

Welcome to E-XFL.COM

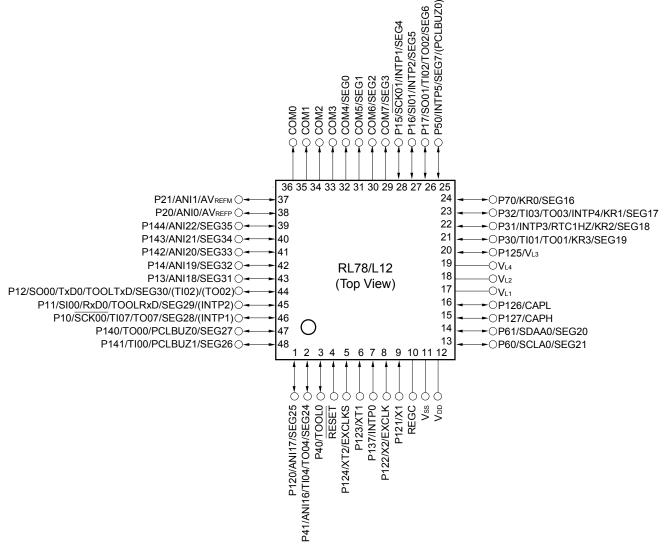
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

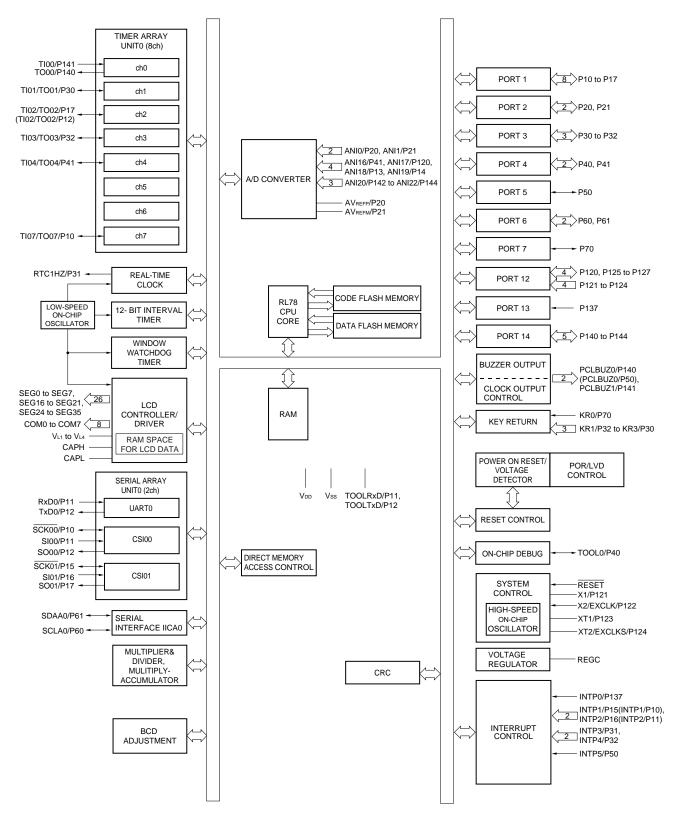
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 7x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rfagfp-x0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.3 48-pin products

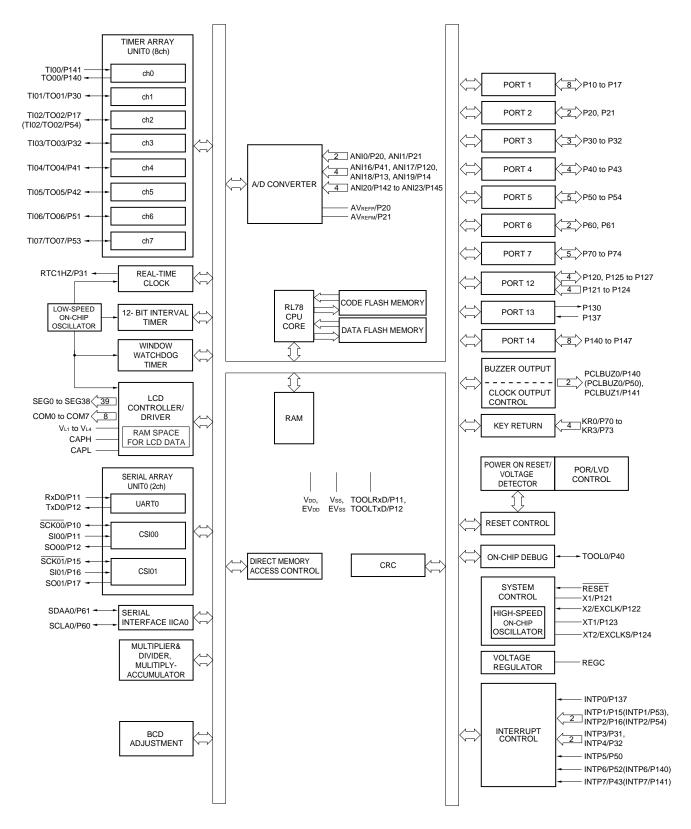
• 48-pin plastic LQFP (fine pitch) (7 × 7)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).


1.5.3 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

RENESAS

1.5.5 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

temperature

Storage temperature

Tstg

-65 to +150

°C

(3/3)

Absolute Maximum Ratings (T_A = 25°C)

	in Katings ((0/0	
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		–1	mA
Output current, low	lol1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	Та	In normal operation	ion mode	-40 to +85	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

In flash memory programming mode

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz
 - $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

2.5.2 Serial interface IICA

(1) I^2C standard mode

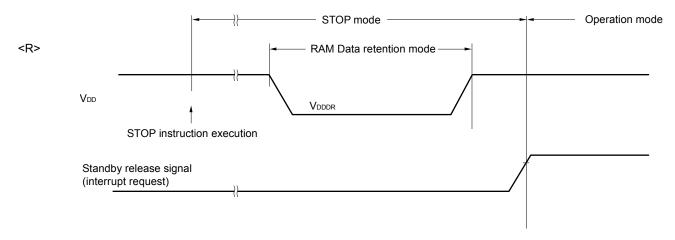
(TA = -40 to +85°C, 1.6 V \leq EV_DD = V_DD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conditions		high- I main) ode	LS (low-speed main) Mode		LV (low- voltage main) Mode		Unit			
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.				
SCLA0 clock frequency	f sc∟	Standard	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	kHz			
		mode:	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100				
		fclk≥ 1 MHz	$1.8~V \le EV_{\text{DD}} \le 5.5~V$			0	100	0	100				
			$1.6~V \leq EV_{\text{DD}} \leq 5.5~V$					0	100				
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.7		4.7		4.7		μs			
		$2.4 V \le EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7					
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.7		4.7					
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.7					
Hold time Note 1	thd:sta	$2.7 V \leq EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs			
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.0		4.0		4.0					
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.0		4.0					
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$						4.0					
Hold time when SCLA0 = "L"	t LOW	$2.7 V \le EV_{DD} \le 5.5 V$ 4.7			4.7		4.7		μs				
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		4.7		4.7		4.7					
		$1.8~V \leq EV_{\text{DD}} \leq 5.5~V$				4.7		4.7					
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.7					
Hold time when SCLA0 = "H"	tніgн	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs			
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.0		4.0		4.0					
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.0		4.0					
						$1.6 V \le EV_{DD}$	≤ 5.5 V					4.0	
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	250		250		250		ns			
		$2.4 V \le EV_{DD}$	≤ 5.5 V	250		250		250					
		$1.8 V \le EV_{DD}$	≤ 5.5 V			250		250					
		$1.6 V \le EV_{DD}$	≤ 5.5 V					250					
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 V \le EV_{DD}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs			
		$2.4 \text{ V} \le \text{EV}_{\text{DD}}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45				
		$1.8 V \le EV_{DD}$	≤ 5.5 V			0	3.45	0	3.45				
		$1.6 V \le EV_{DD}$	≤ 5.5 V					0	3.45				
Setup time of stop condition	tsu:sto	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs			
		$2.4 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0					
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.0		4.0					
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.0					
Bus-free time	t BUF	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7		μs			
		$2.4 V \le EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7					
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.7		4.7					
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.7					

(Notes and Remark are listed on the next page.)

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω


<R>

2.8 RAM Data Retention Characteristics

(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

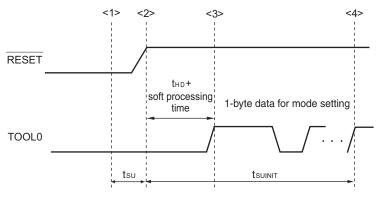
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclk	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		24	MHz
<r></r>	Number of code flash rewrites Note 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C$	1,000			Times
<r></r>	Number of data flash rewrites Note 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C$		1,000,000		
<r></r>			Retained for 5 years $T_A = 85^{\circ}C$	100,000			
<r></r>			Retained for 20 years $T_A = 85^{\circ}C$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

- The retaining years are until next rewrite after the rewrite.
- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after a reset is released during this period.
 - $t_{\text{SU:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

(1/3)

3.1 Absolute Maximum Ratings

	i tatilige (ii/	20 0)		(1/0)	
Parameter	Symbols	Conditions	Ratings	Unit	
Supply voltage	Vdd	V _{DD} = EV _{DD}	-0.5 to +6.5	V	
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V	
	EVss		-0.5 to +0.3	V	
REGC pin input voltage	EGC pin input voltage VIREGC REGC0.3 to + and -0.3 to VDD				
Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	-0.3 to EV_DD + 0.3 and -0.3 to V_DD + $0.3^{\text{Note 2}}$	V	
	V ₁₂	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V	
	V _{I3}	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V	
Output voltage	Vo1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V	
	V _{O2}	P20, P21	-0.3 to V _{DD} + 0.3 ^{Note 2}	V	
Analog input voltage	VAI1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V	
	VAI2	ANIO, ANI1	-0.3 to V _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V	

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note} crystal resonator	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **3.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Oscillators	Parameters	Conditions			TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1		+1	%
clock frequency accuracy		–40 to –20°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to 3.4 AC Characteristics for instruction execution time.

	,		,	,				•
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Iol1	Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147					8.5 Note 2	mA
	Per pin for P	60, P61			15.0 Note 2	mA		
		Total of P10 to P14, P40 to P43, P120,		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			40.0	mA
		P130, P140 to P147 (When duty = 70% ^{Note 3})	$2.7~V \le EV_{\text{DD}} < 4.0~V$			15.0	mA	
			= 70% - 10%	$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
		Total of P15	to P17, P30 to P32, P50	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			40.0	mA
		P125 to P127	$2.7~V \leq EV_{DD} < 4.0~V$			35.0	mA	
lo12				$2,4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
							80.0	mA
	Iol2	P20, P21	Per pin				0.4	mA
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			0.8	mA	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 40.0 mA

Total output current of pins = $(40.0 \times 0.7)/(80 \times 0.01) \cong 35.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

1440 10 +1		<u> </u>	(3/3				
Items Symbo		Conditions	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EVDD		EVDD	V
	VIH2	P10, P11, P15, P16	TTL input buffer 4.0 V \leq EV _{DD} \leq 5.5 V	2.2		EVdd	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	2.0		EVDD	V
-			TTL input buffer $2.4 \text{ V} \leq EV_{DD} < 3.3 \text{ V}$	1.50		EVDD	V
	VIH3	P20, P21	0.7Vdd		VDD	V	
	VIH4	P60, P61		0.7EVDD		EVDD	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	0.8Vdd		Vdd	V	
Input voltage, low	VIL1	P10 to P17, P30 to P32, P40 to P43, Normal input buff P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147		0		0.2EV _{DD}	V
	VIL2	P10, P11, P15, P16	TTL input buffer 4.0 V \leq EV _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20, P21		0		0.3VDD	V
	VIL4	P60, P61		0		0.3EV _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	0		0.2VDD	V	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Caution The maximum value of Vi of pins P10, P12, P15, and P17 is EVDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

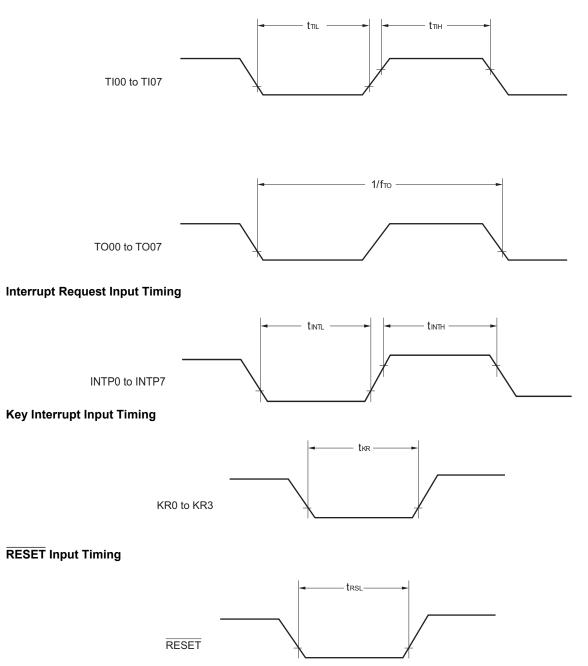
(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/3)

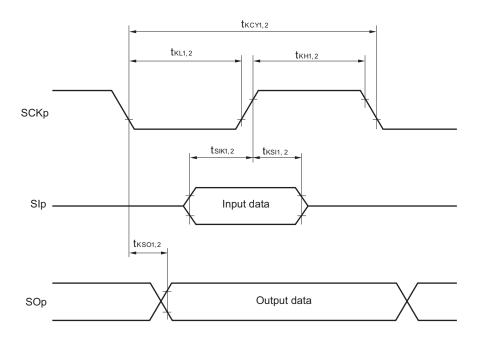
•		,		,		,				
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply		Operating	HS (high-	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
Current Note 1	mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		1.5		mA	
		mode		Normal	V _{DD} = 5.0 V		3.3	5.3	mA	
					operation	V _{DD} = 3.0 V		3.3	5.3	mA
				f _{IH} = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.5	3.9	mA
					operation	V _{DD} = 3.0 V		2.5	3.9	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.7	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation Normal operation	Resonator connection		3.0	4.8	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,		Square wave input		2.8	4.7	mA
				V _{DD} = 3.0 V		Resonator connection		3.0	4.8	mA
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.8	2.8	mA	
				VDD - 3.0 V	operation	Resonator connection		1.8	2.8	mA
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.8	2.8	mA	
			V _{DD} = 3.0 V	operation	Resonator connection		1.8	2.8	mA	
		Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		3.5	4.9	μA	
			clock	Note 4	operation	Resonator connection		3.6	5.0	μA
			operation	T _A = −40°C						
				fsub = 32.768 kHz Note 4	Normal	Square wave input		3.6	4.9	μA
			T _A = +25°C	operation	Resonator connection		3.7	5.0	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		3.7	5.5	μA
				Note 4 T _A = +50°C	operation	Resonator connection		3.8	5.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		3.8	6.3	μA
			Note 4	operation	Resonator connection		3.9	6.4	μA	
			T _A = +70°C							
			fsuв = 32.768 kHz	Normal	Square wave input		4.1	7.7	μA	
			Note 4 $T_A = +85^{\circ}$		operation	Resonator connection		4.2	7.8	μA
				f _{SUB} = 32.768 kHz Note 4	Normal operation	Square wave input		6.4	19.7	μA
				T _A = +105°C	operation	Resonator connection		6.5	19.8	μA

(Notes and Remarks are listed on the next page.)

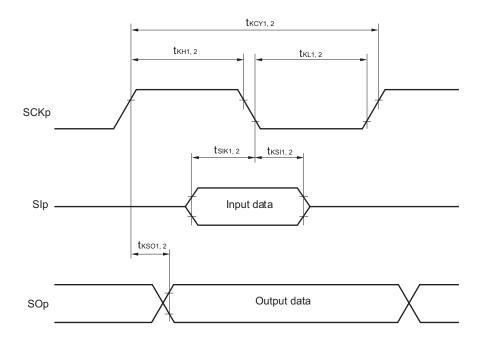
(T _A = –40 to +	105°C, 2.	$4 \text{ V} \leq \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$						(3/3)
Parameter	Symbol	Conditions				TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	_{FIL} Note 1					0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped				0.08		μA
12-bit interval timer current	I⊤ Notes 1, 2, 4					0.08		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊪ = 15 kHz			0.24		μA	
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, A		1.3 0.5	1.7 0.7	mA mA	
A/D converter reference voltage current	IADREF Note 1		1		75.0		μA	
Temperature sensor operating current	ITMPS Note 1					75.0		μA
LVD operating current	ILVD Notes 1, 7					0.08		μA
Self- programming operating current	IFSP Notes 1, 9					2.50	12.20	mA
BGO operating current	BGO Notes 1, 8					2.50	12.20	mA
LCD operating current	LCD1 Notes 11, 12	External resistance division method		$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	ILCD2 Note 11	Internal voltage boo	osting method $V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.1 V (VLCD = 12H)$			1.12	3.70	μA
				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.20	μA
	ILCD3 Note 11	^{D3 Note 11} Capacitor split method		$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.50	μA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	1.10	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD}$ = 3.0 V			1.20	2.04	mA
		CSI/UART operatio	n			0.70	1.54	mA

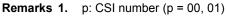

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(3/3)


(Notes and Remarks are listed on the next page.)

TI/TO Timing





CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

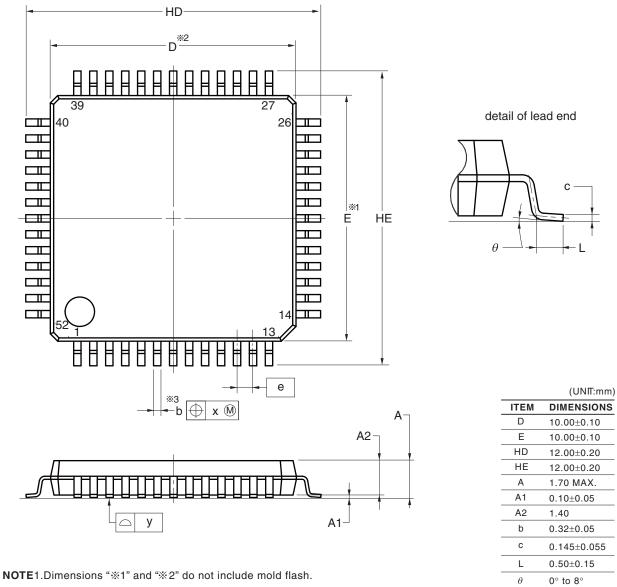
(2) 1/4 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1 Note 4	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 <i>µ</i> F	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} = 0.47 μF		$3 V_{L1} - 0.12$	3 VL1	3 VL1	V
Quadruply output voltage	VL4 Note 4	C1 to C5 ^{Note 1} = 0.47 μF		$4 V_{L1} - 0.16$	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL


- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND
- $C1 = C2 = C3 = C4 = C5 = 0.47 \,\mu\text{F}{\pm}30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- **4.** VL4 must be 5.5 V or lower.

4.4 52-pin Products

R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

2.Dimension "X3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

е

x y 0.65

0.10

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-case Lectronics nong roug Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +55-631-30200, Fax: +65-6213-0300 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141