

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rgcgfb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.4 52-pin products

• 52-pin plastic LQFP (10 × 10)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

(1/3)

2.1 Absolute Maximum Ratings

Absolute Maximum	Ratings	$(T_{A} = 25^{\circ}C)$
-------------------------	---------	-------------------------

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVss		-0.5 to +0.3	V
REGC pin input voltage	Viregc	REGC	-0.3 to +2.8 and -0.3 to V_DD + $0.3^{\text{Note 1}}$	V
Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127,P140 to P147	-0.3 to EV_DD +0.3 and -0.3 to V_DD + 0.3 $^{\text{Note 2}}$	V
	Vı2	P60, P61 (N-ch open-drain)	-0.3 to EV_DD +0.3 and -0.3 to V_DD + 0.3 $^{\text{Note 2}}$	V
	Vı3	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Output voltage	V ₀₁	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_{DD} + 0.3 and -0.3 to V_{DD} + 0.3 $^{\text{Note 2}}$	V
	V ₀₂	P20, P21	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Analog input voltage	Vali	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 Notes 2, 3	V
	V _{AI2}	ANIO, ANI1	-0.3 to V _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - **2.** Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AV_{REF(+)}: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

temperature

Storage temperature

Tstg

-65 to +150

°C

(3/3)

Absolute Maximum Ratings (T_A = 25°C)

					. ,
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	Surrent, low loL1	ht, Iow IoL1 Per pin P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147		40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operati	ion mode	-40 to +85	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

In flash memory programming mode

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency $(f_X)^{Note}$	Ceramic resonator/ crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}$	1.0		16.0	MHz
		$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$	1.0		8.0	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **2.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$1.8~V \le V_{\text{DD}} \le 5.5~V$	-1		+1	%
clock frequency accuracy			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5		+5	%
		–40 to –20°C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to 2.4 AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to $+85^{\circ}$ C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

(1/5)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for F P70 to P74,	210 to P17, P30 to P32, P40 t P120, P125 to P127, P130, F	to P43, P50 to P54, P140 to P147			-10.0 Note 2	mA
		Total of P10	to P14, P40 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-40.0	mA
		P130, P140	to P147 = 70% ^{Note 3})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA
		(when duty		$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-2.0	mA
		Total of P15 to P17, P30 to P32,		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-60.0	mA
		P50 to P54,	P70 to P74, P125 to P127	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
		(when duty	= 70%	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-4.0	mA
		Total of all p (When duty	ins = 70% ^{Note 3})			-100.0	mA	
	Іон2	P20, P21	Per pin				-0.1	mA
		Total of all pins		$1.6 \ V \le V_{\text{DD}} \le 5.5 \ V$			-0.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and $I_{OH} = -40.0$ mA

Total output current of pins = $(-40.0 \times 0.7)/(80 \times 0.01) \approx -35.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EVDD		EVDD	V
	VIH2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \le EV_{\text{DD}} \le 5.5 \text{ V}$	2.2		EVDD	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	2.0		EVDD	V
			TTL input buffer $1.6 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}$	1.50		EVDD	V
	VIH3	P20, P21	P21 P61				V
	VIH4	P60, P61					V
	VIH5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0.8V _{DD}		VDD	V
Input voltage, Iow	VIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD}	V
	VIL2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \leq EV_{DD} \leq 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V ≤ EVɒ□ < 3.3 V	0		0.32	V
	VIL3	P20, P21		0		0.3VDD	V
	VIL4	P60, P61		0		0.3EVDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0		0.2V _{DD}	V

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

2.4 AC Characteristics

2.4.1 Basic operation

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Items	Symbol		Conditio	ns		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-spe	eed	$2.7 \text{V} \le V_{\text{DD}} \le 5.5 \text{V}$	0.04167		1	μs
instruction execution time)		system	main) mode		$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
		operation	LV (low volta main) mode	age	$1.6 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	0.25		1	μs
			LS (low-spee main) mode	ed	$1.8 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	0.125		1	μs
		Subsystem operation	clock (fsub)		$1.8 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	28.5	30.5	31.3	μs
		In the self	HS (high-spe	eed	$2.7 V \le V_{DD} \le 5.5 V$	0.04167		1	μs
		programmin a mode	main) mode		$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
		9	LV (low volta main) mode	age	$1.8 V \le V_{DD} \le 5.5 V$	0.25		1	μs
			LS (low-spee main) mode	ed	$1.8 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	0.125		1	μs
External main system clock	fex	$2.7~V \leq V_{\text{DD}}$	≤ 5.5 V			1.0		20.0	MHz
frequency		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$				1.0		16.0	MHz
		$1.8 \ V \leq V_{\text{DD}}$	< 2.4 V			1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}}$	< 1.8 V			1.0		4.0	MHz
	fexs					32		35	kHz
External main system clock input	texh, texl	$2.7~V \leq V_{\text{DD}}$	≤ 5.5 V			24			ns
high-level width, low-level width		$2.4~V \leq V_{\text{DD}}$	< 2.7 V			30			ns
		$1.8 \ V \leq V_{\text{DD}}$	< 2.4 V			60			ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}}$	< 1.8 V			120			ns
	texhs, texls					13.7			μs
TI00 to TI07 input high-level width, low-level width	tт⊪, tт⊫					1/fмск+10			ns
TO00 to TO07 output frequency	fтo	HS (high-sp	eed 4.0	V ≤	$EV_{DD} \le 5.5 V$			16	MHz
		main) mode	2.7	$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$				8	MHz
			2.4	$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$				4	MHz
		LS (low-spe main) mode	ed 1.8	V≤	$EV_{DD} \le 5.5 V$			4	MHz
		LV (low volt main) mode	age 1.6	V≤	$EVDD \leq 5.5 V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-sp	eed 4.0	V ≤	$EV_{DD} \leq 5.5 V$			16	MHz
frequency		main) mode	2.7	V≤	EV _{DD} < 4.0 V			8	MHz
			2.4	V≤	EV _{DD} < 2.7 V			4	MHz
		LS (low-spe main) mode	ed 1.8	V≤	$EV_{DD} \le 5.5 V$			4	MHz
		LV (low-volt	age 1.8	V≤	$EV_{DD} \leq 5.5 V$			4	MHz
		main) mode	1.6	$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$				2	MHz
Interrupt input high-level width,	tinth,	INTP0	1.6	V≤	$V_{DD} \le 5.5 V$	1			μs
	UNTL	INTP1 to IN	TP7 1.6	V≤	$EV_{DD} \leq 5.5 V$	1			μs
Key interrupt input low-level width	t kr	KR0 to KR3	1.8	V≤	$EV_{DD} \le 5.5 V$	250			ns
			1.6	V≤	EVDD < 1.8 V	1			μs
RESET low-level width	trsl					10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	(Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	2.7 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	250 Note 1		500 Note 1		1000 Note 1		ns
		$1.8~V \leq EV_{\text{DD}} \leq 5.5~V$				500 Note 1		1000 Note 1		ns
		1.6 V ≤ E\					1000 Note 1		ns	
SCKp high-/low-level width	tкн1, tк∟1	4.0 V ≤ E\	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns	
		$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ $1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
						tксү1/2 - 50		tксү1/2 - 50		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$						tксү1/2 - 100		ns
SIp setup time (to SCKp↑)	tsik1	2.7 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	44		110		110		ns
NOTE 2		2.4 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$			110		110		ns
		1.6 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$					220		ns
SIp hold time (from SCKp [↑])	tksi1	2.4 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$	19		19		19		ns
Note 3		1.8 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$			19		19		
		1.6 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$					19		
Delay time from SCKp↓ to	tkso1	C = 30 pF	C = 30 pF $2.4 V \le EV_{DD} \le 5.5 V$		25		25		25	ns
SOp output Note 4		NOTE 5	$1.8~V \le EV_{\text{DD}} \le 5.5~V$				25		25	
			$1.6~V \leq EV_{\text{DD}} \leq 5.5~V$						25	

Notes 1. For CSI00, set a cycle of 2/fмск or longer. For CSI01, set a cycle of 4/fмск or longer.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

 Remarks 1. R_b[Ω]:Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
2. q: UART number (q = 0, 1), g: PIM and POM number (g = 1)

> fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +85°C, 1.8 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 <i>µ</i> F	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1	2 VL1	2 VL1	V
				- 0.1			
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1	3 VL1	3 VL1	V
				- 0.15			
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between V_{L4} and GND

 $C1 = C2 = C3 = C4 = 0.47 \ \mu\text{F} \pm 30\%$

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- **3.** This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

Absolute Maximum Ratings (T_A = 25°C)

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin P20, P21		-0.5	mA
		Total of all pins		–1	mA
Output current, low IoL1		Per pin P10 to P17, P30 to P32, P40 to P50 to P54, P60, P61, P70 to P P120, P125 to P127, P130, P140 to P147		40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			-65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Iol1	Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147					8.5 Note 2	mA
		Per pin for P60, P61					15.0 Note 2	mA
		Total of P10 to P14, P40 to P43, P120, P130, P140 to P147 (When duty = 70% ^{Note 3})	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			40.0	mA	
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA	
			$2.4~V \leq EV_{\text{DD}} < 2.7~V$			9.0	mA	
		Total of P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127 (When duty = 70% ^{Note 3})	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			40.0	mA	
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA	
			$2,4~V \leq EV_{\text{DD}} < 2.7~V$			20.0	mA	
		Total of all pins (When duty = 70% ^{Note 3})					80.0	mA
	lol2	P20, P21 Per pin					0.4	mA
			Total of all pins	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			0.8	mA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 40.0 mA

Total output current of pins = $(40.0 \times 0.7)/(80 \times 0.01) \cong 35.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EVDD		EVDD	V
	VIH2	P10, P11, P15, P16	TTL input buffer 4.0 V \leq EV _{DD} \leq 5.5 V	2.2		EVDD	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	2.0		EVDD	V
			TTL input buffer 2.4 V \leq EV _{DD} $<$ 3.3 V	1.50		EVDD	V
	VIH3	P20, P21		0.7Vdd		Vdd	V
	VIH4	P60, P61		0.7EVDD		EVDD	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	0.8VDD		Vdd	V	
Input voltage, low	VIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD}	V
	VIL2 P10, P	P10, P11, P15, P16	TTL input buffer 4.0 V \leq EV _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD} $<$ 3.3 V	0		0.32	V
	VIL3	P20, P21		0		0.3V _{DD}	V
	VIL4	P60, P61		0		0.3EVDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0		0.2VDD	V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Caution The maximum value of Vi of pins P10, P12, P15, and P17 is EVDD, even in the N-ch open-drain mode.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	age ILIH1 P10 to P17, P30 to P32, VI = EVDD igh P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147						1	μA
	Ілна	P20, P21, P137, RESET			1	μA		
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilili	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	Vi = EVss				-1	μA
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	ILIL3 P1 (X EX	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up	Ru1	Vi = EVss	SEGxx po	rt				
resistance			$2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}$		10	20	100	kΩ
	Ru2		Ports other (Except for P130)	than above P60, P61, and	10	20	100	kΩ

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(5/5)

3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to +105°C, 2.4 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
Transfer rate Note 1					fмск/12	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$) 16 MHz ($2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

3.6.4 LVD circuit characteristics

(TA = -40 to +105°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
voltage	oltage		Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V	
	VLVD4	Power supply rise time	2.81	2.92	3.03	V	
		Power supply fall time	2.75	2.86	2.97	V	
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pul	Minimum pulse width			300			μs
Detection del	ay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{PDR} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	Vpoc2,	VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.64	2.75	2.86	V
mode	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 31.4 AC Characteristics.