

Welcome to **E-XFL.COM**

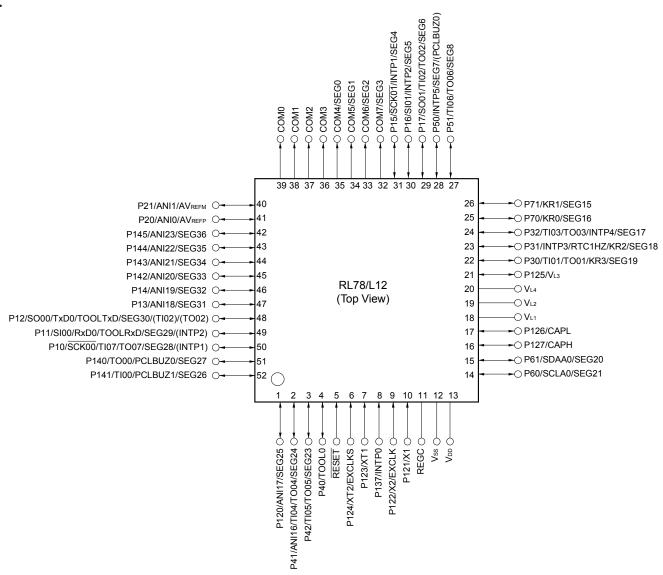
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rgagfb-v0

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

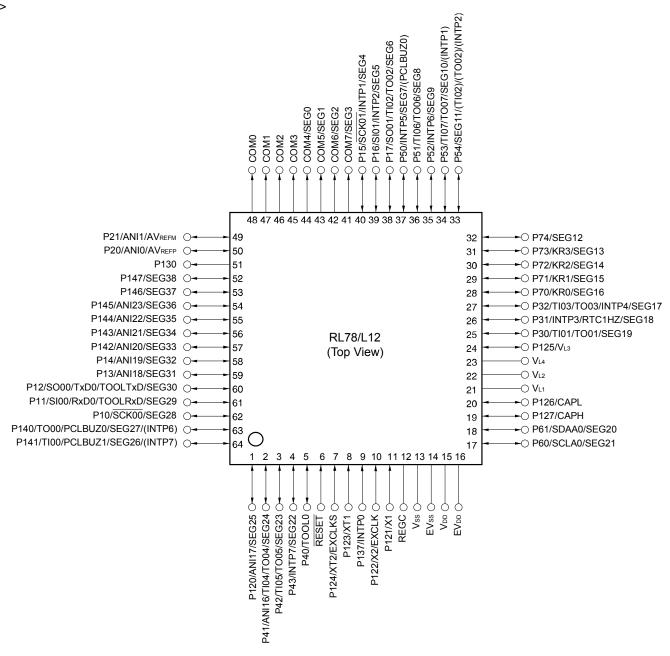
RL78/L12 1. OUTLINE

1.3.4 52-pin products

• 52-pin plastic LQFP (10 × 10)

<R>

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RL78/L12 1. OUTLINE

- 64-pin plastic LQFP (fine pitch) (10 × 10)
- 64-pin plastic LQFP (12 × 12)

<R>

- Cautions 1. Make EVss pin the same potential as Vss pin.
 - 2. Make VDD pin the same potential as EVDD pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RL78/L12 1. OUTLINE

Port 13

Transmit Data

Power Supply

1.4 Pin Identification

P30 to P32:

P40 to P43:

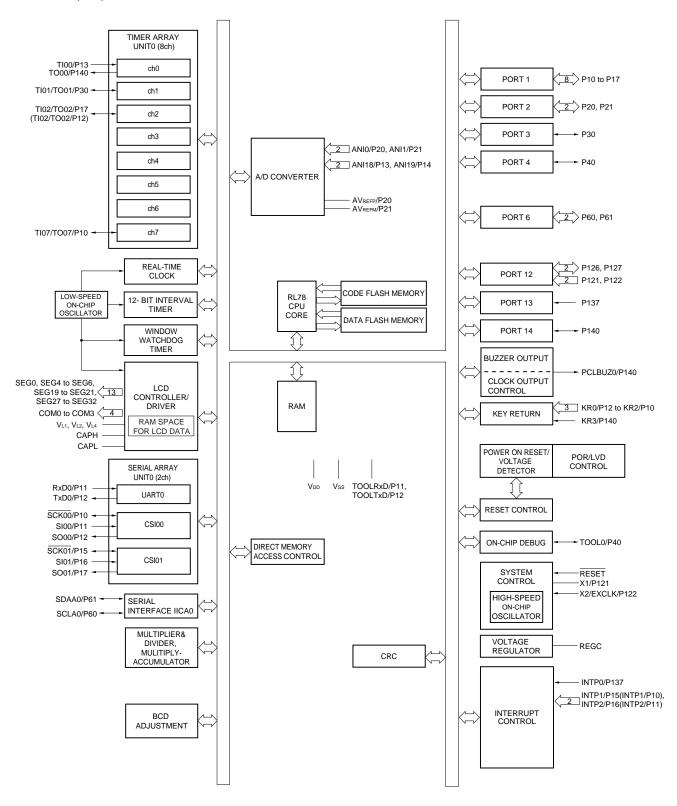
ANIO, ANI1, P130, P137: ANI16 to ANI23: P140 to P147: Port 14 **Analog Input** AVREFM: PCLBUZ0, PCLBUZ1: Programmable Clock Analog Reference Voltage Minus Output/Buzzer Output AVREFP: Analog Reference REGC: Regulator Capacitance RESET: Reset Voltage Plus CAPH, CAPL: RTC1HZ: Real-time Clock Correction Clock Capacitor for LCD COM0 to COM7, (1 Hz) Output EV_{DD}: Power Supply for Port RxD0: Receive Data EVss: Ground for Port SCK00, SCK01: Serial Clock Input/Output EXCLK: **External Clock Input** SCLA0: Serial Clock Input/Output (Main System Clock) SDAA0: Serial Data Input/Output **EXCLKS**: External Clock Input SEG0 to SEG38: LCD Segment Output (Subsystem Clock) SI00, SI01: Serial Data Input INTP0 to INTP7: Interrupt Request From SO00, SO01: Serial Data Output Peripheral TI00 to TI07: Timer Input KR0 to KR3: TO00 to TO07: Key Return **Timer Output** P10 to P17: Port 1 TOOL0: Data Input/Output for Tool P20, P21: Port 2 TOOLRxD, TOOLTxD: Data Input/Output for External Device

VL1 to VL4: P50 to P54: Port 5 LCD Power Supply P60, P61: Port 6 Vss: Ground

Port 3

Port 4

P70 to P74: Port 7 X1, X2: Crystal Oscillator (Main System Clock) P120 to P127: XT1, XT2: Port 12 Crystal Oscillator (Subsystem Clock)


TxD0:

V_{DD}:

RL78/L12 1. OUTLINE

1.5 Block Diagram

1.5.1 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)" and "G: Industrial applications (with $T_A = -40 \text{ to } +85^{\circ}\text{C}$)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD, or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator	2.7 V ≤ V _{DD} ≤ 5.5 V	1.0		20.0	MHz
		2.4 V ≤ V _{DD} ≤ 2.7 V	1.0		16.0	MHz
		1.8 V ≤ V _{DD} < 2.7 V	1.0		8.0	MHz
		1.6 V ≤ V _{DD} <1.8 V	1.0		4.0	MHz
XT1 clock oscillation frequency (fxr) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **2.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	1.8 V ≤ VDD ≤ 5.5 V	-1		+1	%
clock frequency accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5		+5	%
		–40 to –20°C	1.8 V ≤ V _{DD} ≤ 5.5 V	-1.5		+1.5	%
			1.6 V ≤ V _{DD} < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

This indicates the oscillator characteristics only. Refer to 2.4 AC Characteristics for instruction execution time.

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either I_{DD1} or I_{DD2}, and I_{IT}, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, I_{FIL} should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mod.
- 11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.

The TYP. value and MAX. value are following conditions.

- When fsub is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows through the external divider resistor when the external resistance division method is used.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- **4.** Temperature condition of the TYP. value is T_A = 25°C

2.4 AC Characteristics

2.4.1 Basic operation

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Items	Symbol	0.0 -	Condition	ons		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main	HS (high-sp	peed	2.7 V ≤ V _{DD} ≤ 5.5 V	0.04167		1	μs
instruction execution time)	clock (fmain)		main) mode		2.4 V ≤ V _{DD} < 2.7 V			1	μs
		operation	LV (low volt		1.6 V≤V _{DD} ≤5.5 V	0.25		1	μs
			LS (low-speed main) mode 1.8 V ≤ V _{DD} ≤ 5.5 V		0.125		1	μs	
		Subsystem operation	clock (fsua)		1.8 V≤V _{DD} ≤5.5 V	28.5	30.5	31.3	μs
		In the self .	HS (high-sp		$2.7 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	0.04167		1	μs
		programmin g mode	main) mode	9	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		3	LV (low volt main) mode		1.8 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
			LS (low-spe main) mode		1.8 V ≤ V _{DD} ≤ 5.5 V	0.125		1	μs
External main system clock	fex	$2.7~V \le V_{DD}$	≤ 5.5 V			1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD}	< 2.7 V			1.0		16.0	MHz
		1.8 V ≤ V _{DD}	< 2.4 V			1.0		8.0	MHz
		1.6 V ≤ V _{DD}	< 1.8 V			1.0		4.0	MHz
	fexs					32		35	kHz
External main system clock input	texh, texl	$2.7 \text{ V} \leq \text{V}_{DD}$	≤ 5.5 V			24			ns
high-level width, low-level width		2.4 V ≤ V _{DD}	< 2.7 V			30			ns
		1.8 V ≤ V _{DD}	< 2.4 V			60			ns
		1.6 V ≤ V _{DD}	< 1.8 V			120			ns
	texhs, texhs					13.7			μs
TI00 to TI07 input high-level width, low-level width	tтін, tтіL					1/fмск+10			ns
TO00 to TO07 output frequency	f то	HS (high-sp) V ≤	$EV_{DD} \le 5.5 V$			16	MHz
		main) mode	2.7	7 V ≤	EV _{DD} < 4.0 V			8	MHz
			2.4	4 V ≤	EV _{DD} < 2.7 V			4	MHz
		LS (low-spe main) mode		8 V ≤	EV _{DD} ≤ 5.5 V			4	MHz
		LV (low volt main) mode		6 V ≤	EVDD ≤ 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-sp) V ≤	$EV_{DD} \le 5.5 V$			16	MHz
frequency		main) mode	2.7	7 V ≤	EV _{DD} < 4.0 V			8	MHz
					EV _{DD} < 2.7 V			4	MHz
		LS (low-spe main) mode	:	8 V ≤	≦ EV _{DD} ≤ 5.5 V			4	MHz
		LV (low-volt			$EV_{DD} \leq 5.5 V$			4	MHz
		main) mode	1.0		EV _{DD} < 1.8 V			2	MHz
Interrupt input high-level width, low-level width	tinth,	INTP0			V _{DD} ≤ 5.5 V	1			μs
	tintl	INTP1 to IN			EV _{DD} ≤ 5.5 V	1			μs
Key interrupt input low-level width	t kr	KR0 to KR3			EV _{DD} ≤ 5.5 V	250			ns
DECET lave laved with	4		1.6	o V ≤	EV _{DD} < 1.8 V	1			μs
RESET low-level width	t RSL					10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	(Conditions	, ,	h-speed Mode	,	/-speed Mode	,	-voltage Mode	Unit
						MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	2.7 V ≤ EV	$2.7~V \leq EV_{DD} \leq 5.5~V$			500 Note 1		1000 Note 1		ns
		2.4 V ≤ EV	/ _{DD} ≤ 5.5 V	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ EV	/ _{DD} ≤ 5.5 V			500 Note 1		1000 Note 1		ns
		1.6 V ≤ EV	/ _{DD} ≤ 5.5 V					1000 Note 1		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV	/ _{DD} ≤ 5.5 V	tксү1/2 - 12		tkcy1/2 - 50		tксү1/2 - 50		ns
		2.7 V ≤ EV	/ _{DD} ≤ 5.5 V	tксү1/2 - 18		tkcy1/2 - 50		tксү1/2 - 50		ns
		2.4 V ≤ E\	/ _{DD} ≤ 5.5 V	tkcy1/2 - 38		tксү1/2 - 50		tkcy1/2 - 50		ns
		1.8 V ≤ E\	/ _{DD} ≤ 5.5 V			tксү1/2 - 50		tксү1/2 - 50		ns
		1.6 V ≤ E\	/ _{DD} ≤ 5.5 V					tkcy1/2 - 100		ns
SIp setup time (to SCKp↑)	t sıĸı	2.7 V ≤ EV	/ _{DD} ≤ 5.5 V	44		110		110		ns
Note 2		2.4 V ≤ EV	/ _{DD} ≤ 5.5 V	75		110		110		ns
		1.8 V ≤ EV	/ _{DD} ≤ 5.5 V			110		110		ns
		1.6 V ≤ EV	/ _{DD} ≤ 5.5 V					220		ns
SIp hold time (from SCKp [↑])	t KSI1	$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		19		19		19		ns
•		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$				19		19		
		$1.6 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$						19		
Delay time from SCKp↓ to	t KSO1	C = 30 pF 2.4 V ≤ EV _{DD} ≤ 5.5 V			25		25		25	ns
SOp output Note 4		14016-0	Note 5 $1.8~V \le EV_{DD} \le 5.5~V$				25		25	
			$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$						25	

Notes 1. For CSI00, set a cycle of 2/fmck or longer. For CSI01, set a cycle of 4/fmck or longer.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) (T_A = −40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Cond	itions	HS (high		LS (low main)			-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note}	tkcy2	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$	20 MHz < fмск	8/ƒмск						ns
5			fмck ≤ 20 MHz	6/ƒмск		6/fмск		6/fмск		ns
		2.7 V ≤ EV _{DD} < 4.0 V	16 MHz < f _{MCK}	8/fмск						ns
			fмcк ≤ 16 MHz	6/ƒмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$		6/fмск and 500		6/ƒмск		6/ƒмск		ns
		1.8 V ≤ EV _{DD} < 2.4 V				6/fмск		6/ƒмск		ns
		1.6 V ≤ EV _{DD} < 1.8 V						6/ƒмск		ns
SCKp high-/low- level width	tkH2, tkL2	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		tксү2/2 - 7		tксү2/2 -7		tксү2/2 -7		ns
		2.7 V ≤ EV _{DD} < 4.0 V		tксү2/2 - 8		tkcy2/2 -8		tксү2/2 -8		ns
		2.4 V ≤ EV _{DD} < 2.7 V		tксү2/2 - 18		t _{KCY2} /2 - 18		t _{KCY2} /2 - 18		ns
		1.8 V ≤ EV _{DD} < 2.4 V				tkcy2/2 - 18		tксү2/2 - 18		ns
		1.6 V ≤ EV _{DD} < 1.8 V						tkcy2/2 -66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		2.4 V ≤ EV _{DD} < 2.7 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		
		1.8 V ≤ EV _{DD} < 2.4 V				1/fмск + 30		1/fмск + 30		ns
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск + 40		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		1.8 V ≤ EV _{DD} < 2.4 V				1/fмск + 31		1/fмск + 31		ns
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск + 250		ns

(Notes, Caution, and Remarks are listed on the next page.)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = V_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Con	ditions	, ,	h-speed Mode		v-speed Mode	,	/-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n		.0 V ≤ EV _{DD} ≤ 5.5 V, 7 V ≤ V _b ≤ 4.0 V		Note 1		Note 1		Note 1	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
				EV _{DD} < 4.0 V, / _b ≤ 2.7 V		Note 3		Note 3		Note 3	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ $V_b = 2.3 \text{ V}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
				EV _{DD} < 3.3 V, / _b ≤ 2.0 V		Note 6		Note 6		Note 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V_b = 1.6 V		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps
				EV _{DD} < 3.3 V, /b ≤ 2.0 V				Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V				0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times ln\ (1-\frac{2.2}{V_b})\} \times 3} \ [bps] \end{aligned}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

(2) I²C fast mode

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	(Conditions			LS (low-speed main) Mode		LV (low- voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	Fast mode:	2.7 V ≤ EV _{DD} ≤ 5.5 V	0	400	0	400	0	400	kHz
		fcLk ≥ 3.5	2.4 V ≤ EV _{DD} ≤ 5.5 V	0	400	0	400	0	400	
		MHz	1.8 V ≤ EV _{DD} ≤ 5.5 V			0	400	0	400	
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			0.6		0.6		
Hold time Note 1	thd:sta	2.7 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			0.6		0.6		
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD}	≤ 5.5 V	1.3		1.3		1.3		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	1.3		1.3		1.3		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			1.3		1.3		
Hold time when SCLA0 = "H"	t HIGH	2.7 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			0.6		0.6		
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD}	≤ 5.5 V	100		100		100		ns
		2.4 V ≤ EV _{DD}	≤ 5.5 V	100		100		100		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			100		100		
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD}	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0	0.9	0	0.9	0	0.9	
		1.8 V ≤ EV _{DD}	≤ 5.5 V			0	0.9	0	0.9	
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			0.6		0.6		
Bus-free time	t BUF	2.7 V ≤ EV _{DD}	≤ 5.5 V	1.3		1.3		1.3		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	1.3		1.3		1.3		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			1.3		1.3		

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

2.6.4 LVD circuit characteristics

(Ta = -40 to +85°C, $V_{PDR} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}$, $V_{SS} = EV_{SS} = 0 \text{ V}$)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		V _{LVD1}	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		V _{LVD2}	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		V _{LVD3}	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		V _{LVD4}	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		V _{LVD5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		V _{LVD6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		V _{LVD7}	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		V _{LVD8}	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		V _{LVD9}	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		V _{LVD10}	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		V _{LVD11}	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		V _{LVD12}	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		V _{LVD13}	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	ulse width	t∟w		300			μs
Detection d	elay time	t LD				300	μs

2.7.2 Internal voltage boosting method

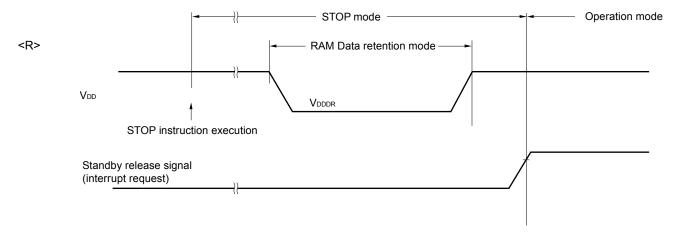
(1) 1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} =	0.47 μF	2 V _{L1} - 0.1	2 V _{L1}	2 VL1	V
Tripler output voltage	V _{L4}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} - 0.15	3 V _{L1}	3 VL1	٧
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between V_{L4} and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).


<R>

2.8 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.9 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

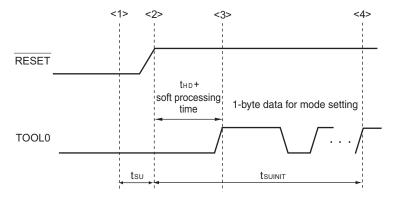
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclk	1.8 V ≤ VDD ≤ 5.5 V	1		24	MHz
<r></r>	Number of code flash rewrites	Cerwr	Retained for 20 years T _A = 85°C	1,000			Times
<r></r>	Number of data flash rewrites		Retained for 1 year T _A = 25°C		1,000,000		
<r></r>			Retained for 5 years T _A = 85°C	100,000			
<r></r>			Retained for 20 years T _A = 85°C	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite.

 The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate During flash memory programming		During flash memory programming	115,200		1,000,000	bps

2.11 Timing Specifications for Switching Flash Memory Programming Modes

(Ta = -40 to +85°C, 1.8 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset must be released before the external reset is released.	1			ms

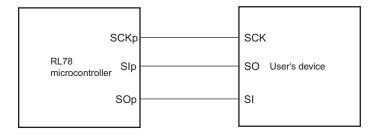
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after a reset is released during this period.

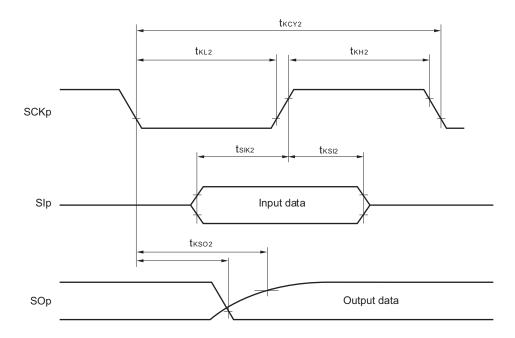
 $t_{\text{SU:}}$ $\;$ Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$


Parameter Symbo		Cond	ditions	HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$	20 MHz < f _{MCK}	16/fмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EV _{DD} < 4.0 V	16 MHz < fмск	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		$2.4~V \le EV_{DD} \le 5.5~V$		12/fмск and 1000		ns
SCKp high-/low-level width	tкн2, tкL2	4.0 V ≤ EV _{DD} ≤ 5.5 V		tксү2/2 – 14		ns
		2.7 V ≤ EV _{DD} < 4.0 V		tксү2/2 – 16		ns
		2.4 V ≤ EV _{DD} < 2.7 V		tксү2/2 – 36		ns
SIp setup time	tsik2	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		1/f _{MCK} + 40		ns
(to SCKp↑) Note 1		2.4 V ≤ EV _{DD} < 2.7 V		1/f _{MCK} + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2	2.4 V ≤ EV _{DD} ≤ 5.5 V		1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	4.0 V ≤ EV _{DD} ≤ 5.5 V		2/f _{MCK} + 66	ns
		ı	$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}$		2/f _{MCK} + 66	ns
			$2.4 \text{ V} \le \text{EV}_{DD} \le 2.7 \text{ V}$		2/fмск+ 113	Ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

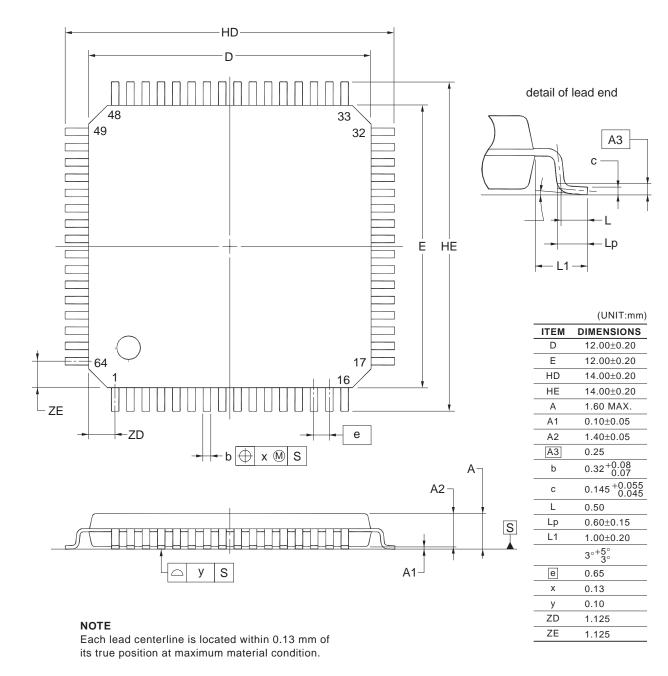
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0),

n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

3.7.3 Capacitor split method

1/3 bias method

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	V _{L4}	C1 to C4 = 0.47 μ F ^{Note 2}		V _{DD}		V
V _{L2} voltage	V _{L2}	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 V _{L4}	2/3 V _{L4} + 0.1	V
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} - 0.1	1/3 V _{L4}	1/3 V _{L4} + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

4.5 64-pin Products

R5F10RLAAFA, R5F10RLCAFA R5F10RLAGFA, R5F10RLCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51

©2012 Renesas Electronics Corporation. All rights reserved.