

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rj8gfa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency $(f_X)^{Note}$	Ceramic resonator/ crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
		$2.4 \text{ V} \leq V_{\text{DD}} \leq 2.7 \text{ V}$	1.0		16.0	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		8.0	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	MHz
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **2.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

· · ·							
Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$1.8~V \le V_{\text{DD}} \le 5.5~V$	-1		+1	%
clock frequency accuracy			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5		+5	%
		–40 to –20°C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to 2.4 AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/5)

	· · , ·									
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit		
Output current, high ^{Note 1}	Іон1	•	P10 to P17, P30 to P32, P40 t P120, P125 to P127, P130, I				-10.0 Note 2	mA		
		Total of P10) to P14, P40 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-40.0	mA		
		P130, P140		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA		
		(When duty = 70% ^{Note 3}) Total of P15 to P17, P30 to P32,	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA			
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-2.0	mA		
			P15 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-60.0	mA		
		· · · · · · · · · · · · · · · · · · ·	P70 to P74, P125 to P127 = 70% ^{Note 3})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA		
		(when duty	= 70%)	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA		
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-4.0	mA		
		Total of all pins (When duty = 70% ^{Note 3})					-100.0	mA		
	Іон2	P20, P21	Per pin				-0.1	mA		
			Total of all pins			-0.2	mA			

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and $I_{OH} = -40.0$ mA

Total output current of pins = $(-40.0 \times 0.7)/(80 \times 0.01) \approx -35.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, IoL1 Iow ^{Note 1}			P10 to P17, P30 to P32, F 4, P70 to P74, P120, P125 147				20.0 Note 2	mA
		Per pin for	P60, P61			15.0 Note 2	mA	
		Total of P1	0 to P14, P40 to P43,	$4.0~V \le EV_{\text{DD}} \le 5.5~V$			70.0	mA
		0, P140 to P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA	
	(when dut	y = 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA	
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			80.0	mA
			4, P60, P61, P70 to P74,	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
		P125 to P1 (When dut	y = 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		(,,	$1.6~V \leq EV_{\text{DD}} < 1.8~V$			10.0	mA
			Total of all pins (When duty = 70% ^{Note 3})				150.0	mA
	IOL2	P20, P21	Per pin				0.4	mA
			Total of all pins	$1.6~V \le V_{\text{DD}} \le 5.5~V$			0.8	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

	, ,					(0/0		
Items	Symbol	Conditio	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EV _{DD}				1	μA
	ILIH2	P20, P21, P137, RESET	VI = VDD				1	μA
Ішнз		P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVss				-1	μA
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	Ilili3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up	Ruı	VI = EVss	SEGxx po	rt				
resistance			2.4 V ≤ I	$EV_{DD} = V_{DD} \le 5.5 V$	10	20	100	kΩ
			1.6 V ≤ I	$EV_{DD} = V_{DD} < 2.4 V$	10	30	100	kΩ
	Ru2			r than above ⁻ P60, P61, and	10	20	100	kΩ

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(5/5)

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	speed	high- main) ode		/-speed Mode	voltage	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 2/f с∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200 Note 1		1150 Note 1		1150 Note 1		ns
			$\begin{array}{l} 2.7 \ V \leq E V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300 Note 1		1150 Note 1		1150 Note 1		ns
SCKp high-level width	tкнı	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
			$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$			tксү1/2 – 120		tксү1/2 – 120		ns
SCKp low-level width	tĸ∟1		$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega$			tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 k Ω	tксү1/2 – 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 2}	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	58		479		479		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	10		10		10		ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R_{b} = 2.7 k Ω	10		10		10		ns
Delay time from SCKp \downarrow to SOp output Note 2	tkso1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$		60		60		60	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 k Ω		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 3}	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	23		110		110		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 3}	tksi1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$	10		10		10		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, $k_{\rm b}$ = 2.7 k Ω	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 3}	tkso1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $k_{b} = 1.4 \text{ k}\Omega$		10		10		10	ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, h_{b} = 2.7 k Ω		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EV_{ss} = 0 V)

(Notes, Caution and Remarks are listed on the next page.)

- Notes 1. For CSI00, set a cycle of 2/fmck or longer. For CSI01, set a cycle of 4/fmck or longer.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 3. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-	LS	(low-	LV	(low-	Unit
			speed	l main)	speed	l main)	voltage	e main)	
			Mo	ode	Mo	ode	Mo	ode	
				MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	81		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
		1.8 V ≤ EV _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note 3} , C _b = 30 pF, R _b = 5.5 kΩ			19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		100		100		100	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{\text{DD}} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		195		195		195	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		483		483		483	ns
						483		483	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	110		110		110		ns
		1.8 V ≤ EV _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note 3} , C _b = 30 pF, R _b = 5.5 kΩ			110		110		ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

3. Use it with $EV_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{Ss}} = 0 \text{ V})$

Parameter	Symbol	sp		high- I main) ode	ain) speed main)		LV (low- voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; \text{V}, 2.7 \; \text{V} \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ C_{\text{b}} = 30 \; \text{pF}, \; R_{\text{b}} = 1.4 \; \text{k}\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; \text{V}, 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ C_{\text{b}} = 30 \; \text{pF}, \; R_{\text{b}} = 1.4 \; \text{k}\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$				25		25	ns

- **Notes** 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** Use it with $EV_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2,	VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB1	VPOC2,	VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB2		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
VLVDB				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB4		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time

(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +85°C, 1.8 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1} = 0.47 μF	VLCD = 04H	0.90	1.00	1.08	V
			VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} = 0.47 μ F		2 V∟1 – 0.1	2 VL1	2 V _{L1}	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	= 0.47 <i>μ</i> F	3 V∟1 – 0.15	3 V _{L1}	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} = 0.47 μ F		500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between V_{L4} and GND

 $C1 = C2 = C3 = C4 = 0.47 \ \mu F \pm 30\%$

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- **3.** This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND
- C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L4}}$ and GND
- $C1 = C2 = C3 = C4 = 0.47 \ \mu\text{F}{\pm}30\%$

Absolute Maximum Ratings (T_A = 25°C)

(3/3)

		-)			(••••)
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	lol1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation mode		-40 to +105	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			-65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(1/5)

Items	Symbol	Conditions				TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1		· · · · · ·	P30 to P32, P40 to P43, P50 to P54, 5 to P127, P130, P140 to P147			-3.0 Note 2	mA
	Total of P10 to P14, P40 to P43, P120,		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA	
		P130, P140 to P147 (When duty = 70% ^{Note 3})		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA
				$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
		Total of P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127 (When duty = 70% ^{Note 3})		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
				$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
				$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
		Total of all pins (When duty = 70% ^{Note}	³)				-60.0	mA
	Іон2 Р20, Р21	Per pin				-0.1	mA	
		Total of all pins		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

- Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoH = -30.0 mA

Total output current of pins = $(-30.0 \times 0.7)/(80 \times 0.01) \cong -26.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(T _A = –40 to +	105°C, 2.	$4 V \le EV_{DD} = V_{DD} \le 5.5 V, V_{SS} = EV_{SS} = 0 V$						(3/3
Parameter	Symbol	Conditions				TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	_{FIL} Note 1					0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped				0.08		μA
12-bit interval timer current	I⊤ Notes 1, 2, 4					0.08		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fil = 15 kHz				0.24		μA
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	$\frac{\text{Normal mode, AV}_{\text{REFP}} = V_{\text{DD}} = 5.0 \text{ V}}{\text{Low voltage mode, AV}_{\text{REFP}} = V_{\text{DD}} = 3.0 \text{ V}}$			1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	IADREF Note 1					75.0		μA
Temperature sensor operating current	ITMPS Note 1					75.0		μA
LVD operating current	ILVD Notes 1, 7					0.08		μA
Self- programming operating current	IFSP Notes 1, 9					2.50	12.20	mA
BGO operating current	BGO Notes 1, 8					2.50	12.20	mA
LCD operating LLCD1 E current Notes 11, 12		External resistance	division method	$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	ILCD2 Note 11	Internal voltage boosting method		V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.70	μA
ILCD3			$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V (VLCD = 04H)$			0.63	2.20	μA
	ILCD3 Note 11	Capacitor split method $V_{DD} = EV_{DD} = V_{L4} = 3.0 V$		$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.50	μA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	1.10	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD}$ = 3.0 V			1.20	2.04	mA
		CSI/UART operation				0.70	1.54	mA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(3/3)

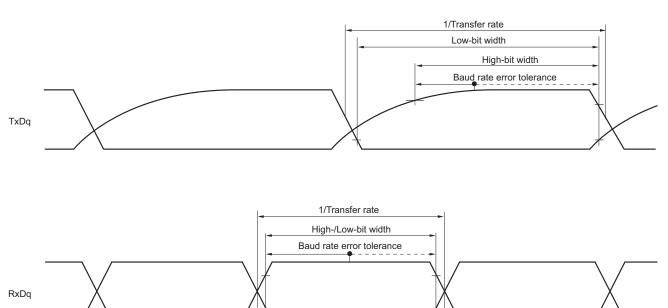
(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	tkcy1	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$			ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		500 ^{Note 1}		ns
SCKp high-/low-level width	CKp high-/low-level width t_{KH1} , $4.0 V \le EV_{DI}$			tксү1/2 – 24		ns
	tĸ∟1	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 — 36		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		tксү1/2 – 76		ns
SIp setup time (to SCKp↑) ^{Note 2}	tsik1	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		66		ns
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		113		ns
SIp hold time (from SCKp↑) Note 3	tksi1	$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		38		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	C = 30 pF ^{Note 5}	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		50	ns

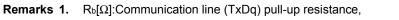
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Notes 1. Set a cycle of 4/fмcκ or longer.


- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

UART mode bit width (during communication at different potential) (reference)

 $Cb[F]: \ Communication \ line \ (TxDq) \ load \ capacitance, \ Vb[V]: \ Communication \ line \ voltage$

- **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 1)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

3.7.3 Capacitor split method

1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
V _{L4} voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		Vdd		V
V∟₂ voltage	Vl2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V∟₄ + 0.1	V
V _{L1} voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V∟₄ – 0.1	1/3 VL4	1/3 V∟₄ + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{\mbox{\tiny L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F±30%

The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.