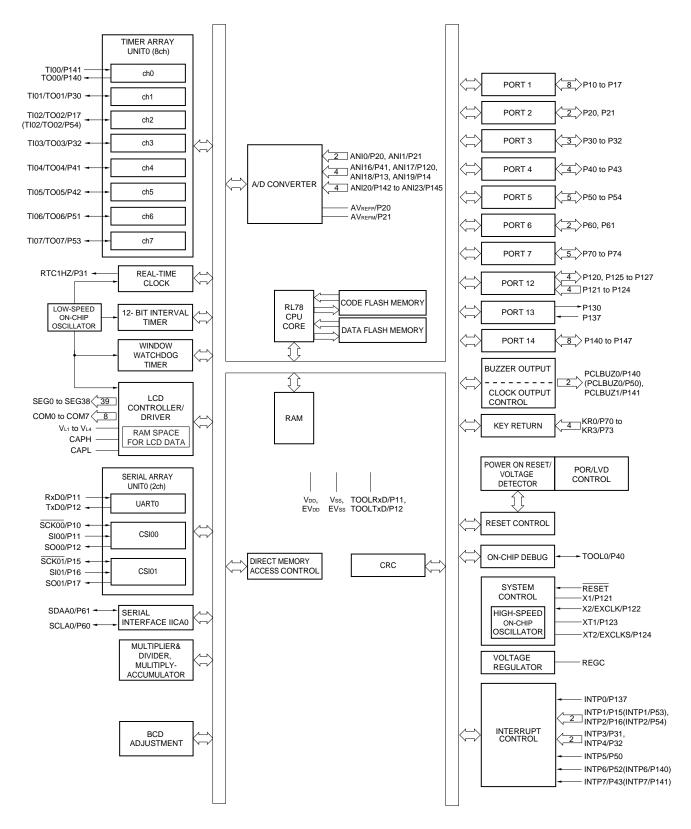
• 48-pin plastic LQFP (fine pitch) (7 × 7)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.5 Block Diagram

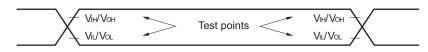

1.5.1 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

1.5.5 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	f⊪ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.28	mA
Current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.44	1.28	mA
			mode	f⊪ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	f⊪ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		V _{DD} = 2.0 V		260	530	μA
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			voltage main) mode Note 7		V _{DD} = 2.0 V		420	640	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
			V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
			V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA	
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
			speed main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		145	380	μA
			moue	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.57	μA
			clock operation	T _A = -40°C	Resonator connection		0.50	0.76	μA
			operation	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.37	0.57	μA
				T _A = +25°C	Resonator connection		0.56	0.76	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.17	μA
				T _A = +50°C	Resonator connection		0.65	1.36	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.57	1.97	μA
				T _A = +70°C	Resonator connection		0.76	2.16	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.85	3.37	μA
				T _A = +85°C	Resonator connection		1.04	3.56	μA
	DD3 Note 6	STOP	$T_A = -40^{\circ}C$				0.17	0.50	μA
		mode Note 8	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.32	1.10	μA
			T _A = +70°C				0.43	1.90	μA
			T _A = +85°C				0.71	3.30	μA


(TA = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

(2/3)

(Notes and $\ensuremath{\textit{Remarks}}$ are listed on the next page.)

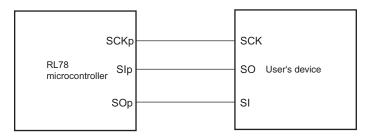
2.5 Peripheral Functions Characteristics

AC Timing Test Points

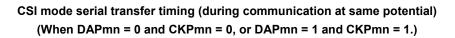
2.5.1 Serial array unit

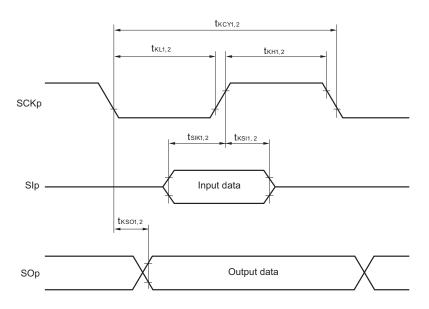
$(1_{\rm A} = -40 \text{ to } +85^{\circ}\text{C},$	$1.6 V \leq E$	$VDD = VDD \leq 5.5 V, Vss = EVs$	ss = 0 V)					
Parameter	Symbol	Conditions		h-speed Mode	`	/-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}$		f мск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} ^{Note 2}		4.0		1.3		0.6	Mbps
		$1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}$				f мск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2				1.3		0.6	Mbps
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}$						fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ ^{Note 2}						0.6	Mbps

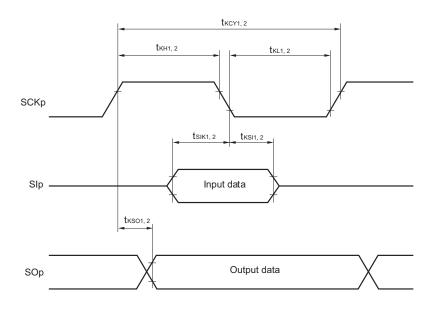
(1) During communication at same potential (UART mode) ($T_A = -40$ to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

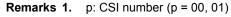

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


24 MHz (2.7 V \leq VDD \leq 5.5 V)
16 MHz (2.4 V \leq V _{DD} \leq 5.5 V)
8 MHz (1.8 V \leq V _{DD} \leq 5.5 V)
4 MHz (1.6 V \leq VDD \leq 5.5 V)


Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).




CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol		Conditions	speed	high- main) ode	`	/-speed Mode	LV (low- voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/f с∟к	$\begin{array}{l} 4.0 \; V \leq E V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq E V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		1150		ns
			$\begin{split} 1.8 \ V &\leq E V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$			1150		1150		ns
SCKp high-level width		$4.0 V \le EV_{DD} \le C_b = 30 \text{ pF}, R_b = 100 \text{ F}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 – 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$2.7 V \le EV_{DD} < 4$ $C_b = 30 \text{ pF}, R_b =$	4.0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 30 \text{ pF}, R_{\text{b}} = 30 \text{ pF}$	3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V, = 5.5 kΩ	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
			$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\mbox{Note}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = \end{array}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 V \le EV_{DD} < C_b = 30 \text{ pF}, R_b = 100 \text{ F}$	4.0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 – 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 V \le EV_{DD} < 3$ $C_b = 30 \text{ pF}, R_b =$	3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V, = 5.5 kΩ	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 V \le EV_{DD} < 30 C_b = 30 pF, R_b = 30 PF$	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} , = 5.5 kΩ			tксү1/2 - 50		tксү1/2 - 50		ns

Note Use it with $EV_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{Ss}} = 0 \text{ V})$

Parameter	Symbol	Conditions	speed	high- I main) ode	speed	(low- main) ode	voltage	(low- e main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp hold time tksi1 (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; \text{V}, 2.7 \; \text{V} \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ C_{\text{b}} = 30 \; \text{pF}, \; R_{\text{b}} = 1.4 \; \text{k}\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; \text{V}, 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ C_{\text{b}} = 30 \; \text{pF}, \; R_{\text{b}} = 1.4 \; \text{k}\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
	$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns	
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$				25		25	ns

- **Notes** 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** Use it with $EV_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

2.6.2 Temperature sensor/internal reference voltage characteristics

		···) / · · ·) / · · · · · · · · · · ·		,,		
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25 $^{\circ}$ C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (HS (high-speed main) mode)

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +85°C, 1.8 V \leq V_DD \leq 5.5 V, Vss = 0 V)

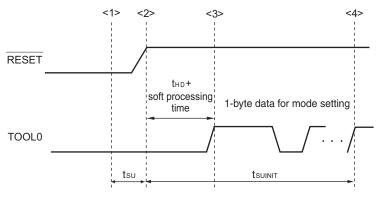
Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	= 0.47 <i>μ</i> F	2 V∟1 – 0.1	2 VL1	2 V _{L1}	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	= 0.47 <i>μ</i> F	3 V∟1 – 0.15	3 V _{L1}	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	= 0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between V_{L2} and GND


C4: A capacitor connected between V_{L4} and GND

 $C1 = C2 = C3 = C4 = 0.47 \ \mu\text{F} \pm 30\%$

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- **3.** This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after a reset is released during this period.
 - $t_{\text{SU:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
 - For derating with T_A = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, Vон1 high	Voh1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD} – 0.7			V
	P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	EV _{DD} – 0.6			V	
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -1.5 \text{ mA}$	EV _{DD} – 0.5			V	
	Voh2	P20, P21	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	V _{DD} - 0.5			V
Output voltage, Vol1 low	Vol1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.7	V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	>
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	V
	Vol2	P20, P21	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL2}} = 400 \ \mu \text{ A}$			0.4	V
Volj	Vol3	P60, P61	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 15.0 \text{ mA}$			2.0	V
		$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \label{eq:DD}$			0.4	V	
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 3.0 \ \text{mA} \end{array} \end{array}$			0.4	V	
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array} \label{eq:DD}$			0.4	V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(T _A = –40 to +	105°C, 2.	$2.4 \text{ V} \leq \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$						(3/3)
Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	_{FIL} Note 1					0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped				0.08		μA
12-bit interval timer current	I⊤ Notes 1, 2, 4					0.08		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊩ = 15 kHz				0.24		μA
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, A		1.3 0.5	1.7 0.7	mA mA	
A/D converter reference voltage current	IADREF Note 1		L					μA
Temperature sensor operating current	ITMPS Note 1					75.0		μA
LVD operating current	ILVD Notes 1, 7					0.08		μA
Self- programming operating current	IFSP Notes 1, 9					2.50	12.20	mA
BGO operating current	BGO Notes 1, 8					2.50	12.20	mA
LCD operating current	ILCD1 Notes 11, 12	External resistance division method		$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	ILCD2 Note 11	Internal voltage boo	osting method $V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.1 V (VLCD = 1)$			1.12	3.70	μA
				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.20	μA
	ILCD3 Note 11	Capacitor split method $V_{DD} = EV_{DD} = V_{L4} = 3.0 V$		$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.50	μA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 10			0.50	1.10	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD}$ = 3.0 V			1.20	2.04	mA
		CSI/UART operation				0.70	1.54	mA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(3/3)

(Notes and Remarks are listed on the next page.)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

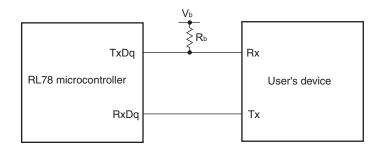
Parameter S	Symbol	Conditions			HS (high-speed main) Mode		Unit
					MIN.	MAX.	
Transfer rate		Reception	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$			fмск/12 ^{Note 1}	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$			fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 2}		2.0	Mbps
			$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$			f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 2}		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode:24 MHz (2.7 V \leq VDD \leq 5.5 V)16 MHz (2.4 V \leq VDD \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +105°C, 2.4 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Parameter Sym		Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1} = 0.47 μ F	VLCD = 04H	0.90	1.00	1.08	V
			VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} = 0.47 μ F		2 V∟1 –0.1	2 VL1	2 V _{L1}	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 μ F		3 V∟1 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

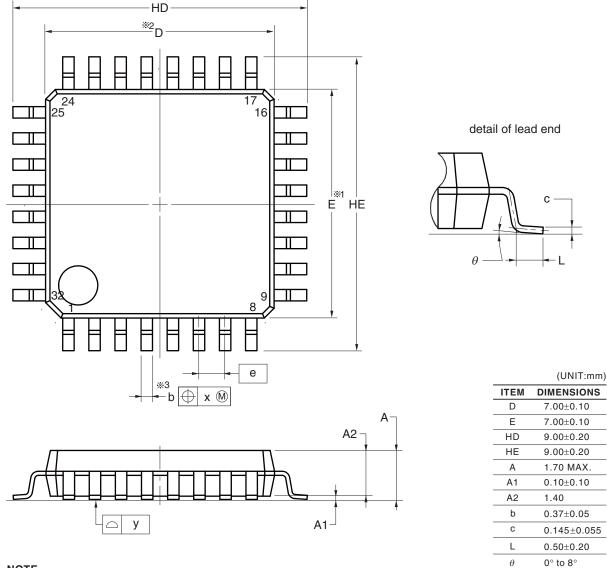
C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\mbox{\tiny L4}}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F \pm 30%

2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).


3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

4. PACKAGE DRAWINGS

4.1 32-pin Products

R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

Page 125 of 131

е

х

у

0.80

0.20

0.10

