

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 7x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rfaafp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

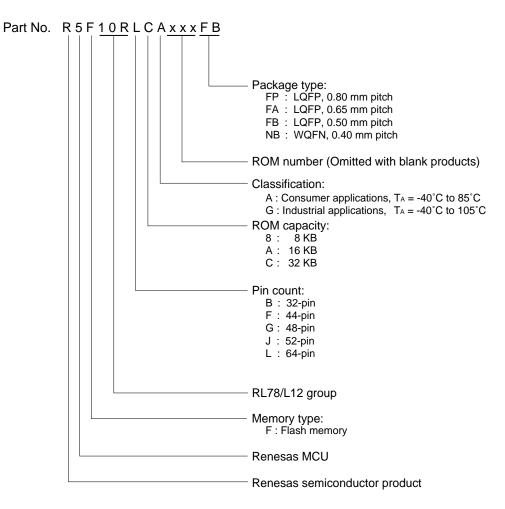


Figure 1-1 Part Number, Memory Size, and Package of RL78/L12

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency $(f_X)^{Note}$	Ceramic resonator/ crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
		$2.4 \text{ V} \leq V_{\text{DD}} \leq 2.7 \text{ V}$	1.0		16.0	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		8.0	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	MHz
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **2.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

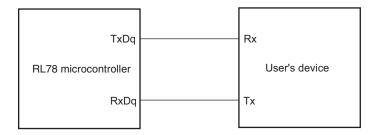
· · ·							
Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$1.8~V \le V_{\text{DD}} \le 5.5~V$	-1		+1	%
clock frequency accuracy			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5		+5	%
		–40 to –20°C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

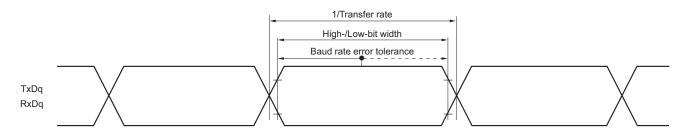
2. This indicates the oscillator characteristics only. Refer to 2.4 AC Characteristics for instruction execution time.

2.4 AC Characteristics

2.4.1 Basic operation


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

	Symbol		Conditi	ons	••••	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-sp main) mode		$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.04167		1	μs
instruction execution time)		system clock (fmain)	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs		
		operation	LV (low volt main) mode		$1.6 V \le V_{DD} \le 5.5 V$	0.25		1	μs
			LS (low-spe main) mode		$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μs
		Subsystem operation	clock (fsuв)		$1.8 V \le V_{DD} \le 5.5 V$	28.5	30.5	31.3	μs
		In the self	HS (high-sp		$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.04167		1	μs
		programmin g mode	main) mode		$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
		3	LV (low volt main) mode		$1.8 V \le V_{DD} \le 5.5 V$	0.25		1	μs
			LS (low-spe main) mode		$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μs
External main system clock	fex	$2.7~V \leq V_{\text{DD}}$	≤ 5.5 V			1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}}$	< 2.7 V			1.0		16.0	MHz
		$1.8 \ V \leq V_{\text{DD}}$	< 2.4 V			1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}}$	< 1.8 V			1.0		4.0	MHz
	fexs					32		35	kHz
External main system clock input	texh, texl	$2.7~V \leq V_{\text{DD}}$	≤ 5.5 V			24			ns
high-level width, low-level width		$2.4~V \leq V_{\text{DD}}$	< 2.7 V			30			ns
		$1.8 \ V \leq V_{\text{DD}}$	< 2.4 V			60			ns
		$1.6 \ V \leq V_{\text{DD}}$	< 1.8 V			120			ns
	t _{EXHS} , t _{EXLS}					13.7			μs
TI00 to TI07 input high-level width, low-level width	tт⊪, tт⊫					1/fмск+10			ns
TO00 to TO07 output frequency	fтo	HS (high-sp		0 V ≤	$EV_{DD} \leq 5.5 V$			16	MHz
		main) mode	2.7	7 V ≤	EV _{DD} < 4.0 V			8	MHz
			2.4	4 V ≤	EVDD < 2.7 V			4	MHz
		LS (low-spe main) mode		8 V ≤	$EV_{DD} \le 5.5 V$			4	MHz
		LV (low volt main) mode		6 V ≤	$EV_{DD} \leq 5.5 V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-sp			$EV_{DD} \le 5.5 V$			16	MHz
frequency		main) mode	2.7	7 V ≤	EV _{DD} < 4.0 V			8	MHz
					EVDD < 2.7 V			4	MHz
		LS (low-spe main) mode		8 V ≤	$EV_{DD} \le 5.5 V$			4	MHz
		LV (low-volt	-		$EV_{DD} \leq 5.5 V$			4	MHz
		main) mode	1.0		EVDD < 1.8 V			2	MHz
Interrupt input high-level width, low-level width	tinth,	INTP0			$V_{\text{DD}} \leq 5.5 \text{ V}$	1			μs
	t intl	INTP1 to IN			$EV_{DD} \leq 5.5 V$	1			μs
Key interrupt input low-level width	t kr	KR0 to KR3			$EV_{DD} \leq 5.5 V$	250			ns
			1.6	6 V ≤	EVDD < 1.8 V	1			μs
RESET low-level width	trsl					10			μs


Remark fmck: Timer array unit operation clock frequency

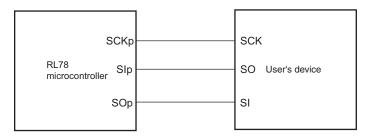
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

UART mode connection diagram (during communication at same potential)

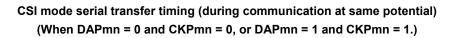
UART mode bit width (during communication at same potential) (reference)

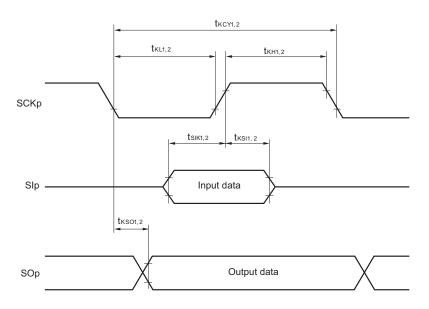
Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

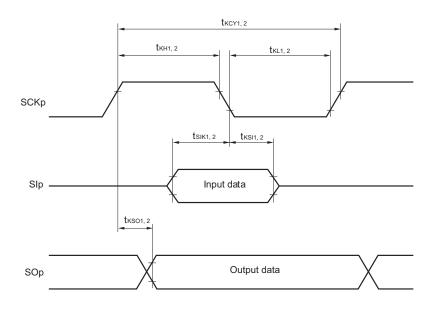

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

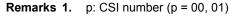
m: Unit number, n: Channel number (mn = 00, 01))


(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) ($T_A = -40$ to +85°C, 1.6 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)


Parameter	Symbol	Cond	litions	HS (high main)	•	LS (low main)	•		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note}	t ксү2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск						ns
5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/ f мск		ns
		$2.7~V \leq EV_{DD} < 4.0~V$	16 MHz < fмск	8/fмск						ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4~V \leq EV_{DD} \leq 5.5~V$		6/fмск and 500		6/fмск		6/fмск		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				6/ f мск		6/ f мск		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						6/fмск		ns
SCKp high-/low- level width	tкн2, tкL2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү2/2 - 7		tксү2/2 -7		tксү2/2 - 7		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$		tксү2/2 – 8		tксү2/2 — 8		tксү2/2 - 8		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$		tксү2/2 – 18		tксү2/2 – 18		t _{ксү2} /2 – 18		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				tксү2/2 – 18		tксү2/2 – 18		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						tксү2/2 - 66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				1/fмск + 30		1/fмск + 30		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						1/fмск + 40		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				1/fмск + 31		1/fмск + 31		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						1/fмск + 250		ns

(Notes, Caution, and Remarks are listed on the next page.)




CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(1/2)

Parameter	Symbol		Conc	litions	HS (high main) l	•	LS (low main)		LV (low- main)	-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	$\begin{array}{l} 4.0 \ V \leq EV \\ 2.7 \ V \leq V_b \end{array}$,		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
				100K - 100K 2.7 V \leq EV _{DD} < 4.0 V, 2.3 V \leq V _b \leq 2.7 V		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			2.4 V ≤ EV 1.6 V ≤ Vb	,		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			1.8 V ≤ EV 1.6 V ≤ V _b	′ _{DD} < 3.3 V, ≤ 2.0 V				fмск/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$				1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD} \ge V_b$.
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

 HS (high-speed main) mode:
 24 MHz $(2.7 V \le V_{DD} \le 5.5 V)$

 16 MHz $(2.4 V \le V_{DD} \le 5.5 V)$

 LS (low-speed main) mode:
 8 MHz $(1.8 V \le V_{DD} \le 5.5 V)$

 LV (low-voltage main) mode:
 4 MHz $(1.6 V \le V_{DD} \le 5.5 V)$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Con	ditions		h-speed Mode	-	w-speed) Mode	-	v-voltage) Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n		$EV_{DD} \le 5.5 \text{ V},$ $V_b \le 4.0 \text{ V}$		Note 1		Note 1		Note 1	bps
				$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_{\rm b} = 50 \mbox{ pF}, \ R_{\rm b} = 1.4 \mbox{ k}\Omega, \\ V_{\rm b} = 2.7 \mbox{ V} \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
				EVdd < 4.0 V, ∕⊳≤2.7 V		Note 3		Note 3		Note 3	bps
				$\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_{b} = 50 \mbox{ pF}, \mbox{ R}_{b} = 2.7 \mbox{ k}\Omega \\ \mbox{V}_{b} = 2.3 \mbox{ V} \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
				EVdd < 3.3 V, /₅≤2.0 V		Note 6		Note 6		Note 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V_b = 1.6 V		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps
				EVdd < 3.3 V, /b ≤ 2.0 V				Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$				0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	speed	high- main) ode		/-speed Mode	voltage	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 2/f с∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200 Note 1		1150 Note 1		1150 Note 1		ns
			$\begin{array}{l} 2.7 \ V \leq E V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300 Note 1		1150 Note 1		1150 Note 1		ns
SCKp high-level width	tкнı	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 V \le EV_{DD}$ $C_b = 20 pF, R$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120		ns
SCKp low-level width	tĸ∟1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 k Ω	tксү1/2 – 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 2}	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	58		479		479		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	10		10		10		ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R_{b} = 2.7 k Ω	10		10		10		ns
Delay time from SCKp \downarrow to SOp output Note 2	tkso1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$		60		60		60	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 3}	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	23		110		110		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 3}	tksi1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	10		10		10		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, $k_{\rm b}$ = 2.7 k Ω	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 3}	tkso1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$		10		10		10	ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 k Ω		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EV_{ss} = 0 V)

(Notes, Caution and Remarks are listed on the next page.)

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	(Conditions				/-speed Mode	voltage	low- e main) ode	Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscl	Fast mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fclк≥ 3.5	$2.4~V \le EV_{\text{DD}} \le 5.5~V$	0	400	0	400	0	400	
		MHz	$1.8~V \le EV_{\text{DD}} \le 5.5~V$			0	400	0	400	
Setup time of restart condition	tsu:sta	$2.7 \; V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		
		$1.8 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V			0.6		0.6		
Hold time Note 1	thd:sta	$2.7~V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		
		$1.8 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V			0.6		0.6		
Hold time when SCLA0 = "L"	tLOW	$2.7 \; V \leq EV_{\text{DD}}$	≤ 5.5 V	1.3		1.3		1.3		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	1.3		1.3		1.3		
		$1.8 \ V \leq EV_{\text{DD}}$	≤ 5.5 V			1.3		1.3		
Hold time when SCLA0 = "H"	t HIGH	$2.7 \; V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		
		$1.8 \ V \leq EV_{\text{DD}}$	≤ 5.5 V			0.6		0.6		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	100		100		100		ns
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	100		100		100		
		$1.8 \ V \leq EV_{\text{DD}}$	≤ 5.5 V			100		100		
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	0	0.9	0	0.9	0	0.9	
		$1.8 \text{ V} \leq EV_{DD}$	≤ 5.5 V			0	0.9	0	0.9	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq EV_{\text{DD}}$	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$			0.6		0.6		μs
		$2.4~V \leq EV_{DD} \leq 5.5~V$		0.6		0.6		0.6		
		$1.8 \text{ V} \leq EV_{\text{DD}}$	$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$			0.6		0.6		
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V	1.3		1.3		1.3		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	1.3		1.3		1.3		
		$1.8 \text{ V} \leq EV_{DD}$	≤ 5.5 V			1.3		1.3		

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

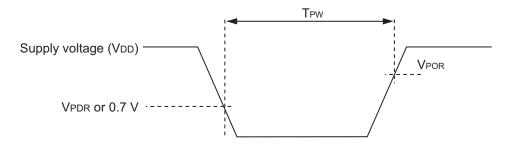
RemarkThe maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up
resistor) at that time in each mode are as follows.Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (−) = V_{ss} (ADREFM = 0), target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}},$	Reference voltage (-)
= Vss)	

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$		1.2	±7.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±0.85	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±4.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±2.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±2.5	LSB
Analog input voltage	VAIN	ANIO, ANI1		0		VDD	V
		ANI16 to ANI23		0		EVDD	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (hig		V _{BGR} Note 4		V	
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (high	0		VTMPS25 Note 4		V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).


- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2,	VPOC2, VPOC1, VPOC0 = 0, 0, 0, falling reset voltage			1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB1	VPOC2,	, VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB2		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB3	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V	
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB4	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V	
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	, VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	, VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time

(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

(1/3)

3.1 Absolute Maximum Ratings

Parameter	Symbols Conditions		Ratings	Unit		
Supply voltage	Vdd	V _{DD} = EV _{DD}	-0.5 to +6.5	V		
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V		
	EVss		-0.5 to +0.3	V		
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ + 0.3 Note1	V		
Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V		
	V ₁₂	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V		
	V _{I3}	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V		
Output voltage	Vo1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_DD + 0.3 and -0.3 to V_DD + 0.3 $^{\text{Note 2}}$	V		
	V _{O2}	P20, P21	-0.3 to V _{DD} + 0.3 ^{Note 2}	V		
Analog input voltage	VAI1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V		
	VAI2	ANIO, ANI1	$-0.3 \text{ to } V_{DD}$ + 0.3 and $-0.3 \text{ to } AV_{REF}(+)$ + 0.3 ^{Notes 2, 3}	V		

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(2/2)

(T₄ = –40 to +105°C, 2.4 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Condit	HS (high-spe	Unit		
					MIN.	MAX.	
Transfer rate		Transmission	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$			Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 2	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$			Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 4	Mbps
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$			Note 5	bps
		$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}$	Theoretical value of the maximum transfer rate		0.43 Note 6	Mbps	
				C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V			

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +105°C, 2.4 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1} = 0.47 μF	VLCD = 04H	0.90	1.00	1.08	V
			VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 V∟1 –0.1	2 VL1	2 V _{L1}	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	: 0.47 <i>μ</i> F	3 V∟1 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} = 0.47 μ F		500			ms

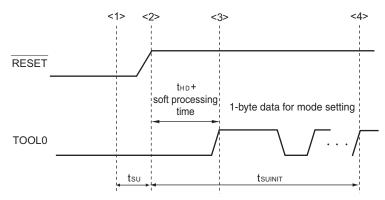
Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

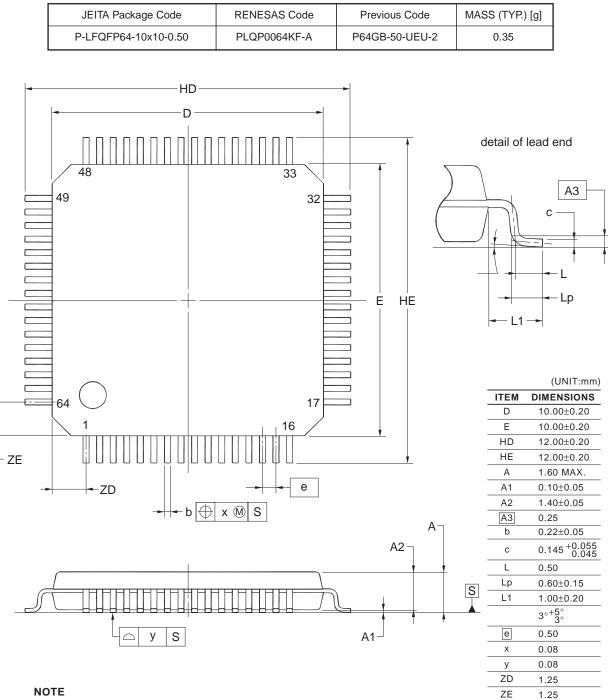
C4: A capacitor connected between $V_{{\mbox{\tiny L4}}}$ and GND


C1 = C2 = C3 = C4 = 0.47 μ F \pm 30%

2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.11 Timing Specifications for Switching Flash Memory Programming Modes ($T_A = -40$ to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнd	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

R5F10RLAAFB, R5F10RLCAFB R5F10RLAGFB, R5F10RLCGFB

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.