

Welcome to **E-XFL.COM**

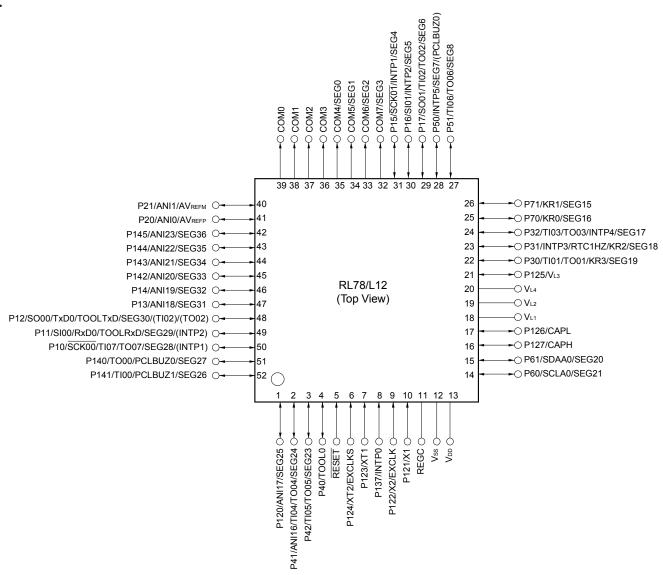
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 4x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rbcgfp-x0

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

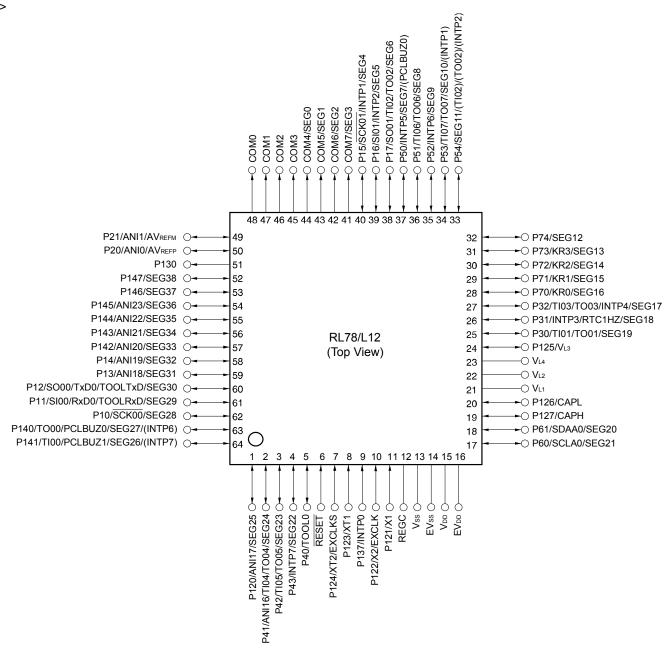
RL78/L12 1. OUTLINE

1.3.4 52-pin products

• 52-pin plastic LQFP (10 × 10)

<R>

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RL78/L12 1. OUTLINE

- 64-pin plastic LQFP (fine pitch) (10 × 10)
- 64-pin plastic LQFP (12 × 12)

<R>

- Cautions 1. Make EVss pin the same potential as Vss pin.
 - 2. Make VDD pin the same potential as EVDD pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RL78/L12 1. OUTLINE

Port 13

Transmit Data

Power Supply

1.4 Pin Identification

P30 to P32:

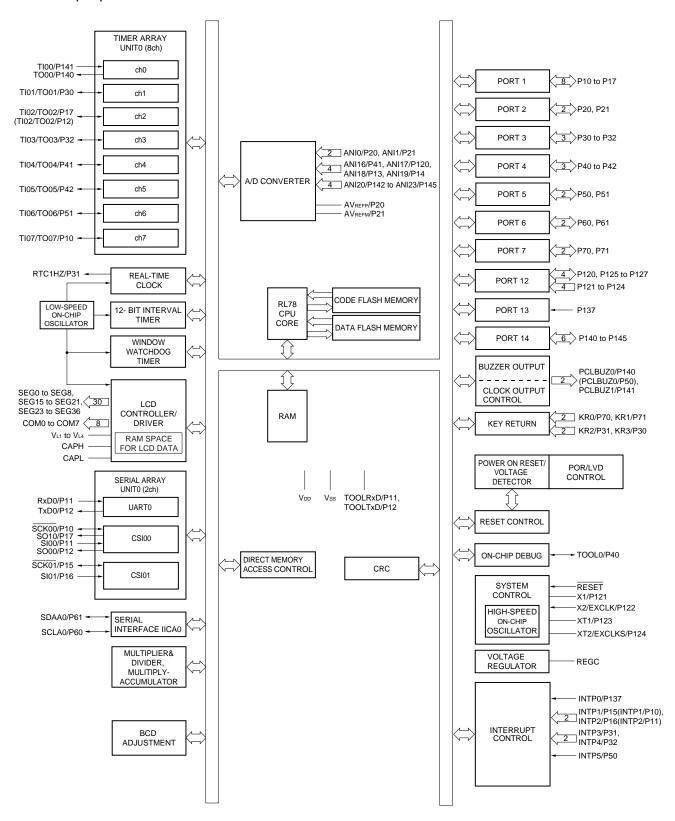
P40 to P43:

ANIO, ANI1, P130, P137: ANI16 to ANI23: P140 to P147: Port 14 **Analog Input** AVREFM: PCLBUZ0, PCLBUZ1: Programmable Clock Analog Reference Voltage Minus Output/Buzzer Output AVREFP: Analog Reference REGC: Regulator Capacitance RESET: Reset Voltage Plus CAPH, CAPL: RTC1HZ: Real-time Clock Correction Clock Capacitor for LCD COM0 to COM7, (1 Hz) Output EV_{DD}: Power Supply for Port RxD0: Receive Data EVss: Ground for Port SCK00, SCK01: Serial Clock Input/Output EXCLK: **External Clock Input** SCLA0: Serial Clock Input/Output (Main System Clock) SDAA0: Serial Data Input/Output **EXCLKS**: External Clock Input SEG0 to SEG38: LCD Segment Output (Subsystem Clock) SI00, SI01: Serial Data Input INTP0 to INTP7: Interrupt Request From SO00, SO01: Serial Data Output Peripheral TI00 to TI07: Timer Input KR0 to KR3: TO00 to TO07: Key Return **Timer Output** P10 to P17: Port 1 TOOL0: Data Input/Output for Tool P20, P21: Port 2 TOOLRxD, TOOLTxD: Data Input/Output for External Device

VL1 to VL4: P50 to P54: Port 5 LCD Power Supply P60, P61: Port 6 Vss: Ground

Port 3

Port 4


P70 to P74: Port 7 X1, X2: Crystal Oscillator (Main System Clock) P120 to P127: XT1, XT2: Port 12 Crystal Oscillator (Subsystem Clock)

TxD0:

V_{DD}:

RL78/L12 1. OUTLINE

1.5.4 52-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

Absolute Maximum Ratings (TA = 25°C)

(3/3)

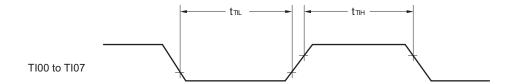
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Iон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	lo _{L1}	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	lol2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient temperature	Та	In normal operation	on mode programming mode	-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

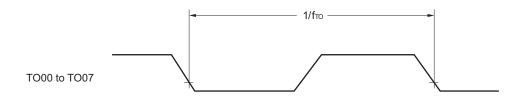
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

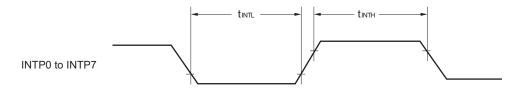
Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either I_{DD1} or I_{DD2}, and I_{IT}, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, I_{FIL} should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mod.
- 11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.

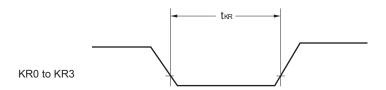

The TYP. value and MAX. value are following conditions.

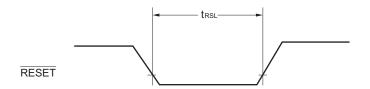

- When fsub is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows through the external divider resistor when the external resistance division method is used.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency


- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- **4.** Temperature condition of the TYP. value is T_A = 25°C

TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) (T_A = −40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Cond	itions	HS (high		LS (low main)			-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note}	tkcy2	$4.0 \text{ V} \leq \text{EV}_{DD} \leq 5.5 \text{ V}$	20 MHz < fмск	8/ƒмск						ns
5			fмck ≤ 20 MHz	6/ƒмск		6/fмск		6/fмск		ns
		2.7 V ≤ EV _{DD} < 4.0 V	16 MHz < f _{MCK}	8/fмск						ns
			fмcк ≤ 16 MHz	6/ƒмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$		6/fмск and 500		6/ƒмск		6/ƒмск		ns
		1.8 V ≤ EV _{DD} < 2.4 V				6/fмск		6/ƒмск		ns
		1.6 V ≤ EV _{DD} < 1.8 V						6/ƒмск		ns
SCKp high-/low- level width	tkH2, tkL2	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		tксү2/2 - 7		tксү2/2 -7		tксү2/2 -7		ns
		2.7 V ≤ EV _{DD} < 4.0 V		tксү2/2 - 8		tkcy2/2 -8		tксү2/2 -8		ns
		2.4 V ≤ EV _{DD} < 2.7 V		tксү2/2 - 18		t _{KCY2} /2 - 18		t _{KCY2} /2 - 18		ns
		1.8 V ≤ EV _{DD} < 2.4 V				tkcy2/2 - 18		tксү2/2 - 18		ns
		1.6 V ≤ EV _{DD} < 1.8 V						tkcy2/2 -66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		2.4 V ≤ EV _{DD} < 2.7 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		
		1.8 V ≤ EV _{DD} < 2.4 V				1/fмск + 30		1/fмск + 30		ns
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск + 40		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		1.8 V ≤ EV _{DD} < 2.4 V				1/fмск + 31		1/fмск + 31		ns
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск + 250		ns

(Notes, Caution, and Remarks are listed on the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}. 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (1/2)

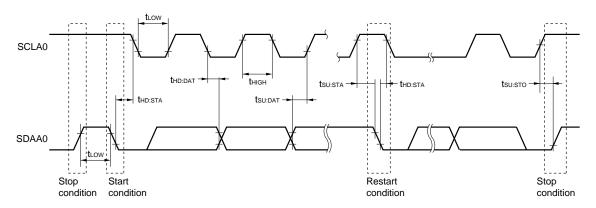
(1A = -40 to +65	°C, 1.8 V	≤ EV _{DD} = V _{DD} ≤ 5.5 V, V _{SS} = EV _{SS} = 0 V)							(1/2)	
Parameter	Symbol	Con	Conditions			'	/-speed mode	mo	e main) ode	Unit
			_	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1			20 MHz < fмck ≤ 24 MHz	12/f мск						ns
		$2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	8 MHz < fмck ≤ 20 MHz	10/f мск						ns
			4 MHz < fMck ≤ 8 MHz	8/fмск		16/f мск				ns
			fмcк≤4 MHz	6/fмск		10/fмск		10/f мск		ns
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	16/f мск						ns
		$2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	16 MHz < fмck ≤ 20 MHz	14/f мск						ns
			8 MHz < f _{MCK} ≤ 16 MHz	12/f мск						ns
			4 MHz < f _{MCK} ≤ 8 MHz	8/fмск		16/fмск				ns
			fмck ≤4 MHz	6/fмск		10/fмск		10/fмск		ns
		2.4 V ≤ EV _{DD} < 3.3 V,	20 MHz < f _{MCK} ≤ 24 MHz	36/fмск						ns
		$1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$	16 MHz < f _{MCK} ≤ 20 MHz	32/fмск						ns
		-	8 MHz < fмcк ≤ 16 MHz	26/fмск						ns
			4 MHz < fMCK ≤ 8 MHz	16/f мск		16/fмск				ns
	$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note 2}}$	fмck≤4 MHz	10/fмск		10/fмск		10/fмск		ns	
		4 MHz < f _{MCK} ≤ 8 MHz			16/fмск				ns	
		fмcк≤4 MHz			10/fмск		10/f мск		ns	
SCKp high-/low-level width	tĸH2,	4.0 V ≤ EV _{DD} ≤ 5.5 V	$V_{\rm t}, 2.7 \ {\rm V} \le {\rm V_b} \le 4.0 \ {\rm V}$	tkcy2/2 - 12		txcy2/2 - 50		tkcy2/2 - 50		ns
		2.7 V ≤ EV _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	tkcy2/2 - 18		txcy2/2 - 50		tkcy2/2 - 50		ns
		2.4 V ≤ EV _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}$	tkcy2/2 - 50		txcy2/2 - 50		tkcy2/2 - 50		ns
		$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$				tkcy2/2 - 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsik2	4.0 V ≤ EV _{DD} < 5.5 V	$V_{b} \leq V_{b} \leq 4.0 \text{ V}$	1/f _{MCK} + 20		1/f _{MCK} + 30		1/fmck + 30		ns
		2.7 V ≤ EV _{DD} < 4.0 V	$V_{c}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	1/f _{MCK} + 20		1/fmck + 30		1/fmck + 30		ns
		2.4 V ≤ EV _{DD} < 3.3 V	V_{b} , 1.6 $V \le V_{b} \le 2.0 V$	1/f _{MCK} + 30		1/fmck + 30		1/fmck + 30		ns
		$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$				1/fmck + 30		1/fmck + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2	4.0 V ≤ EV _{DD} < 5.5 V	$V_{1}, 2.7 \text{ V} \le V_{b} \le 4.0 \text{ V}$	1/f _{MCK} + 31		1/fmck+ 31		1/f _{MCK} + 31		ns
(from SCKpT) was 3		2.7 V ≤ EV _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	1/f _{MCK} + 31		1/f _{MCK} + 31		1/f _{MCK} + 31		ns
		2.4 V ≤ EV _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}$	1/f _{MCK} + 31		1/fmck+ 31		1/f _{MCK} + 31		ns
		$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$				1/f _{MCK} + 31		1/f _{MCK} + 31		ns

(Notes, Caution and Remarks are listed on the next page.)

(3) I²C fast mode plus

(TA = -40 to $+85^{\circ}$ C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		h-speed Mode	LS (low main)		`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: $f_{CLK} \ge 10 \text{ MHz}$ $2.7 \text{ V} \le EV_{DD} \le 5.5 \text{ V}$	0	1000	_	-	_	_	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.26		_	_	_	_	μs
Hold time ^{Note 1}	thd:STA	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.26		_	-	_	-	μS
Hold time when SCLA0 = "L"	t _{LOW}	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.5			-		-	μs
Hold time when SCLA0 = "H"	t HIGH	$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$	0.26		_	-	_	-	μs
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD} ≤ 5.5 V	50		_	-	_	_	μs
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD} ≤ 5.5 V	0	0.45	_	-	_	_	μs
Setup time of stop condition	t su:sто	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.26		_	-	_	_	μs
Bus-free time	t BUF	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.5			-	_	_	μS

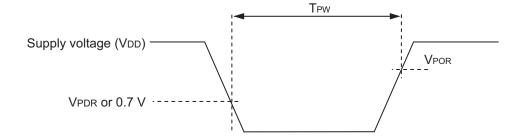

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing



2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

LVD Detection Voltage of Interrupt & Reset Mode

(Ta = -40 to +85°C, $V_{PDR} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}$, $V_{SS} = EV_{SS} = 0 \text{ V}$)

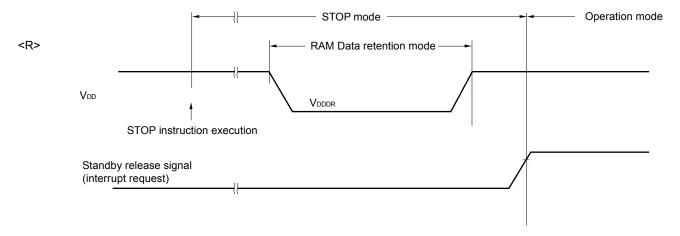
Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDA0}	VPOC2,	VPOC1, VPOC0 = 0, 0, 0	falling reset voltage	1.60	1.63	1.66	V
mode	V _{LVDA1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	V _{LVDA2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	V _{LVDA3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDB1}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 1	falling reset voltage	1.80	1.84	1.87	V
	V _{LVDB2}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVDB3}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB4		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0	falling reset voltage	2.40	2.45	2.50	V
	V _{LVDC1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	V _{LVDC2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	V _{LVDC3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	falling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.


<R>

2.8 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.9 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclk	1.8 V ≤ VDD ≤ 5.5 V	1		24	MHz
<r></r>	Number of code flash rewrites	Cerwr	Retained for 20 years T _A = 85°C	1,000			Times
<r></r>	Number of data flash rewrites		Retained for 1 year T _A = 25°C		1,000,000		
<r></r>			Retained for 5 years T _A = 85°C	100,000			
<r></r>			Retained for 20 years T _A = 85°C	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite.

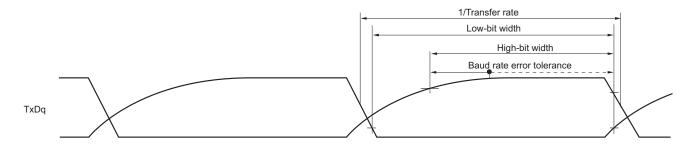
 The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

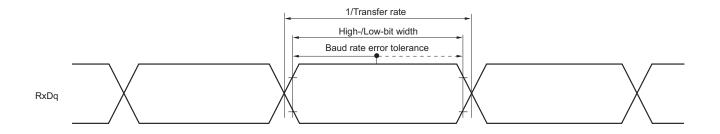
Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps


(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)


(5/5)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVDD				1	μΑ
	I _{LIH2}	P20, P21, P137, RESET	$V_I = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	V _I = V _{DD}	In input port or external clock input			1	μА
				In resonator connection			10	μΑ
Input leakage current, low	ILIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	V _I = EV _{SS}				-1	μΑ
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up	Ru ₁	V _I = EV _{SS}	SEGxx po	rt				
resistance			2.4 V ≤ E	$EV_{DD} = V_{DD} \le 5.5 \text{ V}$	10	20	100	kΩ
	Ru2			than above P60, P61, and	10	20	100	kΩ

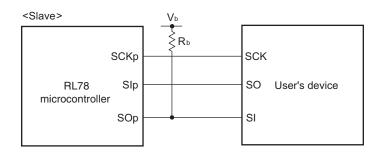
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $R_b[\Omega]$:Communication line (TxDq) pull-up resistance, $C_b[F]$: Communication line (TxDq) load capacitance, $V_b[V]$: Communication line voltage
 - **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2)

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)


Parameter	Symbol	Conditions	HS (high-spe	Unit	
			MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsik1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	162		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	354		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	958		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time (from SCKp↑) Note 1	t KSI1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp↓ to	tkso1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$		200	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		390	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$		966	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
SIp setup time	tsik1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	88		ns
(to SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	88		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	220		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time	t KSI1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	38		ns
(from SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp [↑] to SOp output ^{Note 2}	t KSO1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$		50	ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		50	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$		50	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			

(Notes, Caution and Remarks are listed on the page after the next page.)

- Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** $R_b[\Omega]$:Communication line (SOp) pull-up resistance,
 - C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 - g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} = 0.47 μ F		2 V _{L1} -0.1	2 VL1	2 V _{L1}	٧
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 μF		3 V _{L1} -0.15	3 V _{L1}	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

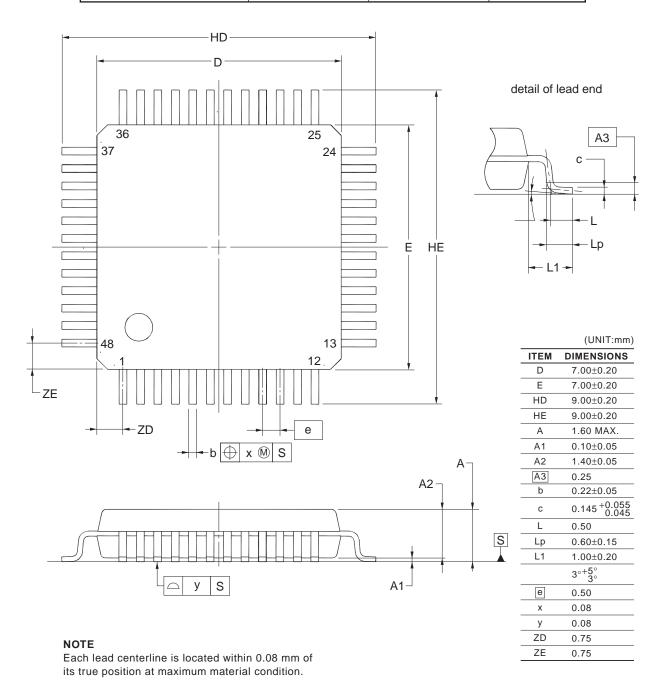
Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between V_{L4} and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.7.3 Capacitor split method

1/3 bias method

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	V _{L4}	C1 to C4 = 0.47 μ F ^{Note 2}		V _{DD}		V
V _{L2} voltage	V _{L2}	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 V _{L4}	2/3 V _{L4} + 0.1	V
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} - 0.1	1/3 V _{L4}	1/3 V _{L4} + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

4.3 48-pin Products

R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB R5F10RG8GFB, R5F10RGCGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

©2012 Renesas Electronics Corporation. All rights reserved.