

Welcome to E-XFL.COM

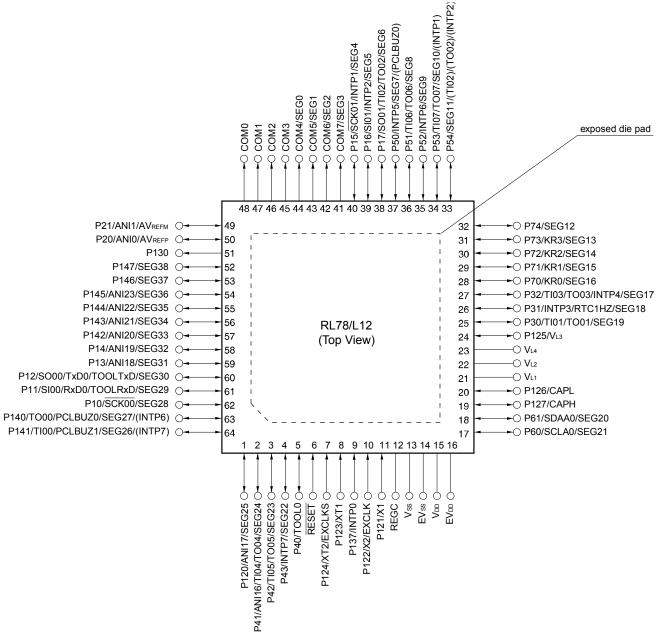
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 4x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rbcafp-50


Email: info@E-XFL.COM

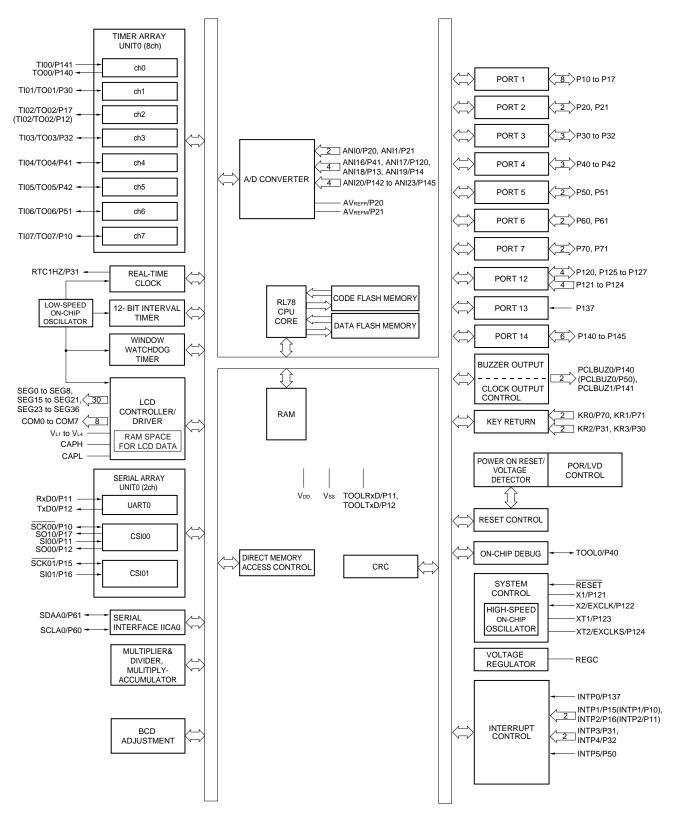
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.5 64-pin products

• 64-pin plastic WQFN (8 × 8)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.


- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

1.5.4 52-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

RENESAS

(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10 \ mA \end{array}$	EVDD-1.5			V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$	EVDD-0.7			V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$	EVDD-0.6			V
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EVDD-0.5			V	
			$\label{eq:logit} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ I_{\mbox{OH1}} = -1.0 \mbox{ mA} \end{array}$	EVDD-0.5			V
	V _{OH2}	P20, P21	1.6 V \leq V _{DD} \leq 5.5 V, I _{OH2} = -100 μ A	VDD-0.5			V
Output voltage, V _{OL1} low	V _{OL1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			1.3	V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.7	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.6	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 1.5 \text{ mA}$			0.4	V
			$\label{eq:local_loss} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ Iol1 = 0.3 mA			0.4	V
	Vol2	P20, P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol2 = 400 μ A			0.4	V
	Vol3	P60, P61	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ lol3 = 1.0 mA			0.4	V

Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(TA = -40 to $+85^{\circ}$ C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

(1/3)

Parameter	Symbol			Conditions		-	MIN.	TYP.	MAX.	Unit
Supply	DD1	Operating	HS (high-	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current		mode	speed main)		operation	V _{DD} = 3.0 V		1.5		mA
Note 1			mode ^{Note 5}		Normal	V _{DD} = 5.0 V		3.3	5.0	mA
					operation	V _{DD} = 3.0 V		3.3	5.0	mA
				f⊪ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.5	3.7	mA
					operation	V _{DD} = 3.0 V		2.5	3.7	mA
			LS (low-speed	file = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			main) mode ^{Note}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
			voltage main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
			mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.0	4.6	mA
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.0	4.6	mA
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.8	2.6	mA	
			V _{DD} = 5.0 V	operation	Resonator connection		1.8	2.6	mA	
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.8	2.6	mA	
				V _{DD} = 3.0 V	operation	Resonator connection		1.8	2.6	mA
			LS (low-speed main) mode ^{Note} 5	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.5	4.9	μA
			clock operation	⁴ T _A = −40°C	operation	Resonator connection		3.6	5.0	μA
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.6	4.9	μA
				⁴ T _A = +25°C	operation	Resonator connection		3.7	5.0	μA
				fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		3.7	5.5	μA
				₄ T _A = +50°C	operation	Resonator connection		3.8	5.6	μA
		1	f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.8	6.3	μA	
			₄ T _A = +70°C	operation	Resonator connection		3.9	6.4	μA	
			fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		4.1	7.7	μA	
				4	operation	Resonator connection		4.2	7.8	μA
				T _A = +85°C						

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	(Conditions	• •	h-speed Mode		v-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$			500 Note 1		1000 Note 1		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$						1000 Note 1		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 - 50		tксү1/2 - 50		ns
		2.4 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 - 50		ns
		1.8 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$			tксү1/2 – 50		tксү1/2 - 50		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					tксү1/2 - 100		ns
SIp setup time (to SCKp↑) Note 2	tsik1	2.7 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	44		110		110		ns
Note 2		2.4 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ EV	$I_{DD} \leq 5.5 \text{ V}$			110		110		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					220		ns
SIp hold time (from SCKp↑)	t KSI1	$2.4 \text{ V} \le \text{EV}$	$I_{\text{DD}} \leq 5.5 \text{ V}$	19		19		19		ns
Note 3	1	$1.8~V \leq EV_{\text{DD}} \leq 5.5~V$				19		19		
		1.6 V ≤ EV	$V_{DD} \leq 5.5 \text{ V}$					19		
Delay time from SCKp↓ to	t KSO1		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		25		25		25	ns
SOp output Note 4		Note 5	$1.8~V \le EV_{\text{DD}} \le 5.5~V$				25		25	
			$1.6~V \le EV_{\text{DD}} \le 5.5~V$						25	

Notes 1. For CSI00, set a cycle of 2/fмск or longer. For CSI01, set a cycle of 4/fмск or longer.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) ($T_A = -40$ to +85°C, 1.6 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

Parameter	Symbol	Cond	litions	HS (high main)	•	LS (low main)	•		-voltage Mode	e Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note}	t ксү2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск						ns
5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/ f мск		ns
		$2.7~V \leq EV_{DD} < 4.0~V$	16 MHz < fмск	8/fмск						ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4~V \leq EV_{DD} \leq 5.5~V$		6/fмск and 500		6/fмск		6/fмск		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				6/ f мск		6/ f мск		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						6/fмск		ns
SCKp high-/low- tkH2, level width tkL2		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү2/2 - 7		tксү2/2 -7		tксү2/2 - 7		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$		tксү2/2 – 8		tксү2/2 — 8		tксү2/2 - 8		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$		tксү2/2 – 18		tксү2/2 – 18		t _{ксү2} /2 – 18		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				tксү2/2 – 18		tксү2/2 – 18		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						tксү2/2 - 66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				1/fмск + 30		1/fмск + 30		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						1/fмск + 40		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				1/fмск + 31		1/fмск + 31		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						1/fмск + 250		ns

(Notes, Caution, and Remarks are listed on the next page.)

3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \text{ [%]}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $EV_{DD} \ge V_b$.
- **6.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

Parameter	Symbol	Con	ditions	speed mo	high- main) ode	main)	/-speed mode	voltage mo	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0 V \le EV_{DD} \le 5.5 V$,	20 MHz < fмск ≤ 24 MHz	12/ f мск						ns
		$2.7 V \le V_b \le 4.0 V$	8 MHz < fмск ≤ 20 MHz	10/ f мск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск				ns
			fмск≤4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	16/ f мск						ns
		$2.3 V \le V_b \le 2.7 V$	$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	14/ f мск						ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	12/fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск				ns
			fмск ≤4 MHz	6/ f мск		10/fмск		10/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	36/fмск						ns
		$1.6 V {\le} V_b {\le} 2.0 V$	16 MHz < fмск ≤ 20 MHz	32/fмск						ns
			8 MHz < fмск ≤ 16 MHz	26/fмск						ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск				ns
			fмcк≤4 MHz	10/fмск		10/fмск		10/f мск		ns
		$1.8 V \le EV_{DD} < 3.3 V$,	4 MHz < fмск ≤ 8 MHz			16/f мск				ns
		$1.6~V\!\le\!V_b\!\le\!2.0~V^{Note2}$	fмск≤4 MHz			10/fмск		10/fмск		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \ V \le EV_{\text{DD}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V$		tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm r}, 1.6 \ V \le V_{\rm b} \le 2.0 \ V_{\rm b}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
		$1.8 V \le EV_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{No}$				tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$V, 2.7 V \le V_b \le 4.0 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm r}, 1.6 \ V \le V_{\rm b} \le 2.0 \ V_{\rm b}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} < 3.3 \ V \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{No}} \end{array}$				1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$V, 2.7 V \le V_b \le 4.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V, 1.6 V \le V_b \le 2.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{No}} \end{array}$				1/fмск + 31		1/fмск + 31		ns

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(Notes, Caution and Remarks are listed on the next page.)

3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
 - For derating with T_A = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

Parameter	Арр	lication
	A: Consumer applications, G: Industrial applications (with TA = -40 to +85°C)	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz	2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$:	$2.4~V \leq V_{\text{DD}} \leq 5.5~V:$
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -20 to +85°C	
	±5.5%@ T _A = -40 to -20°C	
Serial array unit	UART	UART
	CSI00: fcLk/2 (supporting 16 Mbps), fcLk/4	CSI00: fclк/4
	CSI01	CSI01
	Simplified I ² C communication	Simplified I ² C communication
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(14 levels)	(8 levels)
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(14 levels)	(8 levels)

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and G: Industrial applications ($T_A = -40$ to $+85^{\circ}$ C)".

Remark The electrical characteristics of the products G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$) are different from those of the products "A: Consumer applications, and G: Industrial applications (only with $T_A = -40$ to $+85^{\circ}C$)". For details, refer to **3.1** to **3.10**.

Absolute Maximum Ratings (T_A = 25°C)

(3/3)

		-)			(••••)
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	lol1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			–65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	Vi = EV _{DD}				1	μA
	ILIH2	P20, P21, P137, RESET	VI = VDD				1	μA
Ішнз		P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilili	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVss				-1	μA
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up	Ruı	VI = EVss	SEGxx po	SEGxx port				
resistance			2.4 V ≤ I	$2.4~V \le EV_{DD} = V_{DD} \le 5.5~V$		20	100	kΩ
	Ru2			Ports other than above (Except for P60, P61, and P130)		20	100	kΩ

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

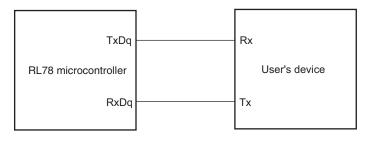
3.5 Peripheral Functions Characteristics

AC Timing Test Points

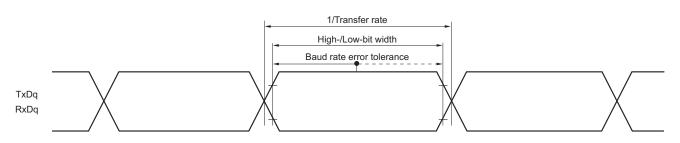
3.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to +105°C, 2.4 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

Parameter	Symbol	I Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
Transfer rate Note 1					fмск/12	bps
			tical value of the um transfer rate _{CLK} ^{Note 2}		2.0	Mbps


Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$) 16 MHz ($2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol		Conditio	ns	HS (high-spe	ed main) Mode	Unit
					MIN.	MAX.	
Transfer rate		Reception	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$			fмск/12 ^{Note 1}	bps
		$2.7 V \le V_b \le 4.0 V$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2		2.0	Mbps	
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$			fмск/12 Note 1	bps	
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 2}		2.0	Mbps
			$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$			f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 2}		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode:24 MHz (2.7 V \leq VDD \leq 5.5 V)16 MHz (2.4 V \leq VDD \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(2/2)

(T₄ = –40 to +105°C, 2.4 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conditions			HS (high-speed main) Mode		
					MIN.	MAX.		
Transfer rate	Transmission	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$			Note 1	bps		
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 2	Mbps	
			$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$			Note 3	bps	
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 4	Mbps	
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$			Note 5	bps	
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate		0.43 Note 6	Mbps	
				$C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$				

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

(2) I²C fast mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Co	nditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	kHz
		$f_{\text{CLK}} \geq 3.5 \; MHz$	$2.4~V \le EV_{\text{DD}} \le 5.5~V$	0	400	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	0.6		
Hold time Note 1	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		0.6		
Hold time when SCLA0 = "L"	$t_{LOW} \qquad 2.7 \ V \leq EV_{DD} \leq 5.5 \ V$		ν	1.3		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		1.3		
Hold time when SCLA0 = "H"	tнigн	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	ν	0.6		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$		100		ns
		$2.4 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$		100		
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		0	0.9	μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		0	0.9	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		
Bus-free time	tbur	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	1.3		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	1.3		

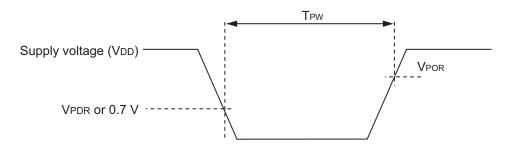
Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

3.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

3.6.3 POR circuit characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.7 LCD Characteristics

3.7.1 Resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +105^{\circ}C, V_{L4} \text{ (MIN.)} \le V_{DD}^{Note} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

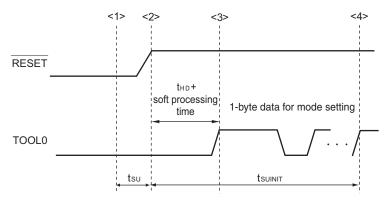
Note Must be 2.4 V or higher.

(2) 1/2 bias method, 1/4 bias method

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

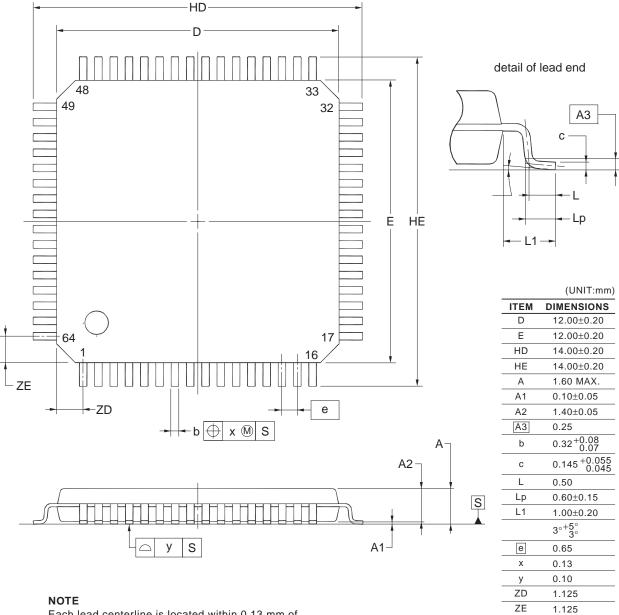
(3) 1/3 bias method


(T_A = -40 to +105°C, V_L4 (MIN.) \leq V_DD \leq 5.5 V, V_SS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

3.11 Timing Specifications for Switching Flash Memory Programming Modes (T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнd	POR and LVD reset must be released before the external reset is released.	1			ms


- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.5 64-pin Products

R5F10RLAAFA, R5F10RLCAFA R5F10RLAGFA, R5F10RLCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

