

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

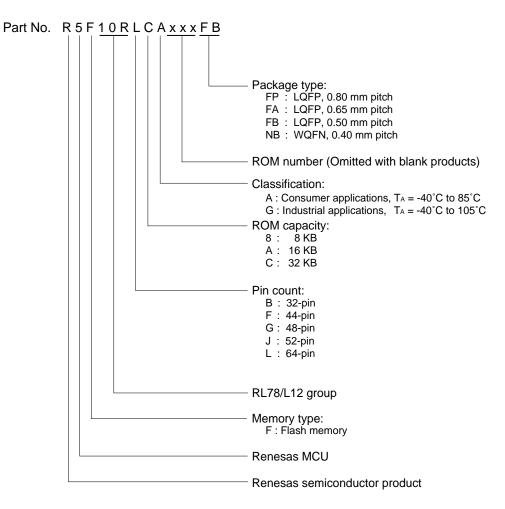
Details

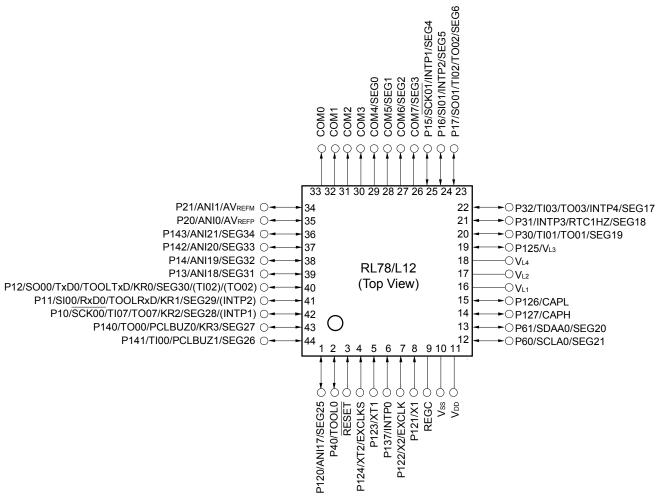
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 7x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rfcafp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

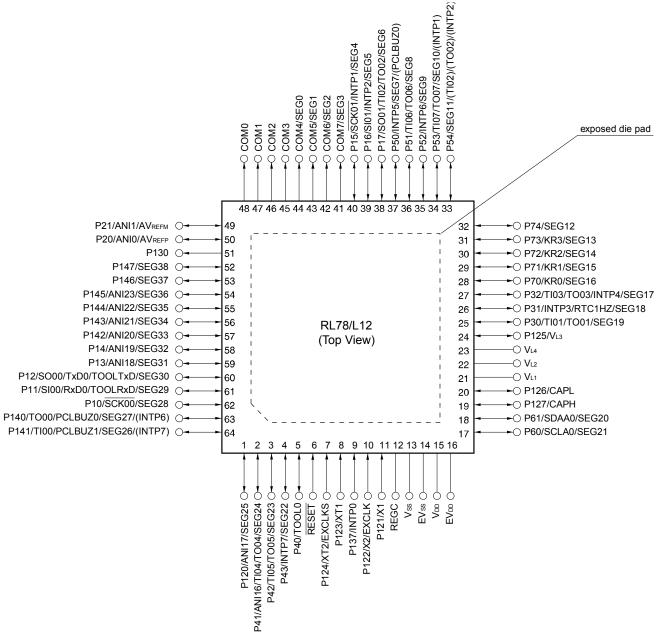



Figure 1-1 Part Number, Memory Size, and Package of RL78/L12

1.3.2 44-pin products

• 44-pin plastic LQFP (10 × 10)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

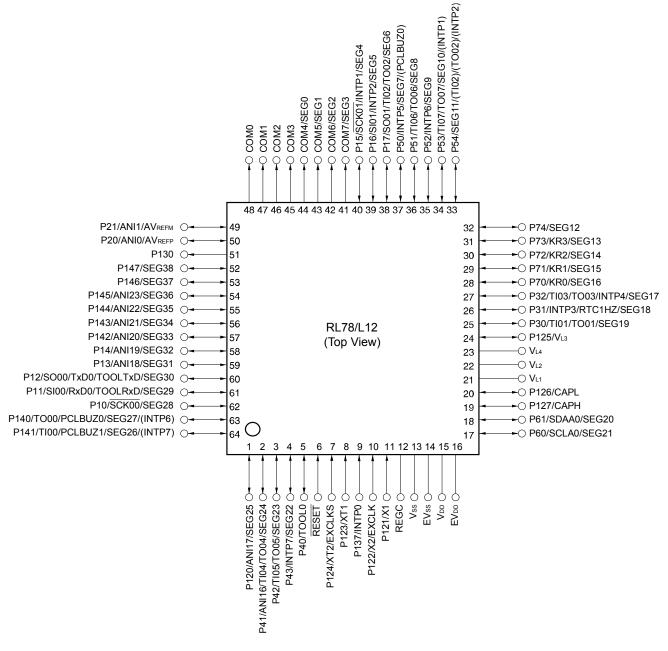
1.3.5 64-pin products

• 64-pin plastic WQFN (8 × 8)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

- 64-pin plastic LQFP (fine pitch) (10×10)
- 64-pin plastic LQFP (12 × 12)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

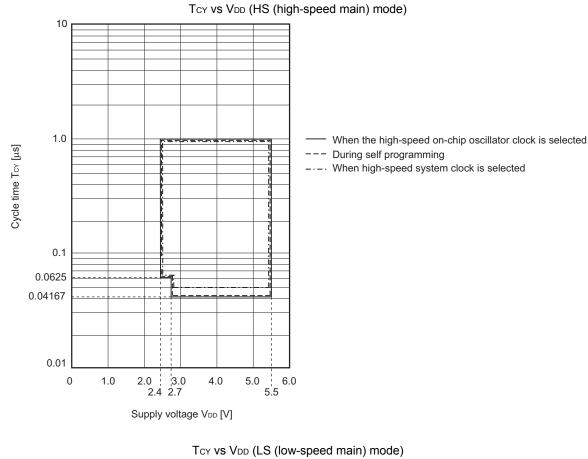
- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

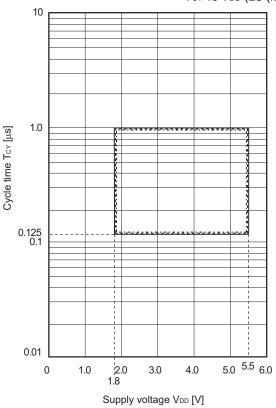
RENESAS

(2/3)

Absolute Maximum Ratings (T_A = 25°C)

					•
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VL1	V₋ı voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} + 0.3	V
	VL2	VL2 voltage ^{Note 1}		–0.3 to VL4 + 0.3 $^{\text{Note 2}}$	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
	VL4 VL4 voltage ^{Note 1}			–0.3 to +6.5	V
	VLCAP	CAPL, CAPH vol	tage ^{Note 1}	–0.3 to VL4 + 0.3 $^{\text{Note 2}}$	V
	Vlout	COM0 to COM7, SEG0 to	External resistance division method	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
		SEG38,	Capacitor split method	-0.3 to V _{DD} + 0.3 ^{Note 2}	
		output voltage	Internal voltage boosting method	–0.3 to VL4 + 0.3 $^{\text{Note 2}}$	


Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.


- 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

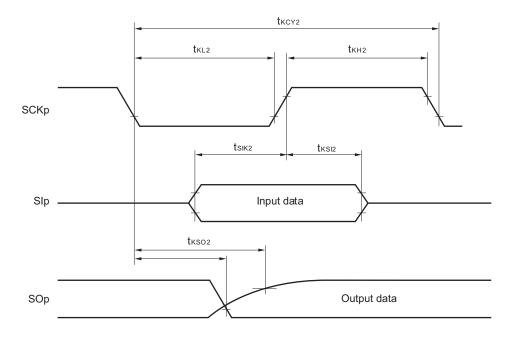
Remark Vss : Reference voltage

Minimum Instruction Execution Time during Main System Clock Operation

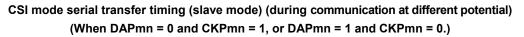
----- When the high-speed on-chip oscillator clock is selected

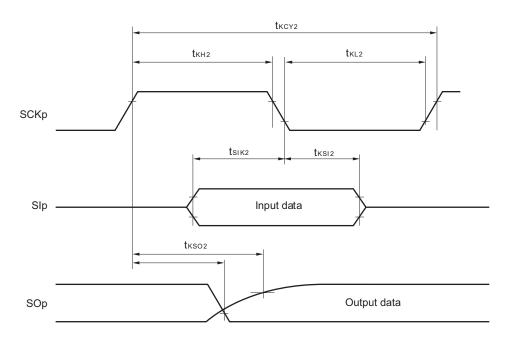
--- During self programming

---- When high-speed system clock is selected


(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol		Conditions		high- main) ode	`	/-speed Mode	voltage	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/f с∟к	$\begin{array}{l} 4.0 \; V \leq E V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq E V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{array}{l} 2.4 \ V \leq E V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		1150		ns
			$\begin{split} & 1.8 \ V \leq E V_{DD} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$			1150		1150		ns
SCKp high-level width	tкнı	$4.0 V \le EV_{DD} \le C_b = 30 \text{ pF}, R_b = 100 \text{ F}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 – 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$2.7 V \le EV_{DD} < 4$ $C_b = 30 \text{ pF}, R_b =$	4.0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 30 \text{ pF}, R_{\text{b}} = 30 \text{ pF}$	3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V, = 5.5 kΩ	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
		$1.8 V \le EV_{DD} < 30 C_b = 30 pF, R_b = 30 PF$	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} , = 5.5 kΩ			tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = \end{array}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 V \le EV_{DD} < C_b = 30 \text{ pF}, R_b = 100 \text{ F}$	4.0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 – 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 V \le EV_{DD} < 3$ $C_b = 30 \text{ pF}, R_b = 3$	3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V, = 5.5 kΩ	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 V \le EV_{DD} < 30 C_b = 30 pF, R_b = 30 PF$	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} , = 5.5 kΩ			tксү1/2 - 50		tксү1/2 - 50		ns


Note Use it with $EV_{DD} \ge V_b$.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(2) I^2C fast mode

(TA = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Symbol Conditions		speed	HS (high- speed main) Mode		LS (low-speed main) Mode		LV (low- voltage main) Mode	
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscl	Fast mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fclк≥ 3.5	$2.4~V \le EV_{\text{DD}} \le 5.5~V$	0	400	0	400	0	400	
		MHz	$1.8~V \le EV_{\text{DD}} \le 5.5~V$			0	400	0	400	
Setup time of restart condition	tsu:sta	$2.7 \; V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		
		$1.8 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V			0.6		0.6		
Hold time Note 1	thd:sta	$2.7~V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$				0.6		0.6		
Hold time when SCLA0 = "L"	tLOW	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		1.3		1.3		1.3		μs
		$2.4~V \leq EV_{\text{DD}}$	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$			1.3		1.3		
		$1.8 \ V \leq EV_{\text{DD}}$	≤ 5.5 V			1.3		1.3		
Hold time when SCLA0 = "H"	t HIGH	$2.7 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		0.6		0.6		0.6		
		$1.8~V \leq EV_{\text{DD}} \leq 5.5~V$				0.6		0.6		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	100		100		100		ns
		$2.4~V \leq EV_{\text{DD}}$	≤ 5.5 V	100		100		100		
		$1.8~V \leq EV_{\text{DD}} \leq 5.5~V$				100		100		
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μs
		$2.4~V \leq EV_{\text{DD}}$	$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		0.9	0	0.9	0	0.9	
		$1.8 \text{ V} \leq EV_{DD}$	≤ 5.5 V			0	0.9	0	0.9	
Setup time of stop condition	tsu:sto	$2.7 \; V \leq EV_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
		$2.4 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		
		$1.8 \text{ V} \leq EV_{\text{DD}}$	≤ 5.5 V			0.6		0.6		
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	1.3		1.3		1.3		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		1.3		1.3		1.3		
		$1.8 \text{ V} \leq EV_{DD}$	≤ 5.5 V			1.3		1.3		

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

RemarkThe maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up
resistor) at that time in each mode are as follows.Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (−) = V_{ss} (ADREFM = 0), target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}},$	Reference voltage (-)
= Vss)	

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$		1.2	±7.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±0.85	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±4.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±2.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$			±2.5	LSB
Analog input voltage	VAIN	ANIO, ANI1		0		VDD	V
		ANI16 to ANI23		0		EVDD	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4			V
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (high		VTMPS25 Note 4		V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2,	VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB1	VPOC2,	VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB2		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
VLVDB3			Falling interrupt voltage	1.90	1.94	1.98	V	
		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V	
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB4		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time

(T_A = -40 to +85°C, Vss = 0 V)

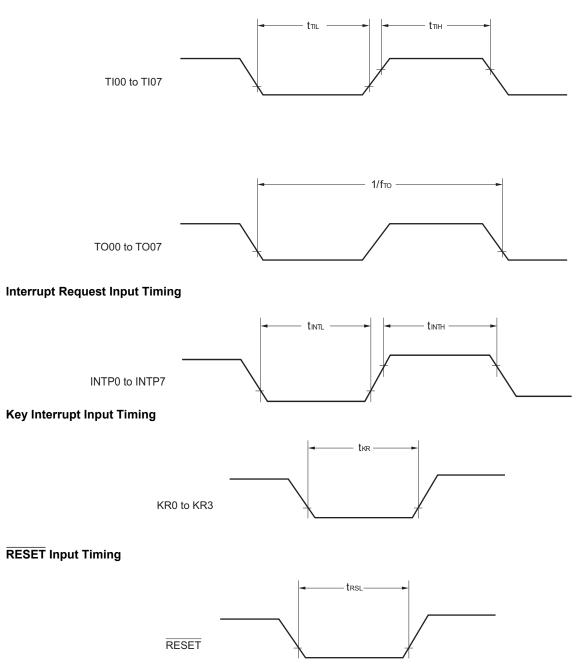
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

Absolute Maximum Ratings (T_A = 25°C)

(3/3)

		-)			(••••)
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	lol1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			–65 to +150	°C


- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

TI/TO Timing

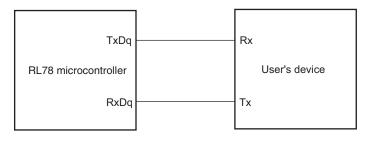
3.5 Peripheral Functions Characteristics

AC Timing Test Points

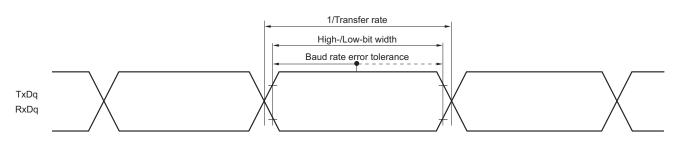
3.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to +105°C, 2.4 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

Parameter	Symbol	C	conditions	HS (high-spee	d main) Mode	Unit
				MIN.	MAX.	
Transfer rate Note 1					fмск/12	bps
			tical value of the um transfer rate _{CLK} ^{Note 2}		2.0	Mbps


Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$) 16 MHz ($2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

2/fмск+66

2/fмск+66

2/fмск + 113

ns

ns

Ns

Delay time from SCKp↓

to SOp output Note 3

Parameter	Symbol	Con	ditions	HS (high-speed	HS (high-speed main) Mode		
				MIN.	MAX.		
SCKp cycle time Note 5	t ксү2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns	
			fмск $\leq 20 \text{ MHz}$	12/fмск		ns	
		$2.7~V \leq EV_{\text{DD}} < 4.0~V$	16 MHz < fмск	16/f мск		ns	
			fмск ≤ 16 MHz	12/fмск		ns	
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		12/fмск and 1000		ns	
SCKp high-/low-level	t кн2,	$4.0~V \le EV_{\text{DD}} \le 5.5~V$		tксү2/2 – 14		ns	
width	tĸ∟2	$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$		tксү2/2 – 16		ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$		tксү2/2 – 36		ns	
SIp setup time tsik2	tsik2	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$,	1/fмск + 40		ns	
(to SCKp↑) ^{Note 1}		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$,	1/fмск + 60		ns	
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		1/fмск + 62		ns	

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

 $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$

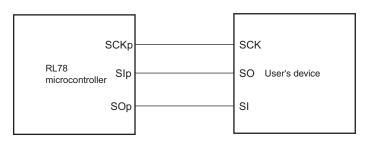
 $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$

 $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$

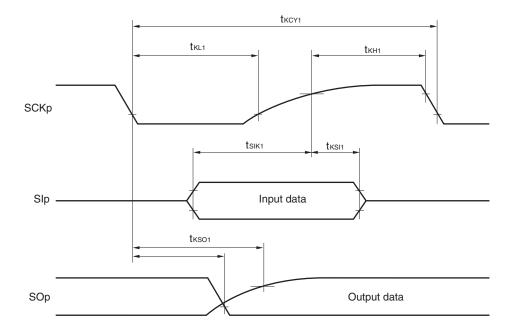
- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SOp output lines.
- 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

C = 30 pF Note 4

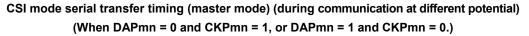
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

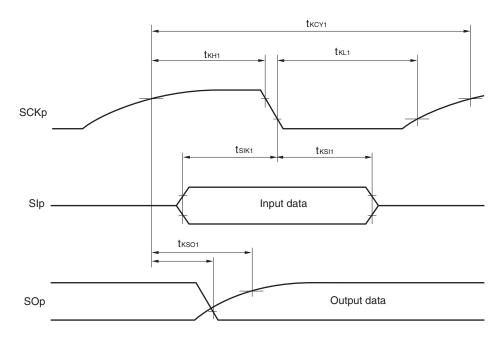

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 - g: PIM number (g = 1)

tkso2

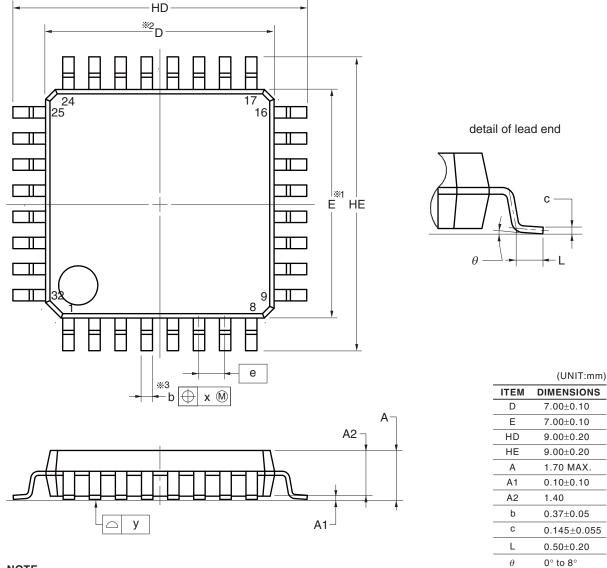

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))


CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

4. PACKAGE DRAWINGS

4.1 32-pin Products

R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

Page 125 of 131

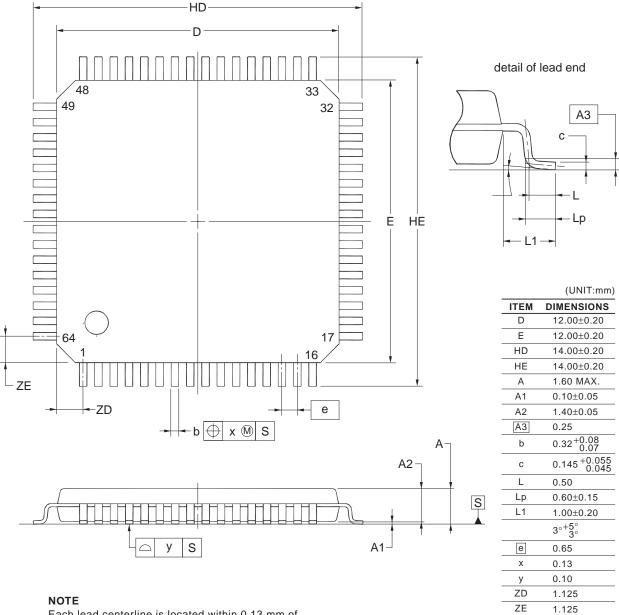
е

х

у

0.80

0.20


0.10

4.5 64-pin Products

R5F10RLAAFA, R5F10RLCAFA R5F10RLAGFA, R5F10RLCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/L12 Datasheet

			Description		
Rev.	Date	Page	Summary		
0.01	Feb 20, 2012	-	First Edition issued		
0.02 Sep 26,	Sep 26, 2012	7, 8	Modification of caution 2 in 1.3.5 64-pin products		
		15	Modification of I/O port in 1.6 Outline of Functions		
		-	Modification of 2. ELECTRICAL SPECIFICATIONS (TARGET)		
		-	Update of package drawings in 3. PACKAGE DRAWINGS		
1.00	Jan 31, 2013	11 to 15	Modification of 1.5 Block Diagram		
		16	Modification of Note 2 in 1.6 Outline of Functions		
		17	Modification of 1.6 Outline of Functions		
		-	Deletion of target in 2. ELECTRICAL SPECIFICATIONS		
		18	Addition of caution 2 to 2. ELECTRICAL SPECIFICATIONS		
		19	Addition of description, note 3, and remark 2 to 2.1 Absolute Maximum Ratings		
		20	Modification of description and addition of note to 2.1 Absolute Maximum Ratings		
		22, 23	Modification of 2.2 Oscillator Characteristics		
		30	Modification of notes 1 to 4 in 2.3.2 Supply current characteristics		
		32	Modification of notes 1, 3 to 6, 8 in 2.3.2 Supply current characteristics		
		34	Modification of notes 7, 9, 11, and addition of notes 8, 12 to 2.3.2 Supply current		
			characteristics		
		36	Addition of description to 2.4 AC Characteristics		
		38, 40 to	Modification of 2.5.1 Serial array unit		
		42, 44 to			
		46, 48 to			
		52, 54, 55			
		57, 58	Modification of 2.5.2 Serial interface IICA		
		62	Modification of 2.6.2 Temperature sensor/internal reference voltage characteristics		
		64	Addition of note and caution in 2.6.5 Supply voltage rise time		
		69	Modification of 2.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics		
		69	Modification of conditions in 2.9 Timing Specs for Switching Flash Memory Programming Modes		
		70	Modification of 2.10 Timing Specifications for Switching Flash Memory		
			Programming Modes		
2.00	Jan 10, 2014	1	Modification of 1.1 Features		
		3	Modification of Figure 1-1		
		4	Modification of part number, note, and caution		
		5 to 10	Deletion of COMEXP pin in 1.3.1 to 1.3.5.		
		11	Modification of description in 1.4 Pin Identification		
		12 to 16	Deletion of COMEXP pin in 1.5.1 to 1.5.5		
		17	Modification of table and note 2 in 1.6 Outline of Functions		
		20	Modification of description in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/3)		
		21	Modification of description and note 2 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (2/3)		
		23	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics		
		23	Modification of table in 2.2.2 On-chip oscillator characteristics		
		24	Modification of table, notes 2 and 3 in 2.3.1 Pin characteristics (1/5)		
		25	Modification of notes 1 and 3 in 2.3.1 Pin characteristics (2/5)		
		30	Modification of notes 1 and 4 in 2.3.2 Supply current characteristics (1/3)		
		31, 32	Modification of table, notes 1, 5, and 6 in 2.3.2 Supply current characteristics (2/3)		
		33, 34	Modification of table, notes 1, 3, 4, and 5 to 10 in 2.3.2 Supply current characteristics (3/3)		