

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 4x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rbcgfp-50

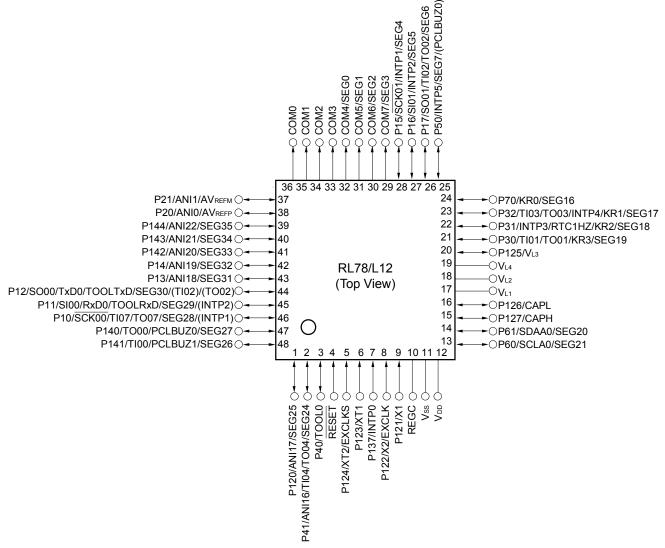
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/L12				
			32 pins	44 pins	48 pins	52 pins	64 pins
32 KB	2 KB	1.5 KB ^{Note}	R5F10RBC	R5F10RFC	R5F10RGC	R5F10RJC	R5F10RLC
16 KB		1 KB ^{Note}		R5F10RFA	R5F10RGA	R5F10RJA	R5F10RLA
8KB	2 KB	1 KB ^{Note}	R5F10RB8	R5F10RF8	R5F10RG8	R5F10RJ8	-

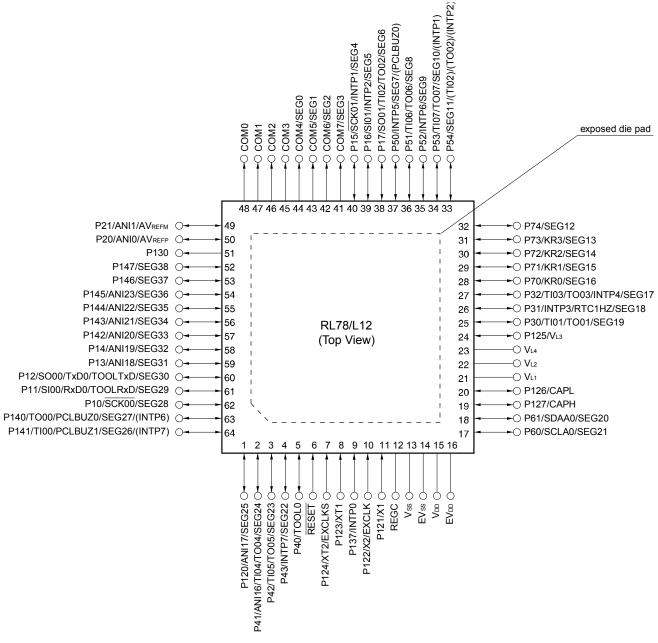
Note In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.


Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

1.3.3 48-pin products

• 48-pin plastic LQFP (fine pitch) (7 × 7)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.5 64-pin products

• 64-pin plastic WQFN (8 × 8)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

Item		32-pin	44-pin	48-pin	52-pin	64-pin		
		R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx		
Timer	16-bit timer	8 channels	8 channels	(with 1 channel r	emote control out	put function)		
-	Watchdog timer	1 channel						
-	Real-time clock (RTC)			1 channel				
-	12-bit interval timer (IT)			1 channel				
	Timer output	4 channels (PWM outputs: 3 ^{Note 1})	5 channels (PWM outputs: 4 ^{Note 1})	6 channels (PWM outputs: 5 ^{Note 1})	8 channels (PWM	1 outputs: 7 ^{Note 1}		
	RTC output	-	1 • 1 Hz (subsys	tem clock: fsub =	32.768 kHz or)			
Clock output/b	ouzzer output	1			2			
		(Main system • 256 Hz, 512 32.768 kHz	n clock: f _{MAIN} = 20 Hz, 1.024 kHz, 2	MHz operation)	/Hz, 5 MHz, 10 M kHz, 8.192 kHz, 1 1)			
8/10-bit resolu	ution A/D converter	4 channels	7 channels	9 channels	10 channels	10 channels		
Serial interfac		CSI: 2 channel/UART (LIN-bus supported): 1 channel						
I ² C bus	-	1 channel	1 channel	1 channel	1 channel	1 channel		
Multiplier and accumulator	divider/multiply-	• 32 bits ÷ 32 bi	its = 32 bits (Uns	igned or signed) igned) bits (Unsigned o	r signed)			
DMA controlle	er	2 channels	Γ		1			
Vectored inter	rrupt Internal	23	23	23	23	23		
sources	External	4	6	7	7	9		
Key interrupt				4				
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 						
Power-on-res	et circuit	• Power-on-reset: 1.51 ±0.04 V • Power-down-reset: 1.50 ±0.04 V						
	tor	 Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages) 						
Voltage detec		Provided						
On-chip debu	g function	Provided						
	0	Provided V _{DD} = 1.6 to 5.5	V					

Notes 1. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

 The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) ($T_A = -40$ to $+85^{\circ}C$, 1.6 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

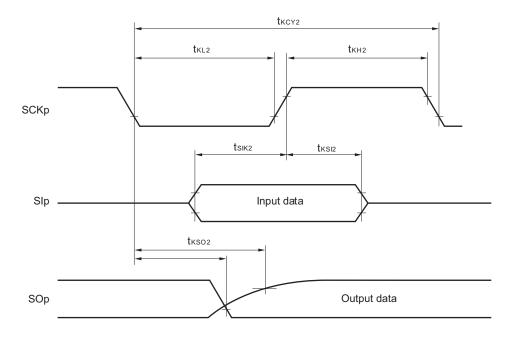
Parameter	Symbol	Conditions		HS (high- speed main) Mode	LS (low- speed main) Mode	LV (low- voltage main) Mode	Unit	Para meter	Symbol	Conditions
Delay time from SCKp↓ to SOp	tkso2	C = 30 pF ^{Note 4}	$4.0~V \leq EV_{DD} \leq 5.5~V$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
output ^{Note 3}			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.4 \text{ V}$				2/fмск + 110		2/fмск + 110	ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						2/fмск + 220	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

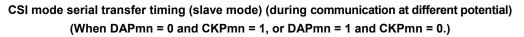
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

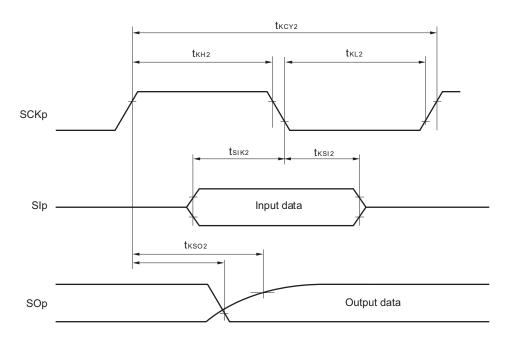
- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

- Notes 1. For CSI00, set a cycle of 2/fmck or longer. For CSI01, set a cycle of 4/fmck or longer.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 3. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)


(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

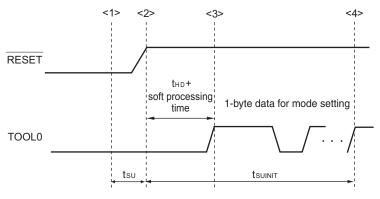
Parameter	Symbol		Conditions	speed	high- main) ode	`	/-speed Mode	voltage	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/f с∟к	$\begin{array}{l} 4.0 \; V \leq E V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq E V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		1150		ns
			$\begin{split} 1.8 \ V &\leq E V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$			1150		1150		ns
SCKp high-level width	tкнı	$4.0 V \le EV_{DD} \le C_b = 30 \text{ pF}, R_b = 100 \text{ F}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 – 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$2.7 V \le EV_{DD} < 4$ $C_b = 30 \text{ pF}, R_b =$	4.0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 30 \text{ pF}, R_{\text{b}} = 30 \text{ pF}$	3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V, = 5.5 kΩ	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
		$1.8 V \le EV_{DD} < 30 C_b = 30 pF, R_b = 30 PF$	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} , = 5.5 kΩ			tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = \end{array}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_b = 30 \text{ pF}, \text{ F}$		4.0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 – 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 V \le EV_{DD} < 3$ $C_b = 30 \text{ pF}, R_b = 3$	3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V, = 5.5 kΩ	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 V \le EV_{DD} < 30 C_b = 30 pF, R_b = 30 PF$	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} , = 5.5 kΩ			tксү1/2 - 50		tксү1/2 - 50		ns


Note Use it with $EV_{DD} \ge V_b$.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)


- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after a reset is released during this period.
 - $t_{\text{SU:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
 - For derating with T_A = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

Parameter	Арр	lication
	A: Consumer applications, G: Industrial applications (with TA = -40 to +85°C)	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz	2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$:	$2.4~V \leq V_{\text{DD}} \leq 5.5~V:$
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -20 to +85°C	
	±5.5%@ T _A = -40 to -20°C	
Serial array unit	UART	UART
	CSI00: fcLk/2 (supporting 16 Mbps), fcLk/4	CSI00: fclк/4
	CSI01	CSI01
	Simplified I ² C communication	Simplified I ² C communication
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(14 levels)	(8 levels)
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(14 levels)	(8 levels)

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and G: Industrial applications ($T_A = -40$ to $+85^{\circ}$ C)".

Remark The electrical characteristics of the products G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$) are different from those of the products "A: Consumer applications, and G: Industrial applications (only with $T_A = -40$ to $+85^{\circ}C$)". For details, refer to **3.1** to **3.10**.

(2/3)

Absolute Maximum Ratings (T_A = 25°C)

	5 J V	- /			(· ·)
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VL1	V _{L1} voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V∟4 + 0.3	V
	VL2	V _{L2} voltage ^{Note 1}		-0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
	VL3	V∟₃ voltage ^{Note 1}		–0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
	VL4	V₋₄ voltage ^{Note 1}		-0.3 to +6.5	V
	VLCAP	CAPL, CAPH vol	tage ^{Note 1}	–0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
	Vlout	COM0 to COM7, SEG0 to	External resistance division method	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
		SEG38,	Capacitor split method	-0.3 to V _{DD} + 0.3 ^{Note 2}	
		output voltage	Internal voltage boosting method	–0.3 to VL4 + 0.3 $^{\rm Note\ 2}$	

Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.

- 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss : Reference voltage

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

2/fмск+66

2/fмск+66

2/fмск + 113

ns

ns

Ns

Delay time from SCKp↓

to SOp output Note 3

Parameter	Symbol	Conditions		HS (high-speed	HS (high-speed main) Mode		
				MIN.	MAX.		
SCKp cycle time Note 5	t ксү2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns	
			fмск $\leq 20 \text{ MHz}$	12/fмск		ns	
		$2.7~V \leq EV_{\text{DD}} < 4.0~V$	16 MHz < fмск	16/f мск		ns	
			fмск ≤ 16 MHz	12/fмск		ns	
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		12/fмск and 1000		ns	
SCKp high-/low-level	t кн2,	$4.0 V \le EV_{DD} \le 5.5 V$ 2.7 V \le EV_{DD} < 4.0 V 2.4 V \le EV_{DD} < 2.7 V		tксү2/2 – 14		ns	
width	tĸ∟2			tксү2/2 – 16		ns	
				tксү2/2 – 36		ns	
	tsik2	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		1/fмск + 40		ns	
(to SCKp↑) ^{Note 1}		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$,	1/fмск + 60		ns	
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		1/fмск + 62		ns	

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

 $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$

 $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$

 $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$

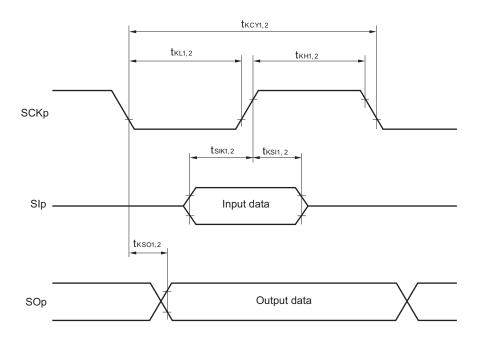
- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SOp output lines.
- 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

C = 30 pF Note 4

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

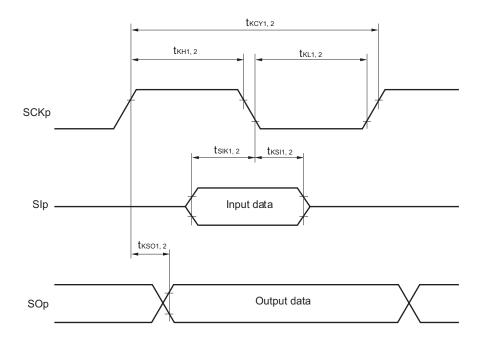
- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 - g: PIM number (g = 1)

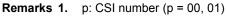
tkso2


2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode connection diagram (during communication at same potential)





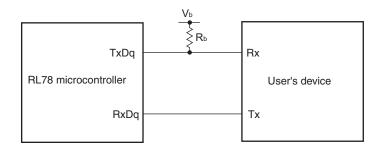
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

3.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

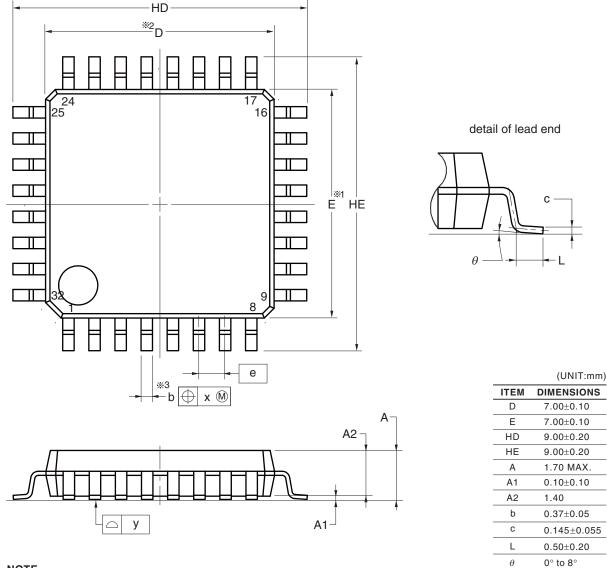
Parameter	Symbol	Symbol Conditions		HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.]
SCLA0 clock frequency	fsc∟	Standard mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
		fclκ ≥ 1 MHz	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7 V \leq EV_{DD} \leq 5.$.5 V	4.7		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.1 \text{ C}$.5 V	4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$.5 V	4.0		μs
		$2.4 \text{ V} \leq EV_{DD} \leq 5.5 \text{ V}$		4.0		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.7		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		4.7		μs
Hold time when SCLA0 = "H"	tніgн	thigh $2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		4.0		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.1 \text{ C}$.5 V	4.0		μs
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		250		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.$.5 V	250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		0	3.45	μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.$.5 V	0	3.45	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$			μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$	5 V	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω



4. PACKAGE DRAWINGS

4.1 32-pin Products

R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

Page 125 of 131

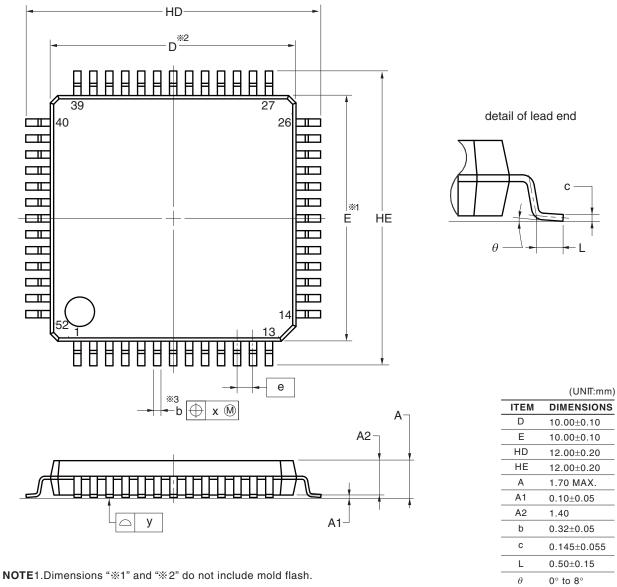
е

х

у

0.80

0.20


0.10

4.4 52-pin Products

R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

2.Dimension "X3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

е

x y 0.65

0.10

