

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 4x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rbcafp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

Figure 1-1 Part Number, Memory Size, and Package of RL78/L12

1.5 Block Diagram

1.5.1 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

	Item	32-pin	44-pin	48-pin	52-pin	64-pin			
		R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx			
Timer	16-bit timer	8 channels	8 channels	(with 1 channel r	emote control out	put function)			
-	Watchdog timer			1 channel					
-	Real-time clock (RTC)			1 channel					
-	12-bit interval timer (IT)			1 channel					
	Timer output	4 channels (PWM outputs: 3 ^{Note 1})	5 channels (PWM outputs: 4 ^{Note 1})	6 channels (PWM outputs: 5 ^{Note 1})	8 channels (PWM	1 outputs: 7 ^{Note 1}			
	RTC output	-	1 • 1 Hz (subsys	tem clock: fsub =	32.768 kHz or)				
Clock output/b	ouzzer output	1			2				
		(Main system • 256 Hz, 512 32.768 kHz	n clock: f _{MAIN} = 20 Hz, 1.024 kHz, 2	MHz operation)	/Hz, 5 MHz, 10 M kHz, 8.192 kHz, 1 1)				
8/10-bit resolu	ution A/D converter	4 channels	7 channels	9 channels	10 channels	10 channels			
Serial interfac		CSI: 2 channel/UART (LIN-bus supported): 1 channel							
I ² C bus	-	1 channel	1 channel	1 channel	1 channel	1 channel			
Multiplier and accumulator	divider/multiply-	• 32 bits ÷ 32 bi	its = 32 bits (Uns	igned or signed) igned) bits (Unsigned o	r signed)				
DMA controlle	er	2 channels	Γ		1				
Vectored inter	rrupt Internal	23	23	23	23	23			
sources	External	4	6	7	7	9			
Key interrupt				4					
Reset		 Internal reset Internal reset Internal reset Internal reset 	by watchdog tim by power-on-res by voltage detect	set ctor ction execution [№] rror	te 2				
Power-on-res	et circuit	Power-on-reset: 1.51 ±0.04 V Power-down-reset: 1.50 ±0.04 V							
	tor	Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)							
Voltage detec		Provided							
On-chip debu	g function	Provided							
	0	Provided V _{DD} = 1.6 to 5.5	V						

Notes 1. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

 The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2/3)

Absolute Maximum Ratings (T_A = 25°C)

	• •				•
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VL1	V₋ı voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} + 0.3	V
	VL2	VL2 voltage ^{Note 1}		–0.3 to VL4 + 0.3 $^{\text{Note 2}}$	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH vol	tage ^{Note 1}	–0.3 to VL4 + 0.3 $^{\text{Note 2}}$	V
	Vlout	COM0 to COM7, SEG0 to	External resistance division method	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
		SEG38,	Capacitor split method	-0.3 to V _{DD} + 0.3 ^{Note 2}	
		output voltage	Internal voltage boosting method	–0.3 to VL4 + 0.3 $^{\text{Note 2}}$	

Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.

- 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss : Reference voltage

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	f⊪ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.28	mA
Current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.44	1.28	mA
			mode	f⊪ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	f⊪ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		V _{DD} = 2.0 V		260	530	μA
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			voltage main) mode Note 7		V _{DD} = 2.0 V		420	640	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA	
		V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA		
		LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA	
			speed main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		145	380	μA
			moue	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.57	μA
			clock operation	T _A = -40°C	Resonator connection		0.50	0.76	μA
			operation	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.37	0.57	μA
				T _A = +25°C	Resonator connection		0.56	0.76	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.17	μA
				T _A = +50°C	Resonator connection		0.65	1.36	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.57	1.97	μA
				T _A = +70°C	Resonator connection		0.76	2.16	μA
			f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.85	3.37	μA	
				T _A = +85°C	Resonator connection		1.04	3.56	μA
	DD3 Note 6	STOP	$T_A = -40^{\circ}C$				0.17	0.50	μA
		mode Note 8	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.32	1.10	μA
			T _A = +70°C				0.43	1.90	μA
			T _A = +85°C				0.71	3.30	μA

(TA = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

(2/3)

(Notes and $\ensuremath{\textit{Remarks}}$ are listed on the next page.)

- Notes 1. Current flowing to VDD.
 - 2. When high speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 8. Current flowing only during data flash rewrite.
 - 9. Current flowing only during self programming.
 - **10.** For shift time to the SNOOZE mod.
 - 11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.

The TYP. value and MAX. value are following conditions.

- When fsuB is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows through the external divider resistor when the external resistance division method is used.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fcLK: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is T_A = 25°C

Minimum Instruction Execution Time during Main System Clock Operation

----- When the high-speed on-chip oscillator clock is selected

--- During self programming

---- When high-speed system clock is selected

Parameter	Symbol	Con	ditions	speed mo	high- main) ode	main)	/-speed mode	voltage mo	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0 V \le EV_{DD} \le 5.5 V$,	20 MHz < fмск ≤ 24 MHz	12/fмск						ns
		$2.7 V \le V_b \le 4.0 V$	8 MHz < fмск ≤ 20 MHz	10/ f мск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск				ns
			fмск≤4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	16/ f мск						ns
		$2.3 V \le V_b \le 2.7 V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	14/ f мск						ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	12/fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск				ns
			fмск ≤4 MHz	6/ f мск		10/fмск		10/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	36/fмск						ns
		$1.6 V {\le} V_b {\le} 2.0 V$	16 MHz < fмск ≤ 20 MHz	32/fмск						ns
			8 MHz < fмск ≤ 16 MHz	26/fмск						ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск				ns
			fмcк≤4 MHz	10/fмск		10/fмск		10/f мск		ns
		$1.8 V \le EV_{DD} < 3.3 V$,	4 MHz < fмск ≤ 8 MHz			16/f мск				ns
		$1.6~V\!\le\!V_b\!\le\!2.0~V^{Note2}$	fмск≤4 MHz			10/fмск		10/fмск		ns
	tкн2, tкL2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$	$V, 2.7 V \le V_b \le 4.0 V$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns	
		$1.8 V \le EV_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{No}$				tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm r}, 1.6 \ V \le V_{\rm b} \le 2.0 \ V_{\rm b}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} < 3.3 \ V \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{No}} \end{array}$				1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$V, 2.7 V \le V_b \le 4.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V, 1.6 V \le V_b \le 2.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{No}} \end{array}$				1/fмск + 31		1/fмск + 31		ns

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(Notes, Caution and Remarks are listed on the next page.)

2.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +85°C, 1.6 V \leq EV_DD = V_DD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	(Conditions	speed	high- I main) ode		/-speed Mode	LV (low- voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	f sc∟	Standard	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	kHz
		mode: fcLk≥ 1 MHz	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	
			$1.8~V \le EV_{\text{DD}} \le 5.5~V$			0	100	0	100	
			$1.6~V \leq EV_{\text{DD}} \leq 5.5~V$					0	100	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$2.4 V \le EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.7		4.7		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.7		
Hold time Note 1	thd:sta	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.0		4.0		4.0		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.0		4.0		
		$1.6~V \leq EV_{\text{DD}} \leq 5.5~V$						4.0		
Hold time when SCLA0 = "L"	t LOW	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		4.7		4.7		4.7		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.7		4.7		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.7		
Hold time when SCLA0 = "H"	tніgн	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$			4.0		4.0		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$				4.0		4.0		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.0		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	250		250		250		ns
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		250		250		250		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			250		250		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					250		
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 V \le EV_{DD}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	
		$1.8 V \le EV_{DD}$	≤ 5.5 V			0	3.45	0	3.45	
		$1.6 V \le EV_{DD}$	≤ 5.5 V					0	3.45	
Setup time of stop condition	tsu:sto	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$2.4 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.0		4.0		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.0		
Bus-free time	t BUF	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$2.4 V \le EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7		
		$1.8 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$				4.7		4.7		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.7		

(Notes and Remark are listed on the next page.)

(3) I^2C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Con	Conditions			LS (low main)	/-speed Mode	· ·	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: $f_{CLK} \ge 10 \text{ MHz}$	$2.7~V \le EV_{\text{DD}} \le 5.5~V$	0	1000	_	-	_	_	kHz
Setup time of restart condition	t su:sta	$2.7~V \le EV_{\text{DD}} \le 5.5$	0.26		_		_	_	μs	
Hold time ^{Note 1}	thd:sta	$2.7~V \leq EV_{\text{DD}} \leq 5.5$	0.26		_	_	_	_	μs	
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \le EV_{\text{DD}} \le 5.5$	0.5		—		—		μs	
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	0.26		_	-	_	-	μs	
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	50		_	_	_	_	μs
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		0	0.45	_	_	_	_	μs
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		0.26			_		_	μs
Bus-free time	tbuf	$2.7 \text{ V} \le EV_{\text{DD}} \le 5.5$	V	0.5		_	_	_	_	μs

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

2.6.2 Temperature sensor/internal reference voltage characteristics

		···) / · · ·) / · · · · · · · · · · ·		,,		
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = $+25^{\circ}C$		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (HS (high-speed main) mode)

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2,	VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB1	VPOC2,	VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB2		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
Ň	VLVDB4	DB4	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time

(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$	
--	--

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **3.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1		+1	%
clock frequency accuracy		–40 to –20°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to 3.4 AC Characteristics for instruction execution time.

- Notes 1. Current flowing to VDD.
 - 2. When high speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 8. Current flowing only during data flash rewrite.
 - 9. Current flowing only during self programming.
 - **10.** For shift time to the SNOOZE mode.
 - 11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.

The TYP. value and MAX. value are following conditions.

- When fsuB is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows through the external divider resistor when the external resistance division method is used.
- **Remarks 1.** fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fcLK: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is T_A = 25°C

Minimum Instruction Execution Time during Main System Clock Operation

TCY VS VDD (HS (high-speed main) mode)

AC Timing Test Points

External System Clock Timing

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(2/2)

(T₄ = –40 to +105°C, 2.4 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conditions		Conditions HS (high-spec		ed main) Mode	Unit
					MIN.	MAX.		
Transfer rate		Transmission	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$			Note 1	bps	
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 2	Mbps	
			$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$			Note 3	bps	
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 4	Mbps	
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$			Note 5	bps	
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate		0.43 Note 6	Mbps	
				$C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$				

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANIO, ANI1		0		Vdd	V
		ANI16 to ANI23		0		EVDD	V
		Internal reference voltage output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode) Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			VBGR Note 3		V
				Ň	TMPS25 Note	3	V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

3.6.3 POR circuit characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

4. PACKAGE DRAWINGS

4.1 32-pin Products

R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

Page 125 of 131

е

х

у

0.80

0.20

0.10

4.3 48-pin Products

R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ΖE

0.75

