

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rg8afb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 64-pin plastic LQFP (fine pitch) (10×10)
- 64-pin plastic LQFP (12 × 12)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

1.6 Outline of Functions

RL78/L12

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	32-pin	44-pin	48-pin	52-pin	64-pin		
		R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx		
Code flast	n memory (KB)	8 to 32	8 to 32	8 to 32	8 to 32	16. 32		
	memory (KB)	2	2	2	2	2		
RAM (KB)	,	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}		
Memory s		1 MB	1, 1.0	1, 1.0	1, 1.0	1, 1.0		
Main system clock	High-speed system clock	HS (high-speed HS (high-speed LS (low-speed	amic) oscillation, d main) operation d main) operation main) operation: e main) operation	: 1 to 20 MHz (V : 1 to 16 MHz (V 1 to 8 MHz (VDD	DD = 2.7 to 5.5 V DD = 2.4 to 5.5 V = 1.8 to 5.5 V),),		
	High-speed on-chip oscillator clock	HS (high-speed LS (low-speed	d main) operation d main) operation main) operation: e main) operation	: 1 to 16 MHz (V 1 to 8 MHz (V _{DD}	^{DD} = 2.4 to 5.5 V = 1.8 to 5.5 V),	,.		
Subsyster	n clock	_		cillation , external (P.): V _{DD} = 1.6 to	subsystem clock 5.5 V	input (EXCLKS		
Low-spee	d on-chip oscillator clock	Internal oscillation 15 kHz (TYP.): V _{DD} = 1.6 to 5.5 V						
General-p	urpose register	8 bits \times 32 regis	sters (8 bits $ imes$ 8 r	egisters $ imes$ 4 bank	(s)			
Minimum	instruction execution time	0.04167 μ s (High-speed on-chip oscillator clock: fi \parallel = 24 MHz operation)						
		0.05 <i>μ</i> s (High-s	peed system clo	ck: f _{MX} = 20 MHz	operation)			
		30.5 <i>µ</i> s (Subsy	stem clock: fsuB =	= 32.768 kHz ope	eration)			
Instructior	set	Multiplication	ubtractor/logical α (8 bits × 8 bits) el shift, and bit ma	· 、	,	Boolean		
	ber of I/O port pins and ated to drive an LCD	28	40	44	48	58		
I/O port	Total	20	29	33	37	47		
	CMOS I/O	15	22	26	30	39		
	CMOS input	3	5	5	5	5		
	CMOS output	_	_	_	_	1		
	N-ch open-drain I/O (EV _{DD} tolerance)	2	2	2	2	2		
Pins d	edicated to drive an LCD	8	11	11	11	11		
LCD contr	oller/driver	-	boosting metho are switchable.	d, capacitor split	method, and ext			
	Segment signal output	13	22 (18) Note 2	26 (22) Note 2	30 (26) Note 2	39 (35) Note 2		
	Segment signal output	10	(,		Note 2	00 (00)		

Notes 1. In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.

2. The values in parentheses are the number of signal outputs when 8 com is used.

	Item	32-pin	44-pin	48-pin	52-pin	64-pin		
		R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx		
Timer	16-bit timer	8 channels	8 channels	(with 1 channel r	emote control out	put function)		
	Watchdog timer			1 channel				
	Real-time clock (RTC)			1 channel				
-	12-bit interval timer (IT)	1 channel						
	Timer output	4 channels (PWM outputs: 3 ^{Note 1})	5 channels (PWM outputs: 4 ^{Note 1})	6 channels (PWM outputs: 5 ^{Note 1})	8 channels (PWM	1 outputs: 7 ^{Note 1}		
	RTC output	-	1 • 1 Hz (subsys	tem clock: fsub =	32.768 kHz or)			
Clock output/b	ouzzer output	1			2			
		(Main system • 256 Hz, 512 32.768 kHz	n clock: f _{MAIN} = 20 Hz, 1.024 kHz, 2	MHz operation)	/Hz, 5 MHz, 10 M kHz, 8.192 kHz, 1 1)			
8/10-bit resolu	ution A/D converter	4 channels	7 channels	9 channels	10 channels	10 channels		
Serial interfac		CSI: 2 chann	CSI: 2 channel/UART (LIN-bus supported): 1 channel					
I ² C bus	-	1 channel	1 channel	1 channel	1 channel	1 channel		
Multiplier and accumulator	divider/multiply-	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 						
DMA controlle	er	2 channels	Γ		1			
Vectored inter	rrupt Internal	23	23	23	23	23		
sources	External	4	6	7	7	9		
Key interrupt				4				
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 						
Power-on-res	et circuit	Power-on-reset: 1.51 ±0.04 V Power-down-reset: 1.50 ±0.04 V						
	tor	Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)						
Voltage detec		Provided						
On-chip debu	g function	Provided						
	0	Provided V _{DD} = 1.6 to 5.5	V					

Notes 1. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

 The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/5)

	· · , ·		,		-		(110	
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, Id high ^{Note 1}	Іон1	•	P10 to P17, P30 to P32, P40 t P120, P125 to P127, P130, I				-10.0 Note 2	mA
		P130, P140 to P147 (When duty = 70% ^{Note 3})	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-40.0	mA	
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA	
	-		$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA	
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-2.0	mA
		Total of P15 to P17, P30 to P32,		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-60.0	mA
		P50 to P54, P70 to P74, P125 to P127	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA	
		(When duty = 70% ^{Note 3})		$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-4.0	mA
			Total of all pins (When duty = 70% ^{Note 3})				-100.0	mA
	Іон2	P20, P21	Per pin				-0.1	mA
		Total of all pins		$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and $I_{OH} = -40.0$ mA

Total output current of pins = $(-40.0 \times 0.7)/(80 \times 0.01) \approx -35.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

•	,	,				•	
Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EVDD		EVdd	V
	VIH2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$	2.2		EVDD	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	2.0		EVDD	V
			TTL input buffer 1.6 V \leq EV _{DD} $<$ 3.3 V	1.50		EVDD	V
	Vінз	P20, P21	0.7V _{DD}		VDD	V	
	VIH4	P60, P61	0.7EVDD		EVDD	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLK	0.8V _{DD}		VDD	V	
Input voltage, low	VIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	P50 to P54, P70 to P74, P120,			0.2EV _{DD}	V
	VIL2	P10, P11, P15, P16	TTL input buffer 4.0 V \leq EV _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V \leq EV _{DD} $<$ 3.3 V	0		0.32	V
	VIL3	P20, P21		0		0.3Vdd	V
	VIL4	P60, P61		0		0.3EVDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0		0.2VDD	V

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10 \ mA \end{array} \end{array} \label{eq:eq:entropy}$	EVDD-1.5			V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array}$	EVDD-0.7			V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ mA \end{array}$	EVDD-0.6			V
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EVDD-0.5			V
			$\label{eq:logit} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ I_{\mbox{OH1}} = -1.0 \mbox{ mA} \end{array}$	EVDD-0.5			V
	V _{OH2}	P20, P21	1.6 V \leq V _{DD} \leq 5.5 V, I _{OH2} = -100 μ A	VDD-0.5			V
Output voltage, N	P50 to P54, P70 to F	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			1.3	V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.7	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.6	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 1.5 \text{ mA}$			0.4	V
			$eq:local_$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ Iol1 = 0.3 mA			0.4	V
	Vol2	P20, P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol2 = 400 μ A			0.4	V
	Vol3	P60, P61	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ lol3 = 1.0 mA			0.4	V

Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.

2.3.2 Supply current characteristics

(TA = -40 to $+85^{\circ}$ C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

(1/3)

Parameter	Symbol			Conditions		-	MIN.	TYP.	MAX.	Unit
Supply	DD1	Operating	HS (high-	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current		mode	speed main)		operation	V _{DD} = 3.0 V		1.5		mA
Note 1			mode ^{Note 5}		Normal	V _{DD} = 5.0 V		3.3	5.0	mA
					operation	V _{DD} = 3.0 V		3.3	5.0	mA
				f⊪ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.5	3.7	mA
					operation	V _{DD} = 3.0 V		2.5	3.7	mA
			LS (low-speed	file = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			main) mode ^{Note} ₅		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
		voltage main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.7	mA	
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.0	4.6	mA
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
				V _{DD} = 3.0 V operation	Resonator connection		3.0	4.6	mA	
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.8	2.6	mA	
			V _{DD} = 5.0 V	operation	Resonator connection		1.8	2.6	mA	
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.8	2.6	mA	
			LS (low-speed main) mode ^{Note} 5	V _{DD} = 3.0 V	operation	Resonator connection		1.8	2.6	mA
				f _{MX} = 8 MHz ^{Note 2} ,	Normal operation Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 3.0 V		Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.5	4.9	μA
			clock operation	⁴ T _A = −40°C	operation	Resonator connection		3.6	5.0	μA
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.6	4.9	μA
				⁴ T _A = +25°C	operation	Resonator connection		3.7	5.0	μA
				fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		3.7	5.5	μA
				₄ T _A = +50°C	operation	Resonator connection		3.8	5.6	μA
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.8	6.3	μA
				₄ T _A = +70°C	operation	Resonator connection		3.9	6.4	μA
				fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		4.1	7.7	μA
				4	operation	Resonator connection		4.2	7.8	μA
				T _A = +85°C						

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz
 - $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Con	ditions		h-speed Mode	-	w-speed) Mode	-	v-voltage) Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n		$EV_{DD} \le 5.5 \text{ V},$ $V_b \le 4.0 \text{ V}$		Note 1		Note 1		Note 1	bps
				$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_{\rm b} = 50 \mbox{ pF}, \ R_{\rm b} = 1.4 \mbox{ k}\Omega, \\ V_{\rm b} = 2.7 \mbox{ V} \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
				EVdd < 4.0 V, ∕⊳≤2.7 V		Note 3		Note 3		Note 3	bps
				$\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_{b} = 50 \mbox{ pF}, \mbox{ R}_{b} = 2.7 \mbox{ k}\Omega \\ \mbox{V}_{b} = 2.3 \mbox{ V} \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
				EVdd < 3.3 V, /₅≤2.0 V		Note 6		Note 6		Note 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V_b = 1.6 V		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps
			EVdd < 3.3 V, /b ≤ 2.0 V				Notes 5, 6		Notes 5, 6	bps	
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$				0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND
- C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L4}}$ and GND
- $C1 = C2 = C3 = C4 = 0.47 \ \mu F \pm 30\%$

(1/3)

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit	
Supply voltage	Vdd	V _{DD} = EV _{DD}	-0.5 to +6.5	V	
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V	
	EVss		-0.5 to +0.3	V	
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ + 0.3 Note1	V	
Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	-0.3 to EV_DD + 0.3 and -0.3 to V_DD + $0.3^{\text{Note 2}}$	V	
	V ₁₂	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V	
	V _{I3}	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V	
Output voltage	Vo1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V	
	V _{O2}	P20, P21	-0.3 to V _{DD} + 0.3 ^{Note 2}	V	
Analog input voltage	VAI1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V	
	VAI2	ANIO, ANI1	-0.3 to V _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V	

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(1/5)

Items	Symbol		Conditions					Unit
Output current, high ^{Note 1}	Іон1	Per pin for P10 to P17 P70 to P74, P120, P1	· · · · ·	, , ,			-3.0 Note 2	mA
		Total of P10 to P14, F	240 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P130, P140 to P147	e 3 \	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA
		(When duty = 70% ^{Note 3})		$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
		Total of P15 to P17, P30 to P32,		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P50 to P54, P70 to P	,	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
		(When duty = 70% ^{Not})	$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
		Total of all pins (When duty = 70% ^{Note 3})					-60.0	mA
	Іон2	P20, P21	Per pin	Per pin			-0.1	mA
			Total of all pins	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

- Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoH = -30.0 mA

Total output current of pins = $(-30.0 \times 0.7)/(80 \times 0.01) \cong -26.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(T _A = –40 to +	105°C, 2.	$.4 V \le EV_{DD} = V_{DD} \le 5.5 V, V_{SS} = EV_{SS} = 0 V)$						(3/3
Parameter	Symbol	Conditions				TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	_{FIL} Note 1					0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped		0.08		μA		
12-bit interval timer current	I⊤ Notes 1, 2, 4			0.08		μA		
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊩ = 15 kHz		0.24		μA		
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	,				1.7 0.7	mA mA
A/D converter reference voltage current	IADREF Note 1							μA
Temperature sensor operating current	ITMPS Note 1					75.0		μA
LVD operating current	ILVD Notes 1, 7			0.08		μA		
Self- programming operating current	IFSP Notes 1, 9					2.50	12.20	mA
BGO operating current	BGO Notes 1, 8					2.50	12.20	mA
LCD operating current	ILCD1 Notes 11, 12	External resistance division method		$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	ILCD2 Note 11	Internal voltage boo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.70	μA
				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.20	μA
	ILCD3 Note 11			$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.50	μA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	1.10	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD}$ = 3.0 V			1.20	2.04	mA
		CSI/UART operatio	n			0.70	1.54	mA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(3/3)

(Notes and Remarks are listed on the next page.)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(2/2)

(T₄ = –40 to +105°C, 2.4 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conditions		HS (high-spe	Unit	
					MIN.	MAX.	
Transfer rate		Transmission	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$			Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 2	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$			Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 4	Mbps
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$			Note 5	bps
			$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}$	Theoretical value of the maximum transfer rate		0.43 Note 6	Mbps
				C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V			

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - **2.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- Remarks 1. Rb[Ω]:Communication line (SCKp, SOp) pull-up resistance,

 Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - **3.** fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

3.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		HS (high-spe	Unit	
				MIN.	MAX.]
SCLA0 clock frequency	fsc∟	Standard mode: fc⊥ĸ ≥ 1 MHz	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
			$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.7		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		4.0		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		4.7		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		4.7		μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		4.0		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		4.0		μs
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$		250		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		0	3.45	μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.$.5 V	0	3.45	μs
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$.5 V	4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$.5 V	4.7		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$	5 V	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI23

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution AV _{REFP} = EV _{DD} = V_{DD} ^{Note 3}	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \le AV_{REFP} \le 5.5~V$			±3.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI23		0		AVREFP and EVDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} < EV_{DD} = V_{DD}, the MAX. values are as follows.

Overall error: Add \pm 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

3.7.3 Capacitor split method

1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter Symbol Conditions		MIN.	TYP.	MAX.	Unit	
V _{L4} voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		Vdd		V
V∟₂ voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V∟₄ + 0.1	V
V _{L1} voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V∟₄ – 0.1	1/3 VL4	1/3 V∟₄ + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{\mbox{\tiny L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F±30%

