

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 4x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rbaafp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Identification

ANI0, ANI1,		P130, P137:	Port 13
ANI16 to ANI23:	Analog Input	P140 to P147:	Port 14
AVREFM:	Analog Reference	PCLBUZ0, PCLBUZ1:	Programmable Clock
	Voltage Minus		Output/Buzzer Output
AVREFP:	Analog Reference	REGC:	Regulator Capacitance
	Voltage Plus	RESET:	Reset
CAPH, CAPL:	Capacitor for LCD	RTC1HZ:	Real-time Clock Correction Clock
COM0 to COM7,			(1 Hz) Output
EVDD:	Power Supply for Port	RxD0:	Receive Data
EVss:	Ground for Port	SCK00, SCK01:	Serial Clock Input/Output
EXCLK:	External Clock Input	SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SDAA0:	Serial Data Input/Output
EXCLKS:	External Clock Input	SEG0 to SEG38:	LCD Segment Output
	(Subsystem Clock)	SI00, SI01:	Serial Data Input
INTP0 to INTP7:	Interrupt Request From	SO00, SO01:	Serial Data Output
	Peripheral	TI00 to TI07:	Timer Input
KR0 to KR3:	Key Return	TO00 to TO07:	Timer Output
P10 to P17:	Port 1	TOOL0:	Data Input/Output for Tool
P20, P21:	Port 2	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P30 to P32:	Port 3	TxD0:	Transmit Data
P40 to P43:	Port 4	VDD:	Power Supply
P50 to P54:	Port 5	VL1 to VL4:	LCD Power Supply
P60, P61:	Port 6	Vss:	Ground
P70 to P74:	Port 7	X1, X2:	Crystal Oscillator (Main System Clock)
P120 to P127:	Port 12	XT1, XT2:	Crystal Oscillator (Subsystem Clock)

2. ELECTRICAL SPECIFICATIONS (A, G: $T_A = -40$ to $+85^{\circ}$ C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)" and "G: Industrial applications (with $T_A = -40$ to $+85^{\circ}$ C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD, or EVSS pin, replace EVDD with VDD, or replace EVSS with VSS.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/5)

	· · , ·		,	,		-		(110
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	•	P10 to P17, P30 to P32, P40 t P120, P125 to P127, P130, I				-10.0 Note 2	mA
		Total of P10) to P14, P40 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-40.0	mA
		P130, P140 to P147 (When duty = 70% ^{Note 3})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA	
			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA	
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-2.0	mA
		Total of P15	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-60.0	mA
		· · · · · · · · · · · · · · · · · · ·	P70 to P74, P125 to P127 = 70% ^{Note 3})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
		(when duty	= 70%)	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-4.0	mA
			Total of all pins (When duty = 70% ^{Note 3})				-100.0	mA
	Іон2	P20, P21	Per pin				-0.1	mA
			Total of all pins	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

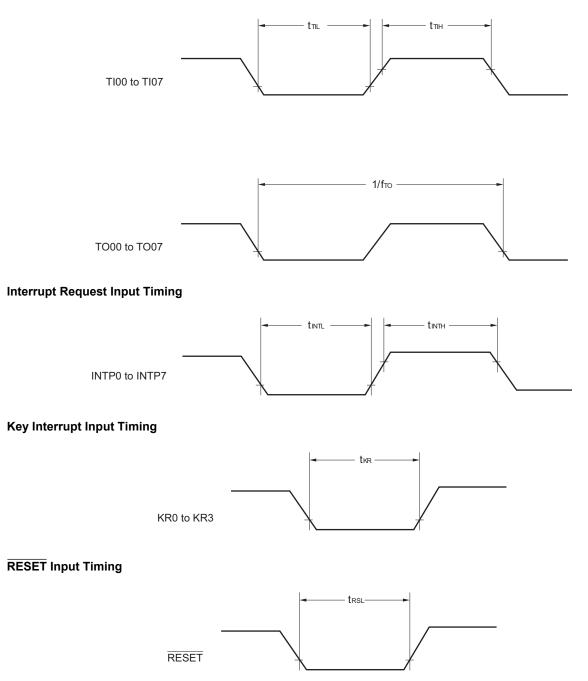
- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and $I_{OH} = -40.0$ mA

Total output current of pins = $(-40.0 \times 0.7)/(80 \times 0.01) \approx -35.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10 \ mA \end{array}$	EVDD-1.5			V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array}$	EVDD-0.7			V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ mA \end{array}$	EVDD-0.6			V
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EVDD-0.5			V
			$\label{eq:logit} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ I_{\mbox{OH1}} = -1.0 \mbox{ mA} \end{array}$	EVDD-0.5			V
	V _{OH2}	P20, P21	1.6 V \leq V _{DD} \leq 5.5 V, I _{OH2} = -100 μ A	VDD-0.5			V
Output voltage, low	P5	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			1.3	V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.7	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.6	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 1.5 \text{ mA}$			0.4	V
			$eq:local_$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ Iol1 = 0.3 mA			0.4	V
	Vol2	P20, P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol2 = 400 μ A			0.4	V
	Vol3	P60, P61	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$		2.0	V	
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ lol3 = 1.0 mA			0.4	V

Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

TI/TO Timing

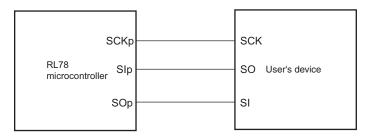
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	(Conditions	• •	h-speed Mode		v-speed Mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$			500 Note 1		1000 Note 1		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					1000 Note 1		ns
SCKp high-/low-level width	tĸH1, tĸL1	4.0 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 - 50		tксү1/2 - 50		ns
		2.4 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 - 50		ns
		1.8 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$			tксү1/2 – 50		tксү1/2 - 50		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					tксү1/2 - 100		ns
SIp setup time (to SCKp↑) Note 2	tsik1	2.7 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	44		110		110		ns
Note 2		2.4 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ EV	$I_{DD} \leq 5.5 \text{ V}$			110		110		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					220		ns
SIp hold time (from SCKp [↑])	t KSI1	$2.4 \text{ V} \le \text{EV}$	$I_{\text{DD}} \leq 5.5 \text{ V}$	19		19		19		ns
NOTE 3		1.8 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$			19		19		
		1.6 V ≤ EV	$V_{DD} \leq 5.5 \text{ V}$					19		
Delay time from SCKp↓ to	t KSO1		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		25		25		25	ns
SOp output Note 4		Note 5	$1.8~V \le EV_{\text{DD}} \le 5.5~V$				25		25	
			$1.6~V \le EV_{\text{DD}} \le 5.5~V$						25	

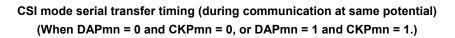
Notes 1. For CSI00, set a cycle of 2/fмск or longer. For CSI01, set a cycle of 4/fмск or longer.

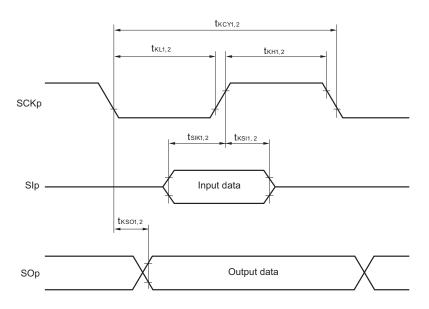
- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

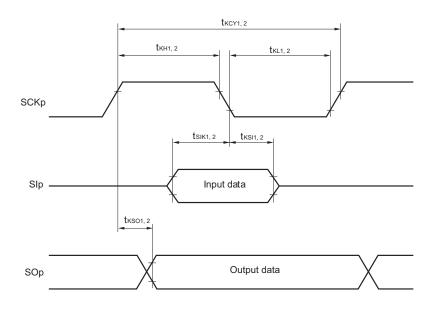

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01))

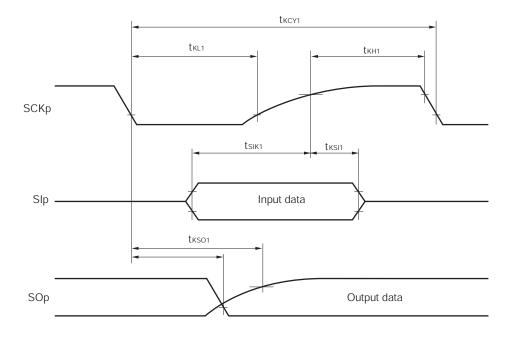

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) ($T_A = -40$ to +85°C, 1.6 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

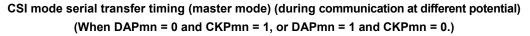

Parameter	Symbol	Conditions		HS (high main)	•	LS (low main)	•		-voltage Mode	e Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note}	t ксү2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск						ns
5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/ f мск		ns
		$2.7~V \leq EV_{DD} < 4.0~V$	16 MHz < fмск	8/fмск						ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4~V \leq EV_{DD} \leq 5.5~V$		6/fмск and 500		6/fмск		6/fмск		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				6/ f мск		6/ f мск		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						6/fмск		ns
SCKp high-/low- level width	tкн2, tкL2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү2/2 - 7		tксү2/2 -7		tксү2/2 - 7		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$		tксү2/2 – 8		tксү2/2 — 8		tксү2/2 - 8		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$		tксү2/2 – 18		tксү2/2 – 18		t _{ксү2} /2 – 18		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				tксү2/2 – 18		tксү2/2 – 18		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						tксү2/2 - 66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				1/fмск + 30		1/fмск + 30		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						1/fмск + 40		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				1/fмск + 31		1/fмск + 31		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						1/fмск + 250		ns

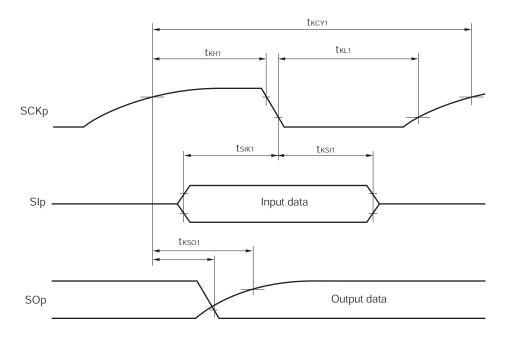
(Notes, Caution, and Remarks are listed on the next page.)



CSI mode connection diagram (during communication at same potential)


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

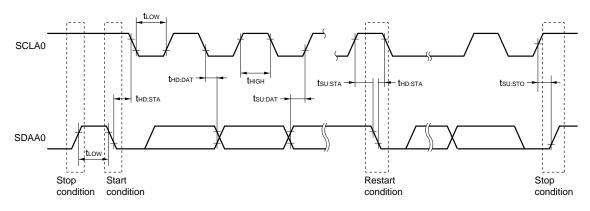



2. m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(3) I^2C fast mode plus

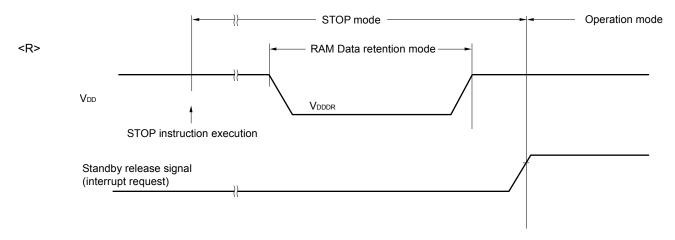

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Con	Conditions H			LS (low main)	/-speed Mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: $f_{CLK} \ge 10 \text{ MHz}$	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	1000	_	-	_	_	kHz
Setup time of restart condition	tsu:sta	$2.7~V \le EV_{\text{DD}} \le 5.5$	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$			—		_	_	μs
Hold time ^{Note 1}	thd:sta	$2.7~V \leq EV_{\text{DD}} \leq 5.5$	0.26		_	_	_	_	μs	
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \le EV_{\text{DD}} \le 5.5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$					_		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	$.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$			_	-	_	-	μs
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	50		_	_	_	_	μs
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$			_	_	_	_	μs
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.5$	$.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$				_		_	μs
Bus-free time	tbuf	$2.7 \text{ V} \le EV_{\text{DD}} \le 5.5$	V	0.5		_	_	_	_	μs

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing


<R>

2.8 RAM Data Retention Characteristics

(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclk	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		24	MHz
<r></r>	Number of code flash rewrites Note 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C$	1,000			Times
<r></r>	Number of data flash rewrites Note 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C$		1,000,000		
<r></r>			Retained for 5 years $T_A = 85^{\circ}C$	100,000			
<r></r>			Retained for 20 years $T_A = 85^{\circ}C$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

- The retaining years are until next rewrite after the rewrite.
- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

(1/3)

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit	
Supply voltage	VDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V	
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V	
	EVss		-0.5 to +0.3	V	
REGC pin input voltage	VIREGC	REGC -0.3 to +2.8 and -0.3 to V _{DD} + 0.3 ^{Note 1}			
Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V	
	V ₁₂	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V	
	V _{I3}	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V	
Output voltage	Vo1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_DD + 0.3 and -0.3 to V_DD + 0.3 $^{\text{Note 2}}$	V	
	V ₀₂	P20, P21	-0.3 to V _{DD} + 0.3 ^{Note 2}	V	
Analog input voltage	VAI1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V	
	VAI2	ANIO, ANI1	$-0.3 \text{ to } V_{DD}$ + 0.3 and $-0.3 \text{ to } AV_{REF}(+)$ + 0.3 ^{Notes 2, 3}	V	

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **3.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1		+1	%
clock frequency accuracy		–40 to –20°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to 3.4 AC Characteristics for instruction execution time.

- Notes 1. Current flowing to VDD.
 - 2. When high speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 8. Current flowing only during data flash rewrite.
 - 9. Current flowing only during self programming.
 - **10.** For shift time to the SNOOZE mode.
 - 11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.

The TYP. value and MAX. value are following conditions.

- When fsuB is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows through the external divider resistor when the external resistance division method is used.
- **Remarks 1.** fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fcLK: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is T_A = 25°C

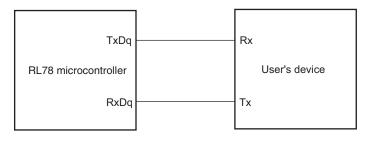
3.5 Peripheral Functions Characteristics

AC Timing Test Points

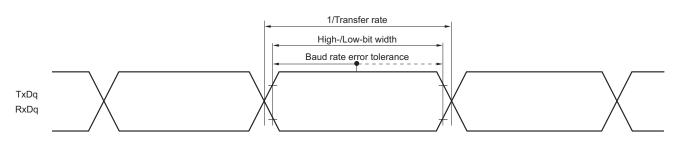
3.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to +105°C, 2.4 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

Parameter	Symbol Conditions		HS (high-spee	Unit		
				MIN.	MAX.	
Transfer rate Note 1					fмск/12	bps
			tical value of the um transfer rate _{CLK} ^{Note 2}		2.0	Mbps


Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$) 16 MHz ($2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(2/2)

(T₄ = –40 to +105°C, 2.4 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, Vss = EVss = 0 V)

Parameter Symb			Conditions		HS (high-spe	Unit	
					MIN.	MAX.	
Transfer rate		Transmission	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$			Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 2	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$			Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 4	Mbps
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$			Note 5	bps
		1.6 V ≤	$1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	Theoretical value of the maximum transfer rate		0.43 Note 6	Mbps
				C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V			

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

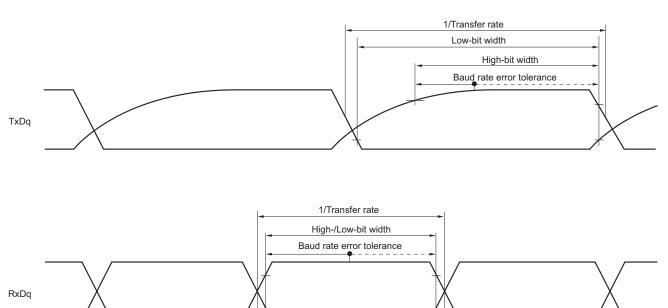
Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

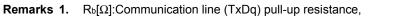
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

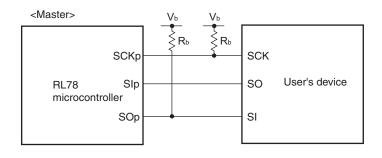

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

UART mode bit width (during communication at different potential) (reference)


 $Cb[F]: \ Communication \ line \ (TxDq) \ load \ capacitance, \ Vb[V]: \ Communication \ line \ voltage$

- **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 1)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - **2.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- Remarks 1. Rb[Ω]:Communication line (SCKp, SOp) pull-up resistance,

 Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - **3.** fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Revision History

RL78/L12 Datasheet

		Description				
Rev.	Date	Page	Summary			
0.01	Feb 20, 2012	-	First Edition issued			
0.02	Sep 26, 2012	7, 8	Modification of caution 2 in 1.3.5 64-pin products			
		15	Modification of I/O port in 1.6 Outline of Functions			
		-	Modification of 2. ELECTRICAL SPECIFICATIONS (TARGET)			
		-	Update of package drawings in 3. PACKAGE DRAWINGS			
1.00	Jan 31, 2013	11 to 15	Modification of 1.5 Block Diagram			
		16	Modification of Note 2 in 1.6 Outline of Functions			
		17	Modification of 1.6 Outline of Functions			
		-	Deletion of target in 2. ELECTRICAL SPECIFICATIONS			
		18	Addition of caution 2 to 2. ELECTRICAL SPECIFICATIONS			
		19	Addition of description, note 3, and remark 2 to 2.1 Absolute Maximum Ratings			
		20	Modification of description and addition of note to 2.1 Absolute Maximum Ratings			
		22, 23	Modification of 2.2 Oscillator Characteristics			
		30	Modification of notes 1 to 4 in 2.3.2 Supply current characteristics			
		32	Modification of notes 1, 3 to 6, 8 in 2.3.2 Supply current characteristics			
		34	Modification of notes 7, 9, 11, and addition of notes 8, 12 to 2.3.2 Supply current			
			characteristics			
		36	Addition of description to 2.4 AC Characteristics			
		38, 40 to	Modification of 2.5.1 Serial array unit			
		42, 44 to				
		46, 48 to				
		52, 54, 55				
	57, 58	Modification of 2.5.2 Serial interface IICA				
		62	Modification of 2.6.2 Temperature sensor/internal reference voltage characteristics			
		64	Addition of note and caution in 2.6.5 Supply voltage rise time			
		69	Modification of 2.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics			
		69	Modification of conditions in 2.9 Timing Specs for Switching Flash Memory Programming Modes			
		70	Modification of 2.10 Timing Specifications for Switching Flash Memory			
			Programming Modes			
2.00	Jan 10, 2014	1	Modification of 1.1 Features			
		3	Modification of Figure 1-1			
		4	Modification of part number, note, and caution			
		5 to 10	Deletion of COMEXP pin in 1.3.1 to 1.3.5.			
		11	Modification of description in 1.4 Pin Identification			
		12 to 16	Deletion of COMEXP pin in 1.5.1 to 1.5.5			
		17	Modification of table and note 2 in 1.6 Outline of Functions			
		20	Modification of description in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/3)			
	21	Modification of description and note 2 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (2/3)				
		23	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics			
		23	Modification of table in 2.2.2 On-chip oscillator characteristics			
		24	Modification of table, notes 2 and 3 in 2.3.1 Pin characteristics (1/5)			
		25	Modification of notes 1 and 3 in 2.3.1 Pin characteristics (2/5)			
		30	Modification of notes 1 and 4 in 2.3.2 Supply current characteristics (1/3)			
		31, 32	Modification of table, notes 1, 5, and 6 in 2.3.2 Supply current characteristics (2/3)			
		33, 34	Modification of table, notes 1, 3, 4, and 5 to 10 in 2.3.2 Supply current characteristics (3/3)			

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-sease Lectronics nong round Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +55-631-30200, Fax: +65-6213-0300 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141