

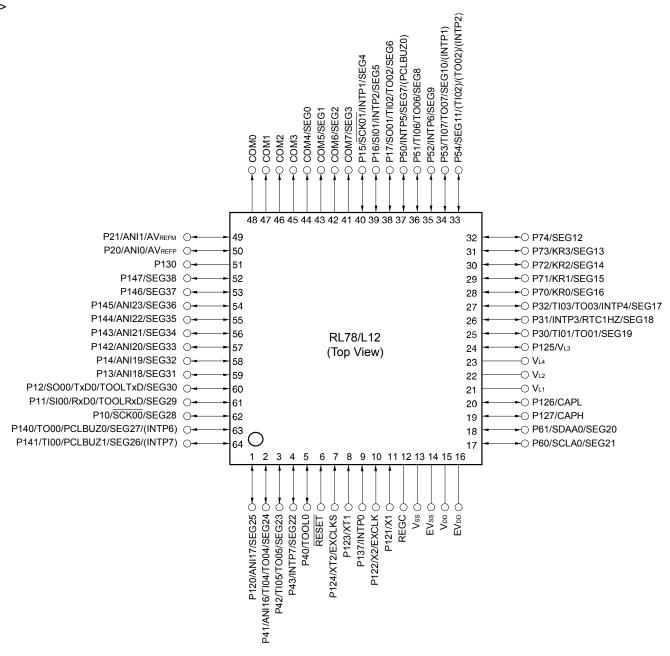
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

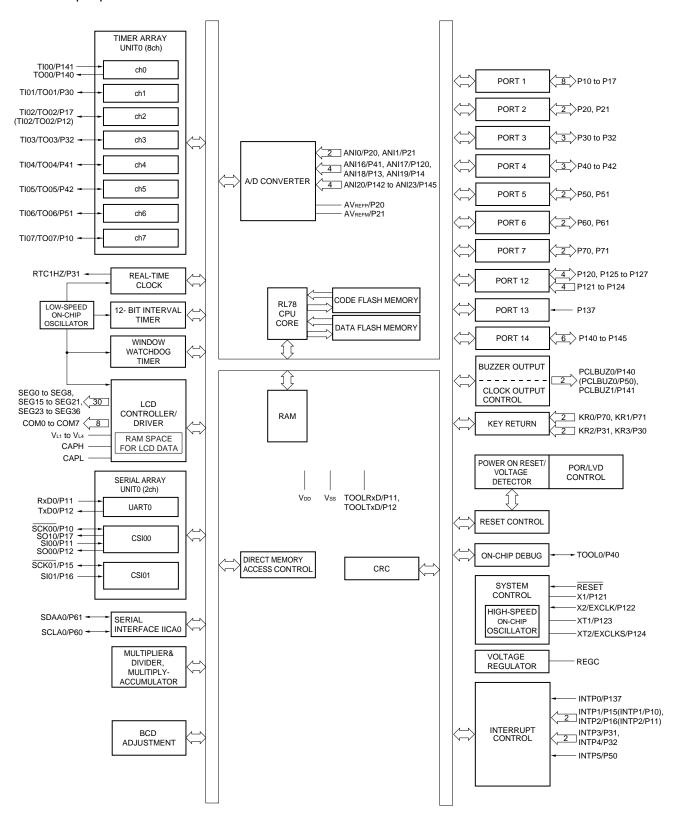
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 7x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rfcafp-x0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/L12 1. OUTLINE

- 64-pin plastic LQFP (fine pitch) (10 × 10)
- 64-pin plastic LQFP (12 × 12)


<R>

- Cautions 1. Make EVss pin the same potential as Vss pin.
 - 2. Make VDD pin the same potential as EVDD pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RL78/L12 1. OUTLINE

1.5.4 52-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

Absolute Maximum Ratings (TA = 25°C)

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Iон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	lo _{L1}	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	lol2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient temperature	Та	In normal operation	on mode programming mode	-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator	2.7 V ≤ V _{DD} ≤ 5.5 V	1.0		20.0	MHz
		2.4 V ≤ V _{DD} ≤ 2.7 V	1.0		16.0	MHz
		1.8 V ≤ V _{DD} < 2.7 V	1.0		8.0	MHz
		1.6 V ≤ V _{DD} <1.8 V	1.0		4.0	MHz
XT1 clock oscillation frequency (fxr) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **2.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

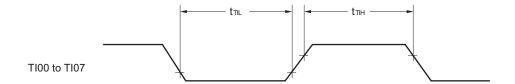
Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	1.8 V ≤ VDD ≤ 5.5 V	-1		+1	%
clock frequency accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5		+5	%
		–40 to –20°C	1.8 V ≤ V _{DD} ≤ 5.5 V	-1.5		+1.5	%
			1.6 V ≤ V _{DD} < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

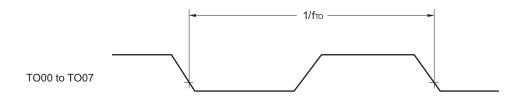
Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

This indicates the oscillator characteristics only. Refer to 2.4 AC Characteristics for instruction execution time.

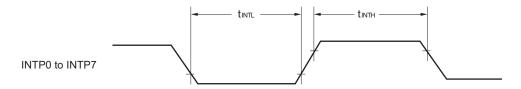
2.4 AC Characteristics

2.4.1 Basic operation

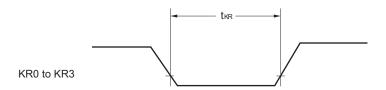

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

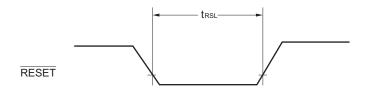

Items	Symbol	0.0 -	Condition	ons		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main	HS (high-sp	peed	2.7 V ≤ V _{DD} ≤ 5.5 V	0.04167		1	μs
instruction execution time)		system	main) mode		2.4 V≤V _{DD} < 2.7 V			1	μs
		clock (fmain) operation	LV (low volt		1.6 V≤V _{DD} ≤5.5 V	0.25		1	μs
			LS (low-spe		1.8 V ≤ V _{DD} ≤ 5.5 V	0.125		1	μs
		Subsystem operation	clock (fsua)		1.8 V≤V _{DD} ≤5.5 V	28.5	30.5	31.3	μs
		In the self .	HS (high-sp		$2.7 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	0.04167		1	μs
		programmin g mode	main) mode	9	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		3	LV (low volt main) mode		1.8 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
			LS (low-spe main) mode		1.8 V ≤ V _{DD} ≤ 5.5 V	0.125		1	μs
External main system clock	fex	$2.7~V \le V_{DD}$	≤ 5.5 V			1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD}	< 2.7 V			1.0		16.0	MHz
		1.8 V ≤ V _{DD}	< 2.4 V			1.0		8.0	MHz
		1.6 V ≤ V _{DD}	< 1.8 V			1.0		4.0	MHz
	fexs					32		35	kHz
External main system clock input	texh, texl	$2.7 \text{ V} \leq \text{V}_{DD}$	≤ 5.5 V			24			ns
high-level width, low-level width		2.4 V ≤ V _{DD} < 2.7 V			30			ns	
		1.8 V ≤ V _{DD} < 2.4 V			60			ns	
		1.6 V ≤ V _{DD}	< 1.8 V			120			ns
	texhs, texhs					13.7			μs
TI00 to TI07 input high-level width, low-level width	tтін, tтіL					1/fмск+10			ns
TO00 to TO07 output frequency	f то	HS (high-sp) V ≤	$EV_{DD} \leq 5.5 V$			16	MHz
		main) mode	2.7	7 V ≤	EV _{DD} < 4.0 V			8	MHz
			2.4	4 V ≤	EV _{DD} < 2.7 V			4	MHz
		LS (low-spe main) mode		8 V ≤	EV _{DD} ≤ 5.5 V			4	MHz
		LV (low volt main) mode		6 V ≤	EVDD ≤ 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-sp) V ≤	$EV_{DD} \le 5.5 V$			16	MHz
frequency		main) mode	2.7	7 V ≤	EV _{DD} < 4.0 V			8	MHz
					EV _{DD} < 2.7 V			4	MHz
		LS (low-spe main) mode	:	8 V ≤	≦ EV _{DD} ≤ 5.5 V			4	MHz
		LV (low-volt			$EV_{DD} \leq 5.5 V$			4	MHz
		main) mode	1.0		EV _{DD} < 1.8 V			2	MHz
Interrupt input high-level width, low-level width	tinth,	INTP0			V _{DD} ≤ 5.5 V	1			μs
	tintl	INTP1 to IN			EV _{DD} ≤ 5.5 V	1			μs
Key interrupt input low-level width	t kr	KR0 to KR3			EV _{DD} ≤ 5.5 V	250			ns
DECET lave laved with	4		1.6	o V ≤	EV _{DD} < 1.8 V	1			μs
RESET low-level width	t RSL					10			μS

Remark fmck: Timer array unit operation clock frequency

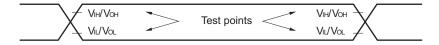

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing



RESET Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

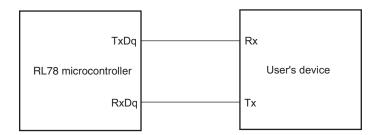
(1) During communication at same potential (UART mode)

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

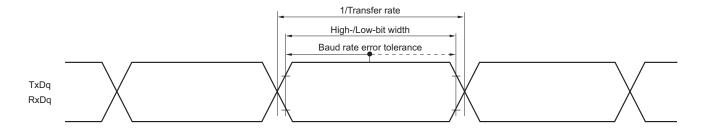
Parameter	Symbol		Conditions		h-speed Mode				-voltage Mode	Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		2.4 \	/ ≤ EV _{DD} = V _{DD} ≤ 5.5 V		fмск/6		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		4.0		1.3		0.6	Mbps
		1.8 \	/ ≤ EV _{DD} = V _{DD} ≤ 5.5 V				fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$				1.3		0.6	Mbps
		1.6 \	/ ≤ EV _{DD} = V _{DD} ≤ 5.5 V						fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$						0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)


LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

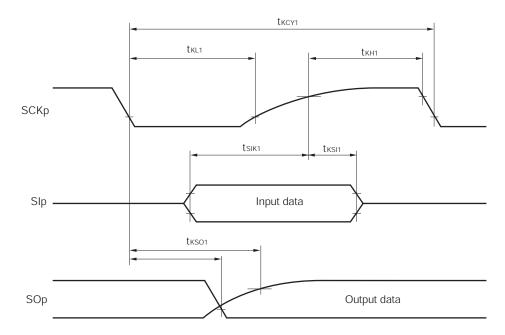
Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

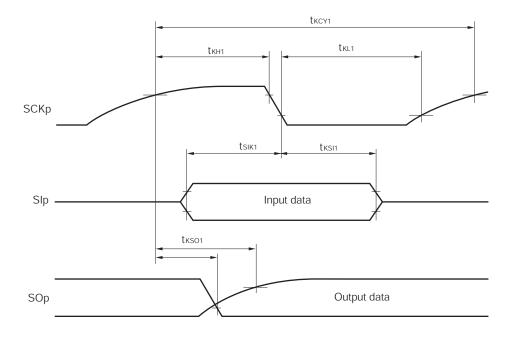
Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).


m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) (T_A = −40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)


Parameter	Symbol	Cond	itions	HS (high		LS (low main)			-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note}	tkcy2	$4.0 \text{ V} \leq \text{EV}_{DD} \leq 5.5 \text{ V}$	20 MHz < fмск	8/ƒмск						ns
5			fмck ≤ 20 MHz	6/ƒмск		6/fмск		6/fмск		ns
		2.7 V ≤ EV _{DD} < 4.0 V	16 MHz < f _{MCK}	8/fмск						ns
			fмcк ≤ 16 MHz	6/ƒмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \leq \text{EV}_{DD} \leq 5.5 \text{ V}$		6/fмск and 500		6/ƒмск		6/ƒмск		ns
		1.8 V ≤ EV _{DD} < 2.4 V				6/fмск		6/ƒмск		ns
		1.6 V ≤ EV _{DD} < 1.8 V						6/ƒмск		ns
SCKp high-/low- level width	tkH2, tkL2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		tксү2/2 - 7		tксү2/2 -7		tксү2/2 -7		ns
		2.7 V ≤ EV _{DD} < 4.0 V		tксү2/2 - 8		tkcy2/2 -8		tксү2/2 -8		ns
		2.4 V ≤ EV _{DD} < 2.7 V		tксү2/2 - 18		t _{KCY2} /2 - 18		t _{KCY2} /2 - 18		ns
		1.8 V ≤ EV _{DD} < 2.4 V				tkcy2/2 - 18		tксү2/2 - 18		ns
		1.6 V ≤ EV _{DD} < 1.8 V						tkcy2/2 -66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		2.4 V ≤ EV _{DD} < 2.7 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		
		1.8 V ≤ EV _{DD} < 2.4 V				1/fмск + 30		1/fмск + 30		ns
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск + 40		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		1.8 V ≤ EV _{DD} < 2.4 V				1/fмск + 31		1/fмск + 31		ns
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск + 250		ns

(Notes, Caution, and Remarks are listed on the next page.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}. 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (1/2)

(1A = -40 to +65	°C, 1.8 V	/ ≤ EVDD = VDD ≤ 5.	5 V, Vss = EVss = 0						(1/2)	
Parameter	Symbol	Conditions			high- main) ode	'	/-speed mode	mo	e main) ode	Unit
			_	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$	20 MHz < fмck ≤ 24 MHz	12/f мск						ns
		$2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	8 MHz < fмck ≤ 20 MHz	10/f мск						ns
			4 MHz < fMck ≤ 8 MHz	8/fмск		16/f мск				ns
			fмcк≤4 MHz	6/fмск		10/fмск		10/f мск		ns
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	16/f мск						ns
		$2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	16 MHz < fмck ≤ 20 MHz	14/f мск						ns
			8 MHz < f _{MCK} ≤ 16 MHz	12/f мск						ns
			4 MHz < f _{MCK} ≤ 8 MHz	8/fмск		16/fмск				ns
			fмcк ≤4 MHz	6/fмск		10/fмск		10/fмск		ns
		2.4 V ≤ EV _{DD} < 3.3 V,	20 MHz < f _{MCK} ≤ 24 MHz	36/fмск						ns
		$1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$	16 MHz < f _{MCK} ≤ 20 MHz	32/fмск						ns
			8 MHz < fмcк ≤ 16 MHz	26/fмск						ns
			4 MHz < fMCK ≤ 8 MHz	16/f мск		16/fмск				ns
			fмck≤4 MHz	10/fмск		10/fмск		10/fмск		ns
		1.8 V ≤ EV _{DD} < 3.3 V,	4 MHz < f _{MCK} ≤ 8 MHz			16/fмск				ns
		$1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}^{\text{Note 2}}$	fмcк≤4 MHz			10/fмск		10/f мск		ns
SCKp high-/low-level width	1-/low-level t_{KH2} , t_{KL2} $4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}_{CM}$	4.0 V ≤ EV _{DD} ≤ 5.5 V	$V_{\rm t}, 2.7 \ {\rm V} \le {\rm V_b} \le 4.0 \ {\rm V}$	tkcy2/2 - 12		txcy2/2 - 50		tkcy2/2 - 50		ns
		2.7 V ≤ EV _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	tkcy2/2 - 18		txcy2/2 - 50		tkcy2/2 - 50		ns
		2.4 V ≤ EV _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}$	tkcy2/2 - 50		txcy2/2 - 50		tkcy2/2 - 50		ns
		$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$				tkcy2/2 - 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsik2	4.0 V ≤ EV _{DD} < 5.5 V	$V_{b} \leq V_{b} \leq 4.0 \text{ V}$	1/f _{MCK} + 20		1/f _{MCK} + 30		1/fmck + 30		ns
		2.7 V ≤ EV _{DD} < 4.0 V	$V_{c}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	1/f _{MCK} + 20		1/fmck + 30		1/fmck + 30		ns
		2.4 V ≤ EV _{DD} < 3.3 V	$V_{b} = 0.0 \text{ V}$	1/f _{MCK} + 30		1/fmck + 30		1/fmck + 30		ns
		$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$				1/fmck + 30		1/fmck + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2	4.0 V ≤ EV _{DD} < 5.5 V	$V_{1}, 2.7 \text{ V} \le V_{b} \le 4.0 \text{ V}$	1/f _{MCK} + 31		1/fmck+ 31		1/f _{MCK} + 31		ns
	2.7 V ≤ EV _{DD} < 4.0 V		$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	1/f _{MCK} + 31		1/f _{MCK} + 31		1/f _{MCK} + 31		ns
		2.4 V ≤ EV _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}$	1/f _{MCK} + 31		1/fmck+ 31		1/f _{MCK} + 31		ns
		$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$				1/f _{MCK} + 31		1/f _{MCK} + 31		ns

(Notes, Caution and Remarks are listed on the next page.)

2.5.2 Serial interface IICA

(1) I²C standard mode

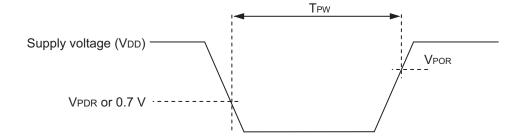
(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Conditions			(high- I main) ode	,	/-speed Mode	voltage	low- e main) ode	Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	Standard	2.7 V ≤ EV _{DD} ≤ 5.5 V	0	100	0	100	0	100	kHz
		mode:	2.4 V ≤ EV _{DD} ≤ 5.5 V	0	100	0	100	0	100	
		fc∟k≥ 1 MHz	1.8 V ≤ EV _{DD} ≤ 5.5 V			0	100	0	100	
			1.6 V ≤ EV _{DD} ≤ 5.5 V					0	100	
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.7		4.7		4.7		μs
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	4.7		4.7		4.7		
		1.8 V ≤ EV _{DD} s	≤ 5.5 V			4.7		4.7		
		1.6 V ≤ EV _{DD} s	≤ 5.5 V					4.7		
Hold time Note 1	thd:sta	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.0		4.0		4.0		μs
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	4.0		4.0		4.0		
		1.8 V ≤ EV _{DD} :	≤ 5.5 V			4.0		4.0		
		1.6 V ≤ EV _{DD} :	≤ 5.5 V					4.0		
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD} :	≤ 5.5 V	4.7		4.7		4.7		μs
		2.4 V ≤ EV _{DD} :	≤ 5.5 V	4.7		4.7		4.7		
		1.8 V ≤ EV _{DD} :	≤ 5.5 V			4.7		4.7		
		1.6 V ≤ EV _{DD} :	≤ 5.5 V					4.7		
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.0		4.0		4.0		μs
		2.4 V ≤ EV _{DD} :	≤ 5.5 V	4.0		4.0		4.0		
		1.8 V ≤ EV _{DD} :	≤ 5.5 V			4.0		4.0		
		1.6 V ≤ EV _{DD} :	≤ 5.5 V					4.0		
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD} :	≤ 5.5 V	250		250		250		ns
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	250		250		250		
		1.8 V ≤ EV _{DD} s	≤ 5.5 V			250		250		
		1.6 V ≤ EV _{DD} :	≤ 5.5 V					250		
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD} s	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	0	3.45	0	3.45	0	3.45	
		1.8 V ≤ EV _{DD} s	≤ 5.5 V			0	3.45	0	3.45	
		1.6 V ≤ EV _{DD} s	≤ 5.5 V					0	3.45	
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.0		4.0		4.0		μs
		2.4 V ≤ EV _{DD} ≤ 5.5 V		4.0		4.0		4.0		
		1.8 V ≤ EV _{DD} ≤ 5.5 V				4.0		4.0		
		1.6 V ≤ EV _{DD} s	≤ 5.5 V					4.0		
Bus-free time	t BUF	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.7		4.7		4.7		μs
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	4.7		4.7		4.7		
		1.8 V ≤ EV _{DD} s	≤ 5.5 V			4.7		4.7		
		1.6 V ≤ EV _{DD} s	≤ 5.5 V					4.7		

(Notes and Remark are listed on the next page.)

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of $t_{HD:DAT}$ is during normal transfer and a wait state is inserted in the \overline{ACK} (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.


Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR}	Power supply rise time	1.47	1.51	1.55	V
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **3.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		−20 to +85°C	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	-1		+1	%
clock frequency accuracy		−40 to −20°C	$2.4~V \le V_{DD} \le 5.5~V$	-1.5		+1.5	%
		+85 to +105°C	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.
 - This indicates the oscillator characteristics only. Refer to 3.4 AC Characteristics for instruction execution time.

3.3.2 Supply current characteristics

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(1/3)

Parameter	Symbol						MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	HS (high- speed main) mode Note 5	f _{IH} = 24 MHz ^{Note 3}	Basic operation	V _{DD} = 5.0 V		1.5		mA
						V _{DD} = 3.0 V		1.5		mA
					Normal operation	V _{DD} = 5.0 V		3.3	5.3	mA
						V _{DD} = 3.0 V		3.3	5.3	mA
				f _{IH} = 16 MHz Note 3	Normal operation	V _{DD} = 5.0 V		2.5	3.9	mA
						V _{DD} = 3.0 V		2.5	3.9	mA
			HS (high- speed main) mode Note 5	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal operation	Square wave input		2.8	4.7	mA
				V _{DD} = 5.0 V		Resonator connection		3.0	4.8	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal operation	Square wave input		2.8	4.7	mA
				V _{DD} = 3.0 V		Resonator connection		3.0	4.8	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal operation	Square wave input		1.8	2.8	mA
				V _{DD} = 5.0 V		Resonator connection		1.8	2.8	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal operation	Square wave input		1.8	2.8	mA
				V _{DD} = 3.0 V		Resonator connection		1.8	2.8	mA
			Subsystem clock operation	fsub = 32.768 kHz	Nomal	Square wave input		3.5	4.9	μΑ
				Note 4 $T_A = -40^{\circ}C$ operation	operation	Resonator connection		3.6	5.0	μΑ
				f _{SUB} = 32.768 kHz	Normal operation	Square wave input		3.6	4.9	μΑ
				Note 4 T _A = +25°C		Resonator connection		3.7	5.0	μΑ
				fsuB = 32.768 kHz	Normal operation	Square wave input		3.7	5.5	μΑ
				Note 4 TA = +50°C		Resonator connection		3.8	5.6	μΑ
				f _{SUB} = 32.768 kHz	Normal operation	Square wave input		3.8	6.3	μΑ
				Note 4 T _A = +70°C		Resonator connection		3.9	6.4	μΑ
				fsuB = 32.768 kHz	Normal operation	Square wave input		4.1	7.7	μΑ
				Note 4		Resonator connection		4.2	7.8	μΑ
				T _A = +85°C				_		
				f _{SUB} = 32.768 kHz	Normal operation	Square wave input		6.4	19.7	μΑ
				T _A = +105°C		Resonator connection		6.5	19.8	μΑ

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	tkcy1	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		334 Note 1		ns
		2.4 V ≤ EV _{DD} ≤ 5.5 V		500 Note 1		ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ EV _{DD} ≤ 5.5 V		tkcy1/2 - 24		ns
	t _{KL1}	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		tkcy1/2 - 36		ns
		2.4 V ≤ EV _{DD} ≤ 5.5 V		tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) Note 2	tsıĸı	2.7 V ≤ EV _{DD} ≤ 5.5 V		66		ns
		2.4 V ≤ EV _{DD} ≤ 5.5 V		113		ns
SIp hold time (from SCKp↑) Note 3	old time (from SCKp \uparrow) Note 3 t_{KSI1} $2.4 \text{ V} \leq \text{EV}_{DD} \leq 5.5 \text{ V}$			38		ns
Delay time from SCKp↓ to SOp output Note 4	tkso1	C = 30 pF Note 5	$2.4~V \leq EV_{DD} \leq 5.5~V$		50	ns

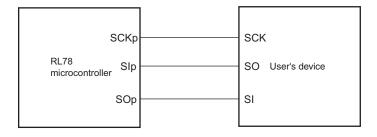
Notes 1. Set a cycle of 4/fmck or longer.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

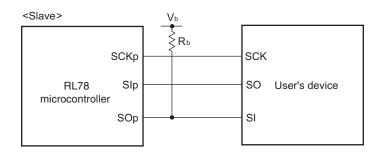
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$


Parameter	Symbol	Cond	ditions	HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time Note 5	t ксу2	4.0 V ≤ EV _{DD} ≤ 5.5 V	20 MHz < f _{MCK}	16/fмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EV _{DD} < 4.0 V	16 MHz < fмск	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		$2.4~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		12/fмск and 1000		ns
SCKp high-/low-level	tкн2, tкL2	4.0 V ≤ EV _{DD} ≤ 5.5 V		tксү2/2 – 14		ns
width		2.7 V ≤ EV _{DD} < 4.0 V		tксү2/2 – 16		ns
		2.4 V ≤ EV _{DD} < 2.7 V		tксү2/2 – 36		ns
SIp setup time	tsık2	2.7 V ≤ EV _{DD} ≤ 5.5 V		1/f _{MCK} + 40		ns
(to SCKp↑) Note 1		2.4 V ≤ EV _{DD} < 2.7 V		1/f _{MCK} + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2	2.4 V ≤ EV _{DD} ≤ 5.5 V		1/fмск + 62		ns
Delay time from SCKp↓	tkso2	C = 30 pF Note 4	4.0 V ≤ EV _{DD} ≤ 5.5 V		2/f _{MCK} + 66	ns
to SOp output Note 3			$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}$		2/f _{MCK} + 66	ns
			$2.4 \text{ V} \le \text{EV}_{DD} \le 2.7 \text{ V}$		2/fмск+ 113	Ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))


CSI mode connection diagram (during communication at same potential)

- Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** $R_b[\Omega]$:Communication line (SOp) pull-up resistance,
 - C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 - g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.