

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rj8afa-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

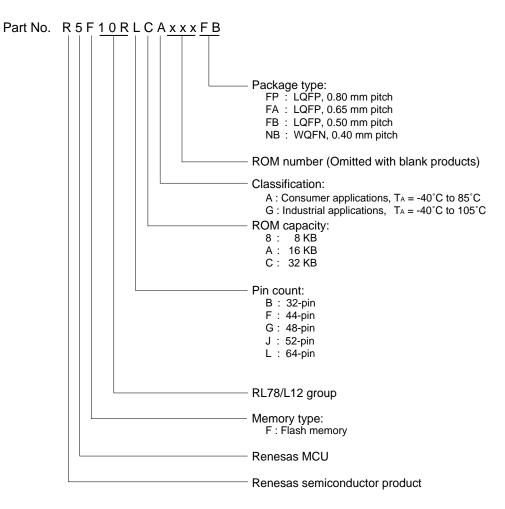
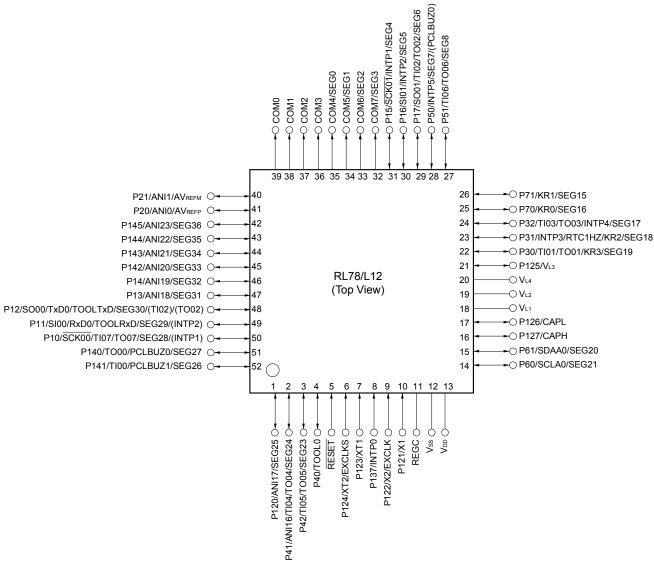


Figure 1-1 Part Number, Memory Size, and Package of RL78/L12

Pin count	Package	Fields of	Part Number
		Application Note	
32 pins	32-pin plastic LQFP (7 \times 7)	А	R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP
		G	R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP
44 pins	44-pin plastic LQFP (10×10)	А	R5F10RF8AFP, R5F10RFAAFP, R5F10RFCAFP
		G	R5F10RF8GFP, R5F10RFAGFP, R5F10RFCGFP
48 pins	48-pin plastic LQFP (fine pitch)	А	R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB
	(7 × 7)	G	R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB
52 pins	52-pin plastic LQFP (10×10)	А	R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA
		G	R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA
64 pins	64-pin plastic WQFN (8×8)	А	R5F10RLAANB, R5F10RLCANB
		G	R5F10RLAGNB, R5F10RLCGNB
	64-pin plastic LQFP (fine pitch)	А	R5F10RLAAFB, R5F10RLCAFB
	(10 × 10)	G	R5F10RLAGFB, R5F10RLCGFB
	64-pin plastic LQFP (12×12)	А	R5F10RLAAFA, R5F10RLCAFA
		G	R5F10RLAGFA, R5F10RLCGFA

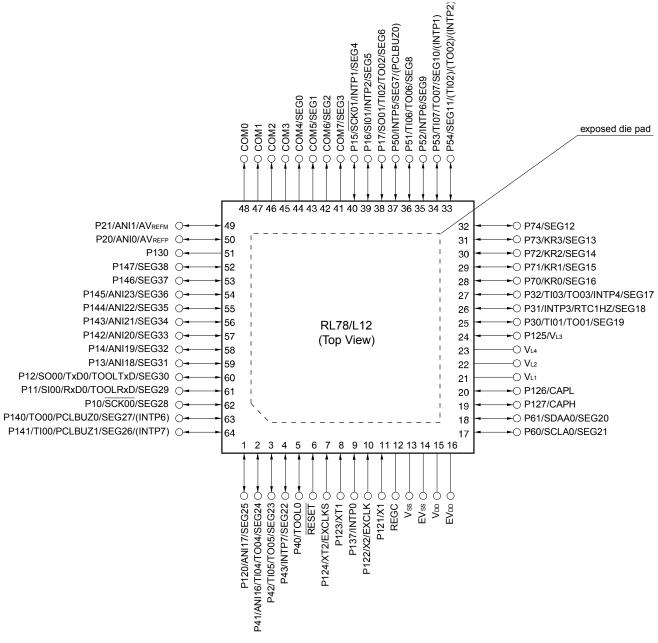
Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/L12.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.4 52-pin products

• 52-pin plastic LQFP (10 × 10)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

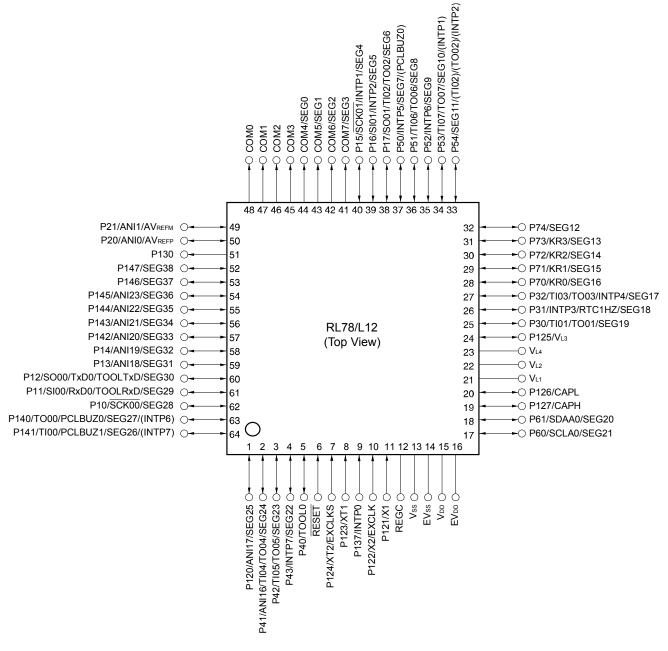
1.3.5 64-pin products

• 64-pin plastic WQFN (8 × 8)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

- 64-pin plastic LQFP (fine pitch) (10×10)
- 64-pin plastic LQFP (12 × 12)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1		P10 to P17, P30 to P32, F 4, P70 to P74, P120, P125 147				20.0 Note 2	mA
		Per pin for	Per pin for P60, P61				15.0 Note 2	mA
		Total of P1	0 to P14, P40 to P43,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			70.0	mA
			0, P140 to P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		(When duty = $70\%^{\text{Note }3}$)		$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			80.0	mA
			4, P60, P61, P70 to P74,	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
		P125 to P1 (When dut	y = 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		(,,	$1.6~V \leq EV_{\text{DD}} < 1.8~V$			10.0	mA
			Total of all pins (When duty = 70% ^{Note 3})				150.0	mA
	IOL2	P20, P21	Per pin				0.4	mA
			Total of all pins	$1.6~V \le V_{\text{DD}} \le 5.5~V$			0.8	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

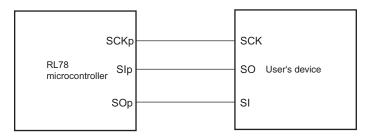
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

•	,	,	,				•
Items Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EVDD		EVdd	V
	VIH2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$	2.2		EVDD	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	2.0		EVDD	V
			TTL input buffer 1.6 V \leq EV _{DD} $<$ 3.3 V	1.50		EVDD	V
	Vінз	P20, P21		0.7V _{DD}		VDD	V
	VIH4	P60, P61	0.7EV _{DD}		EVDD	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLK	0.8V _{DD}		VDD	V	
Input voltage, low	VIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	0		0.2EV _{DD}	V	
	VIL2	P10, P11, P15, P16	TTL input buffer 4.0 V \leq EV _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V \leq EV _{DD} $<$ 3.3 V	0		0.32	V
	VIL3	P20, P21	0		0.3Vdd	V	
	VIL4	P60, P61		0		0.3EVDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	0		0.2VDD	V	

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

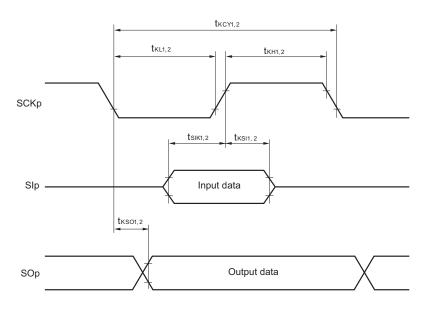
Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

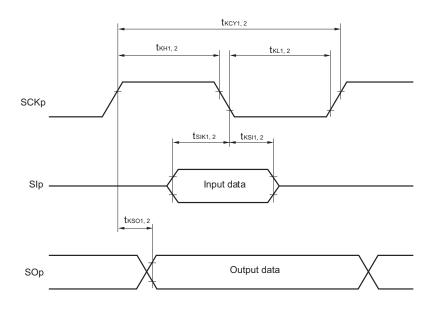

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

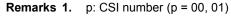
m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) ($T_A = -40$ to +85°C, 1.6 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)


Parameter	Symbol	Cond	litions	HS (high main)	•	LS (low main)	•		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note}	t ксү2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск						ns
5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/ f мск		ns
		$2.7~V \leq EV_{DD} < 4.0~V$	16 MHz < fмск	8/fмск						ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4~V \leq EV_{DD} \leq 5.5~V$		6/fмск and 500		6/fмск		6/fмск		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				6/ f мск		6/ f мск		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						6/fмск		ns
SCKp high-/low- level width	tкн2, tк∟2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү2/2 - 7		tксү2/2 -7		tксү2/2 - 7		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$		tксү2/2 – 8		tксү2/2 — 8		tксү2/2 - 8		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$		tксү2/2 – 18		tксү2/2 – 18		t _{ксү2} /2 – 18		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				tксү2/2 – 18		tксү2/2 – 18		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						tксү2/2 - 66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				1/fмск + 30		1/fмск + 30		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						1/fмск + 40		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$				1/fмск + 31		1/fмск + 31		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						1/fмск + 250		ns

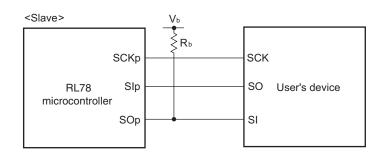
(Notes, Caution, and Remarks are listed on the next page.)




CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)


$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$									
Parameter	Symbol	Conditions		HS (high- speed main) mode		v-speed mode	voltage	(low- e main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Delay time from SCKp \downarrow to SOp output ^{Note 5}	tkso2	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $				2/fмск + 573		2/f _{мск} + 573	ns

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $EV_{DD} \ge V_b$.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - **3.** fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

2.7 LCD Characteristics

2.7.1 Resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) 1/2 bias method, 1/4 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

$(T_A = -40 \text{ to } +85^{\circ}C, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +85°C, 1.8 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} = 0.47 μ F		2 V∟1 – 0.1	2 VL1	2 V _{L1}	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 <i>µ</i> F		3 V∟1 – 0.15	3 V _{L1}	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	= 0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between V_{L4} and GND

 $C1 = C2 = C3 = C4 = 0.47 \ \mu\text{F} \pm 30\%$

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- **3.** This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

Absolute Maximum Ratings (T_A = 25°C)

(3/3)

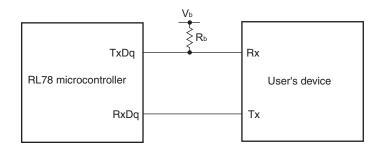
		-)			(••••)
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	lol1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			–65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

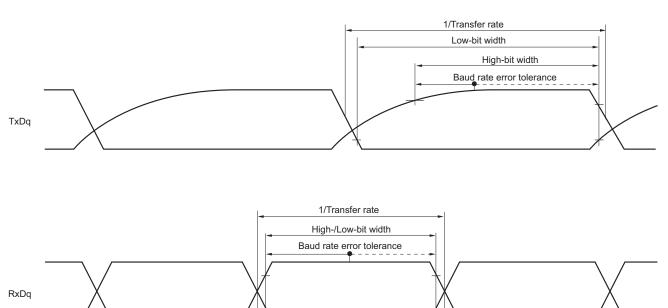
- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$


* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

 $Cb[F]: \ Communication \ line \ (TxDq) \ load \ capacitance, \ Vb[V]: \ Communication \ line \ voltage$

- **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 1)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

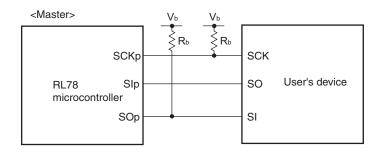
(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(T _A = -40 to +105°C,	2.4 V < FVpp =	$V_{DD} < 5.5 V_{.}$	$V_{SS} = FV_{SS} = 0 V$
	1A = -40 10 + 100 0	, 2.4 * 3 6 * 00 -	vuu <u>5</u> 0.0 v,	v 33 - Lv 33 - Uv

(1/2)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	$t_{\text{KCY1}} \ge 4/f_{\text{CLK}}$	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	600		ns
			C_b = 30 pF, R_b = 1.4 k Ω			
			$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ < 4.0 V, 2.3 V \le V _b \le 2.7 V,	600		ns
			C_b = 30 pF, R_b = 2.7 k Ω			
			$2.4 \ V \le EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \le V_{\text{b}} \le 2.0 \ V,$	2300		ns
			C_b = 30 pF, R_b = 5.5 k Ω			
SCKp high-level width	tкн1	$4.0 \ V \le EV_{DD} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V,$		tксү1/2 – 150		ns
		C_b = 30 pF, R_b = 1.4 k Ω				
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		tkcy1/2 - 340		ns
		C_b = 30 pF, R_b = 2.7 k Ω				
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		tксү1/2 – 916		ns
		C_b = 30 pF, R_b = 5.5 k Ω				
SCKp low-level width	tĸ∟1	$4.0 \ V \le EV_{DD} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V,$		tксү1/2 – 24		ns
		C _b = 30 pF, R _b = 1.4 kΩ				
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		tксү1/2 – 36		ns
		C _b = 30 pF, R _b = 2.7 kΩ				
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		tксү1/2 – 100		ns
		C_b = 30 pF, R_b = 5.5 k Ω				

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin


products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC

characteristics with TTL input buffer selected.

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - **2.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- Remarks 1. Rb[Ω]:Communication line (SCKp, SOp) pull-up resistance,

 Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - **3.** fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +105°C, 2.4 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1} = 0.47 μF	VLCD = 04H	0.90	1.00	1.08	V
			VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} = 0.47 μ F		2 V∟1 –0.1	2 VL1	2 V _{L1}	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 μ F		3 V∟1 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\mbox{\tiny L4}}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F \pm 30%

2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

			Description				
Rev.	Date	Page	Summary				
2.00	Jan 10, 2014	35	Modification of table in 2.4 AC Characteristics				
		36	Addition of Minimum Instruction Execution Time during Main System Clock Operation				
		37	Modification of AC Timing Test Points and External System Clock Timing				
		39	Modification of AC Timing Test Points				
		39	Modification of description, notes 1 and 2 in (1) During communication at same potential (UART mode)				
		41, 42	Modification of description, remark 2 in (2) During communication at same potential (CSI mode)				
		42, 43	Modification of description in (3) During communication at same potential (CSI mode)				
		45	Modification of description, notes 1 and 3, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)				
		46, 48	Modification of description, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)				
		49, 50	Modification of table, and note 1, caution, and remark 3 in (5) Communication at different potential (2.5 V, 3 V) (CSI mode)				
		51	Modification of table and note in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (1/3)				
		52	Modification of table and notes 1 to 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (2/3)				
		53, 54	Modification of table, note 3, and remark 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (3/3)				
		56	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)				
		57	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)				
		59, 60	Addition of (1) I ² C standard mode				
		61	Addition of (2) I ² C fast mode				
		62	Addition of (3) I ² C fast mode plus				
		63	Addition of table in 2.6.1 A/D converter characteristics				
		63, 64	Modification of description and notes 3 to 5 in 2.6.1 (1)				
		65	Modification of description, notes 3 and 4 in 2.6.1 (2)				
		66	Modification of description, notes 3 and 4 in 2.6.1 (3)				
		67	Modification of description, notes 3 and 4 in 2.6.1 (4)				
		67	Modification of the table in 2.6.2 Temperature sensor/internal reference voltage characteristics				
		68	Modification of the table and note in 2.6.3 POR circuit characteristics				
		70	Modification of the table of LVD Detection Voltage of Interrupt & Reset Mode				
		70	Modification from VDD rise slope to Power supply voltage rising slope in 2.6.5 Supply voltage rise time				
		75	Modification of description in 2.10 Dedicated Flash Memory Programmer Communication (UART)				
		76	Modification of the figure in 2.11 Timing Specifications for Switching Flash Memory Programming Modes				
		77 to 126	Addition of products for industrial applications (G: T _A = -40 to +105°C)				
		127 to 133	Addition of product names for industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)				
2.10	Sep 30, 2016	5	Modification of pin configuration in 1.3.1 32-pin products				
		6	Modification of pin configuration in 1.3.2 44-pin products				
		7	Modification of pin configuration in 1.3.3 48-pin products				
		8	Modification of pin configuration in 1.3.4 52-pin products				
		9, 10 17	Modification of pin configuration in 1.3.5 64-pin products				
		17 74	Modification of description of main system clock in 1.6 Outline of Functions				
		74	Modification of title of 2.8 RAM Data Retention Characteristics, Note, and figure Modification of table of 2.9 Flash Memory Programming Characteristics				
		123	Modification of title of 3.8 RAM Data Retention Characteristics, Note, and figure				
		123	Modification of table of 3.9 Flash Memory Programming Characteristics and addition of Note 4				
		131	Modification of 4.5 64-pin Products				
		151					