

Welcome to E-XFL.COM

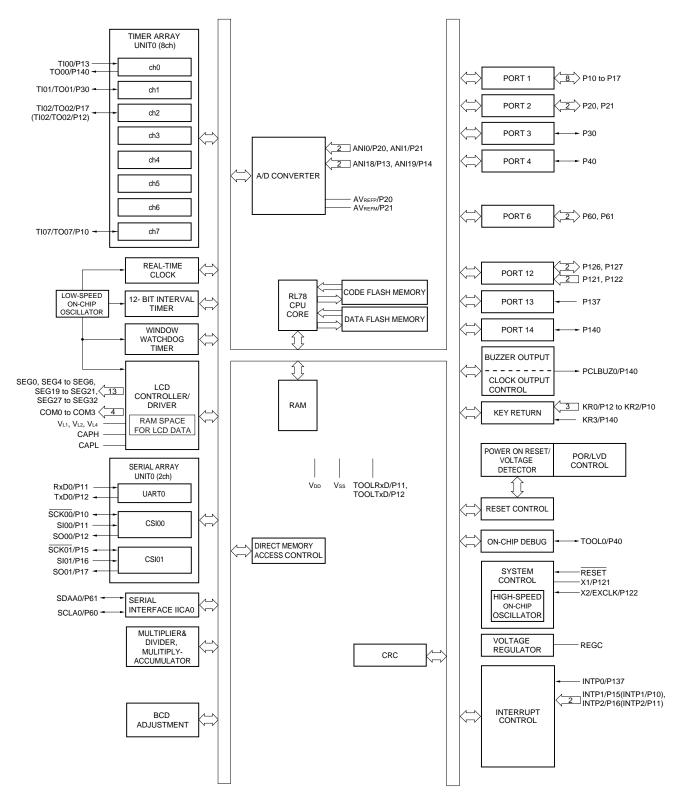
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI


Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rgcafb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Block Diagram

1.5.1 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1		P10 to P17, P30 to P32, F 4, P70 to P74, P120, P125 147				20.0 Note 2	mA
		Per pin for	P60, P61				15.0 Note 2	mA
		Total of P1	0 to P14, P40 to P43,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			70.0	mA
			0, P140 to P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		(when dut	y = 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			80.0	mA
			4, P60, P61, P70 to P74,	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
		P125 to P1 (When dut	y = 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		(,,	$1.6~V \leq EV_{\text{DD}} < 1.8~V$			10.0	mA
-		Total of all (When dut	pins y = 70% ^{Note 3})				150.0	mA
	IOL2	P20, P21	Per pin				0.4	mA
			Total of all pins $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$				0.8	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

	, ,							(0/0
Items	Symbol	Conditio	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EV _{DD}				1	μA
	ILIH2	P20, P21, P137, RESET	VI = VDD				1	μA
	Ілнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVss				-1	μA
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	Ilili3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up	Ruı	VI = EVss	SEGxx po	rt				
resistance			2.4 V ≤ I	$EV_{DD} = V_{DD} \le 5.5 V$	10	20	100	kΩ
			1.6 V ≤ I	$EV_{DD} = V_{DD} < 2.4 V$	10	30	100	kΩ
	Ru2			Ports other than above (Except for P60, P61, and		20	100	kΩ

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(TA = -40 to $+85^{\circ}$ C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

(1/3)

Parameter	Symbol			Conditions		-	MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current		mode	speed main)		operation	V _{DD} = 3.0 V		1.5		mA
Note 1			mode ^{Note 5}		Normal	V _{DD} = 5.0 V		3.3	5.0	mA
					operation	V _{DD} = 3.0 V		3.3	5.0	mA
				f⊪ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.5	3.7	mA
					operation	V _{DD} = 3.0 V		2.5	3.7	mA
			LS (low-speed	file = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			main) mode ^{Note}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
			voltage main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation Normal	Resonator connection		3.0	4.6	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,		Square wave input		2.8	4.4	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.0	4.6	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.8	2.6	mA
			V _{DD} = 5.0 V	operation	Resonator connection		1.8	2.6	mA	
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.8	2.6	mA	
		LS (low-speed main) mode ^{Note} $f_{MX} = 8 \text{ MH}$ $V_{DD} = 3.0 \text{ V}$		V _{DD} = 3.0 V	operation	Resonator connection		1.8	2.6	mA
			main) mode ^{Note}	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.5	4.9	μA
			clock operation	⁴ T _A = −40°C	operation	Resonator connection		3.6	5.0	μA
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.6	4.9	μA
				⁴ T _A = +25°C	operation	Resonator connection		3.7	5.0	μA
				fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		3.7	5.5	μA
				₄ T _A = +50°C	operation	Resonator connection		3.8	5.6	μA
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.8	6.3	μA
			₄ T _A = +70°C	operation	Resonator connection		3.9	6.4	μA	
			fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		4.1	7.7	μA	
		4	4	operation	Resonator connection		4.2	7.8	μA	
				T _A = +85°C						

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz

 $2.4~V \le V_{DD} \le 5.5~V @1~MHz~to~16~MHz$ LS (low-speed main) mode: $1.8~V \le V_{DD} \le 5.5~V @1~MHz~to~8~MHz$

- LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot} 1 \text{ MHz}$ to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) ($T_A = -40$ to $+85^{\circ}C$, 1.6 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

Parameter	Symbol	Cc				LV (low- voltage main) Mode	Unit	Para meter	Symbol	Conditions
Delay time from SCKp↓ to SOp	tkso2	C = 30 pF ^{Note 4}	$4.0~V \leq EV_{DD} \leq 5.5~V$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
output ^{Note 3}			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.4 \text{ V}$				2/fмск + 110		2/fмск + 110	ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						2/fмск + 220	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(1/2)

Parameter	Symbol		Conc	litions	HS (high main) l	•	LS (low main)		LV (low- main)	-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate	ransfer rate Reception		$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			$\begin{array}{l} 2.7 \ V \leq EV \\ 2.3 \ V \leq V_b \end{array}$,		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			2.4 V ≤ EV 1.6 V ≤ Vb	,		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			1.8 V ≤ EV 1.6 V ≤ V _b	′ _{DD} < 3.3 V, ≤ 2.0 V				fмск/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$				1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD} \ge V_b$.
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

 HS (high-speed main) mode:
 24 MHz $(2.7 V \le V_{DD} \le 5.5 V)$

 16 MHz $(2.4 V \le V_{DD} \le 5.5 V)$

 LS (low-speed main) mode:
 8 MHz $(1.8 V \le V_{DD} \le 5.5 V)$

 LV (low-voltage main) mode:
 4 MHz $(1.6 V \le V_{DD} \le 5.5 V)$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Con	ditions		h-speed Mode	-	w-speed) Mode	LV (low-voltage main) Mode		Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n		$EV_{DD} \le 5.5 \text{ V},$ $V_b \le 4.0 \text{ V}$		Note 1		Note 1		Note 1	bps
				$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \\ V_b = 2.7 \ V \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
				EVdd < 4.0 V, ∕⊳≤2.7 V		Note 3		Note 3		Note 3	bps
				$\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_{b} = 50 \mbox{ pF}, \mbox{ R}_{b} = 2.7 \mbox{ k}\Omega \\ \mbox{V}_{b} = 2.3 \mbox{ V} \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
				EVdd < 3.3 V, /₅≤2.0 V		Note 6		Note 6		Note 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V_b = 1.6 V		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps
				EVdd < 3.3 V, /b ≤ 2.0 V				Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V				0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

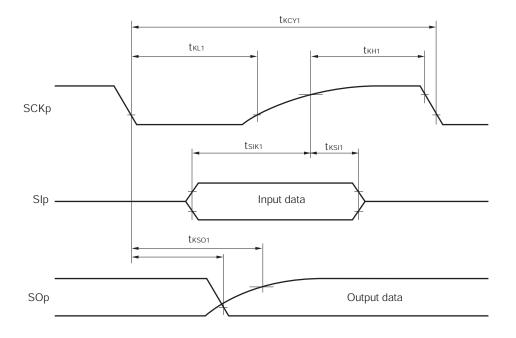
Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

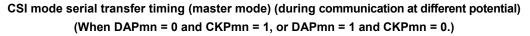
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

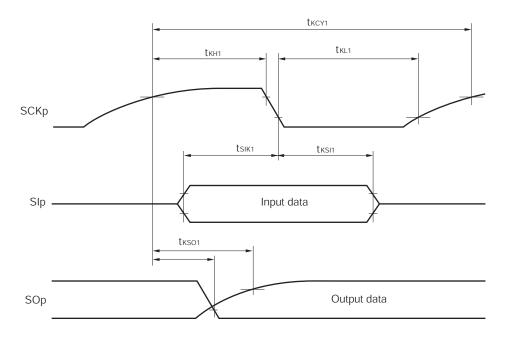
* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.



(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{Ss}} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high- speed main) Mode		LS (low- speed main) Mode		LV (low- voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; \text{V}, 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ C_{\text{b}} = 30 \; \text{pF}, \; R_{\text{b}} = 1.4 \; \text{k}\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; \text{V}, 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ C_{\text{b}} = 30 \; \text{pF}, \; R_{\text{b}} = 1.4 \; \text{k}\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$				25		25	ns


- **Notes** 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** Use it with $EV_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

2.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +85°C, 1.6 V \leq EV_DD = V_DD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	(Conditions				/-speed Mode	LV (low- voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	f scL	Standard	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	kHz
		mode:	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	
		fclk≥ 1 MHz	$1.8~V \le EV_{\text{DD}} \le 5.5~V$			0	100	0	100	
		$1.6~V \le EV_{DD} \le 5.5~V$						0	100	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		4.7		4.7		4.7		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		
		$1.8~V \le EV_{\text{DD}} \le 5.5~V$				4.7		4.7		
		$1.6~V \leq EV_{\text{DD}} \leq 5.5~V$						4.7		
Hold time Note 1	thd:sta	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		4.0		4.0		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$				4.0		4.0		
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$						4.0		
Hold time when SCLA0 = "L"	t LOW	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.7		4.7		4.7		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.7		4.7		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.7		
Hold time when SCLA0 = "H"	tніgн	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.0		4.0		4.0		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.0		4.0		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.0		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	250		250		250		ns
		$2.4 V \le EV_{DD}$	≤ 5.5 V	250		250		250		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			250		250		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					250		
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 V \le EV_{DD}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	
		$1.8 V \le EV_{DD}$	≤ 5.5 V			0	3.45	0	3.45	
		$1.6 V \le EV_{DD}$	≤ 5.5 V					0	3.45	
Setup time of stop condition	tsu:sto	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		4.0		4.0		
		$1.8 \ V \leq EV_{DD} \leq 5.5 \ V$				4.0		4.0		
		$1.6~V \le EV_{\text{DD}} \le 5.5~V$						4.0		
Bus-free time	t BUF	$2.7 V \le EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$2.4 V \le EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.7		4.7		
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$						4.7		

(Notes and Remark are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

2.6.2 Temperature sensor/internal reference voltage characteristics

		···) / · · ·) / · · · · · · · · · · ·		,,		
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25 $^{\circ}$ C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (HS (high-speed main) mode)

(1/3)

3.1 Absolute Maximum Ratings

	i tatilige (in	20 0)		(1/0)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVss		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ + 0.3 Note1	V
Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	-0.3 to EV_DD + 0.3 and -0.3 to V_DD + $0.3^{\text{Note 2}}$	V
	V ₁₂	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
	V _{I3}	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Output voltage	Vo1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
	V _{O2}	P20, P21	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V
	VAI2	ANIO, ANI1	-0.3 to V _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(1/5)

Items	Symbol	Conditions				TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P10 to P17 P70 to P74, P120, P1	· · · · ·	, , ,			-3.0 Note 2	mA
		Total of P10 to P14, F	240 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P130, P140 to P147	,				-8.0	mA
		(When duty = 70% ^{Note 3})		$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
		Total of P15 to P17, P30 to P32,	230 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P50 to P54, P70 to P74, P125 to P127 (When duty = 70% ^{Note 3})		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
				$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
		Total of all pins (When duty = 70% ^{Note 3})					-60.0	mA
	Іон2	P20, P21	Per pin				-0.1	mA
			Total of all pins	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

- Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoH = -30.0 mA

Total output current of pins = $(-30.0 \times 0.7)/(80 \times 0.01) \cong -26.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(T _A = -40 to +105°C,	2.4 V < FVpp =	$V_{DD} < 5.5 V_{.}$	$V_{SS} = FV_{SS} = 0 V$
	1A = -40 10 + 100 0	, 2.4 * 3 6 * 00 -	vuu <u>5</u> 0.0 v,	v 33 - Lv 33 - Uv

(1/2)

Parameter	Symbol	Conditions		HS (high-speed	Unit	
				MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{\text{KCY1}} \ge 4/f_{\text{CLK}}$	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	600		ns
			C_b = 30 pF, R_b = 1.4 k Ω			
			$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ < 4.0 V, 2.3 V \le V _b \le 2.7 V,	600		ns
			C_b = 30 pF, R_b = 2.7 k Ω			
			$2.4 \ V \le EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \le V_{\text{b}} \le 2.0 \ V,$	2300		ns
			C_b = 30 pF, R_b = 5.5 k Ω			
SCKp high-level width	tкн1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$		tксү1/2 – 150		ns
		C_b = 30 pF, R_b = 1.4 k Ω				
		$2.7 \ V \leq EV_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		tkcy1/2 - 340		ns
		C_b = 30 pF, R_b = 2.7 k Ω				
		$2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V,$		tксү1/2 – 916		ns
		C_b = 30 pF, R_b = 5.5 k Ω				
SCKp low-level width	t ĸ∟1	$4.0~V \leq EV_{\text{DD}}$	$V \leq EV_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$			ns
		C _b = 30 pF, R	C_{b} = 30 pF, R_{b} = 1.4 k Ω			
		$2.7~V \leq EV_{\text{DD}}$	$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$			ns
		C_{b} = 30 pF, R_{b} = 2.7 k Ω				
		$2.4~V \leq EV_{\text{DD}}$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V,	tксү1/2 – 100		ns
		C _b = 30 pF, R	C_b = 30 pF, R_b = 5.5 k Ω			

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin

products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC

characteristics with TTL input buffer selected.

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(2/2)

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsiĸ1	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	162		ns
to SCKp↑) ^{Note 1}		$C_{b} = 30 \text{ pF}, R_{b} = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	354		ns
		C _b = 30 pF, R _b = 2.7 kΩ			
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	958		ns
		C _b = 30 pF, R _b = 5.5 kΩ			
SIp hold time	tksi1	$4.0 \text{ V} \le EV_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	38		ns
rom SCKp↑) ^{Note 1}		C _b = 30 pF, R _b = 1.4 kΩ			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ < 4.0 V, 2.3 V $\le \text{V}_{\text{b}} \le 2.7 \text{ V}$,	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD}}$ < 3.3 V , $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$,	38		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
Delay time from SCKp↓ to	tkso1	$4.0 \ V \le EV_{\text{DD}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V,$		200	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		390	ns
		C_b = 30 pF, R_b = 2.7 k Ω		966	
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$			ns
		C_b = 30 pF, R_b = 2.7 k Ω			
SIp setup time	tsik1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	88		ns
(to SCKp↓) ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ < 4.0 V, 2.3 V \le V _b \le 2.7 V,	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$	220		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
SIp hold time	tksi1	$4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V,$	38		ns
(from SCKp↓) ^{Note 2}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$	38		ns
		C _b = 30 pF, R _b = 2.7 kΩ			
		$2.4~V \leq EV_{\text{DD}} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	38		ns
		C _b = 30 pF, R _b = 5.5 kΩ			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		50	ns
SOp output Note 2		C _b = 30 pF, R _b = 1.4 kΩ			
		$2.7 \text{ V} \leq EV_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq V_{\text{b}} \leq 2.7 \text{ V},$		50	ns
		C _b = 30 pF, R _b = 2.7 kΩ			
		$2.4~V \leq EV_{\text{DD}} < 3.3~V,~1.6~V \leq V_{\text{b}} \leq 2.0~V,$		50	ns
		C_b = 30 pF, R_b = 5.5 k Ω			

(Notes, Caution and Remarks are listed on the page after the next page.)

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI23

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		$AV_{REFP} = EV_{DD} = V_{DD}^{Note 3}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \le AV_{REFP} \le 5.5~V$			±3.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI23		0		AVREFP and EVDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} < EV_{DD} = V_{DD}, the MAX. values are as follows.

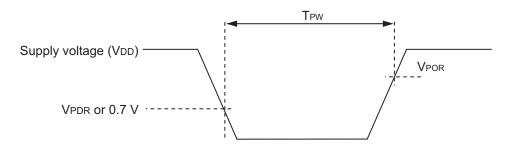
Overall error: Add \pm 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

3.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

3.6.3 POR circuit characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.7 LCD Characteristics

3.7.1 Resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +105^{\circ}C, V_{L4} \text{ (MIN.)} \le V_{DD}^{Note} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

Note Must be 2.4 V or higher.

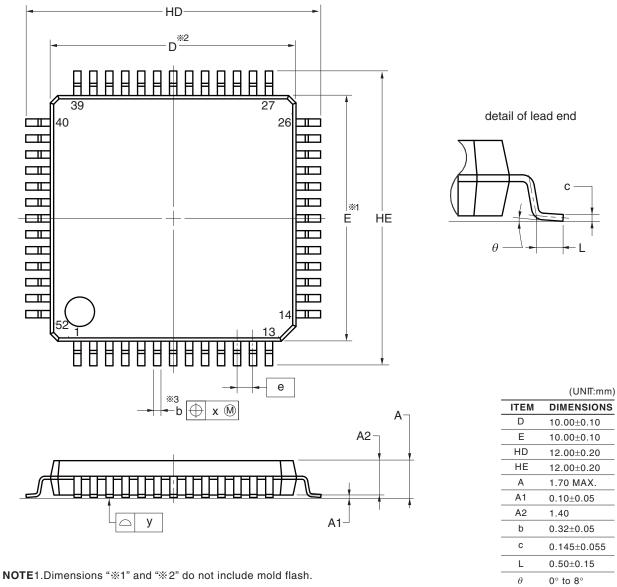
(2) 1/2 bias method, 1/4 bias method

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) 1/3 bias method

(T_A = -40 to +105°C, V_L4 (MIN.) \leq V_DD \leq 5.5 V, V_SS = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

4.4 52-pin Products

R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

2.Dimension "X3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

е

x y 0.65

0.10

