

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rjaafa-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

Figure 1-1 Part Number, Memory Size, and Package of RL78/L12

1.4 Pin Identification

ANIO, ANI1,		P130, P137:	Port 13
ANI16 to ANI23:	Analog Input	P140 to P147:	Port 14
AVREFM:	Analog Reference	PCLBUZ0, PCLBUZ1:	Programmable Clock
	Voltage Minus		Output/Buzzer Output
AVREFP:	Analog Reference	REGC:	Regulator Capacitance
	Voltage Plus	RESET:	Reset
CAPH, CAPL:	Capacitor for LCD	RTC1HZ:	Real-time Clock Correction Clock
COM0 to COM7,			(1 Hz) Output
EVDD:	Power Supply for Port	RxD0:	Receive Data
EVss:	Ground for Port	SCK00, SCK01:	Serial Clock Input/Output
EXCLK:	External Clock Input	SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SDAA0:	Serial Data Input/Output
EXCLKS:	External Clock Input	SEG0 to SEG38:	LCD Segment Output
	(Subsystem Clock)	SI00, SI01:	Serial Data Input
INTP0 to INTP7:	Interrupt Request From	SO00, SO01:	Serial Data Output
	Peripheral	TI00 to TI07:	Timer Input
KR0 to KR3:	Key Return	TO00 to TO07:	Timer Output
P10 to P17:	Port 1	TOOL0:	Data Input/Output for Tool
P20, P21:	Port 2	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P30 to P32:	Port 3	TxD0:	Transmit Data
P40 to P43:	Port 4	VDD:	Power Supply
P50 to P54:	Port 5	VL1 to VL4:	LCD Power Supply
P60, P61:	Port 6	Vss:	Ground
P70 to P74:	Port 7	X1, X2:	Crystal Oscillator (Main System Clock)
P120 to P127:	Port 12	XT1, XT2:	Crystal Oscillator (Subsystem Clock)

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency $(f_X)^{Note}$	Ceramic resonator/ crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}$	1.0		16.0	MHz
		$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$	1.0		8.0	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **2.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$1.8~V \le V_{\text{DD}} \le 5.5~V$	-1		+1	%
clock frequency accuracy			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5		+5	%
		–40 to –20°C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to 2.4 AC Characteristics for instruction execution time.

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL Note 1					0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped			0.08		μA	
12-bit interval timer current	li⊤ Notes 1, 2, 4			0.08		μA		
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz		0.24		μA		
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, A	$V_{REFP} = V_{DD} = 5.0 V$ de, AV _{REFP} = V _{DD} = 3.0 V		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	ADREF Note 1					75.0		μA
Temperature sensor operating current	ITMPS Note 1					75.0		μA
LVD operating current	ILVD Notes 1, 7							μA
Self- programming operating current	FSP Notes 1, 9					2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8					2.00	12.20	mA
LCD operating current	LCD1 Notes 11, 12	External resistance	division method	$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	ILCD2 Note 11	Internal voltage bo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.70	μA
				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.20	μA
	ILCD3 Note 11	Capacitor split met	hod	$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.50	μA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	0.60	mA
operating current			The A/D conversio performed, Low vo = 3.0 V	n operations are litage mode, AV _{REFP} = V _{DD}		1.20	1.44	mA
		CSI/UART operation	CSI/UART operation					mA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(3/3)

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	(Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	2.7 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$			500 Note 1		1000 Note 1		ns
		1.6 V ≤ E\					1000 Note 1		ns	
SCKp high-/low-level width	tкнı, tк∟ı	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
		1.8 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$			tксү1/2 - 50		tксү1/2 - 50		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$						tксү1/2 - 100		ns
SIp setup time (to SCKp↑)	tsik1	2.7 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	44		110		110		ns
NOTE 2		2.4 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$			110		110		ns
		1.6 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$					220		ns
SIp hold time (from SCKp [↑])	tksi1	2.4 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$	19		19		19		ns
Note 3		1.8 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$			19		19		
		1.6 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$					19		
Delay time from SCKp↓ to	tkso1	C = 30 pF	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		25		25		25	ns
SOp output Note 4		Note 5	$1.8~V \le EV_{\text{DD}} \le 5.5~V$				25		25	
			$1.6~V \leq EV_{\text{DD}} \leq 5.5~V$						25	

Notes 1. For CSI00, set a cycle of 2/fмск or longer. For CSI01, set a cycle of 4/fмск or longer.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

- Notes 1. For CSI00, set a cycle of 2/fmck or longer. For CSI01, set a cycle of 4/fmck or longer.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 3. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}) $ (1/2)										
Parameter	Symbol	Con	Conditions		HS (high- speed main) mode		LS (low-speed main) mode		LV (low- voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	$4.0 V \leq EV_{DD} \leq 5.5 V.$	20 MHz < fмск ≤ 24 MHz	12/fмск						ns
		$2.7 V \le V_b \le 4.0 V$	8 MHz < fмск ≤ 20 MHz	10/fмск						ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск				ns
			fмск≤4 MHz	6/fмск		10/fмск		10/ f мск		ns
		$2.7 V \le EV_{DD} < 4.0 V$,	20 MHz < fмск ≤ 24 MHz	16/fмск						ns
		$2.3V{\leq}V_b{\leq}2.7V$	16 MHz < fмск ≤ 20 MHz	14/ f мск						ns
			8 MHz < fмск ≤ 16 MHz	12/fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/f мск		16/fмск				ns
			fмск ≤4 MHz	6/ f мск		10/fмск		10/fмск		ns
		$\begin{array}{c} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	20 MHz < fмск ≤ 24 MHz	36/f мск						ns
			$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	32/fмск						ns
			8 MHz < fмск ≤ 16 MHz	26/fмск						ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск				ns
			fмск≤4 MHz	10/fмск		10/fмск		10/fмск		ns
		$1.8 V \le EV_{DD} < 3.3 V$,	4 MHz < fмск ≤ 8 MHz			16/fмск				ns
		$1.6 \ V \! \le \! V_b \! \le \! 2.0 \ V^{\text{Note 2}}$	fмск≤4 MHz			10/fмск		10/fмск		ns
SCKp high-/low-level t width t	tкн2, tк∟2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	$V, 2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 – 50		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm t}, 1.6 \ V \le V_{\rm b} \le 2.0 \ V_{\rm b}$	tkcy2/2		tксү2/2 - 50		tkcy2/2 - 50		ns
		$1.8 V \le EV_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Not}$	/, te 2			tксү2/2 - 50		tkcy2/2		ns
Slp setup time	tsik2	$4.0 V \le EV_{DD} \le 5.5 V$	$V_{\rm h} = 2.7 \text{V} \le V_{\rm h} \le 4.0 \text{V}$	1/fмск +		1/fмск +		1/fмск +		ns
(to SCKp↑) Note 3			,	20		30		30		
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	V , 1.6 V \le V _b \le 2.0 V	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.8 V \le EV_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Not}$	/, te 2			1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$V, 2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	1/fмск+ 31		1/fмск + 31		1/fмск + 31		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V_{\rm y}, 2.3 \ V \le V_b \le 2.7 \ V_b$	1/fмск+ 31		1/fмск + 31		1/fмск + 31		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm t}, 1.6 \ V \le V_b \le 2.0 \ V_b$	1/fмск + 31		1/fмск+ 31		1/fмск + 31		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$	/, te 2			1/fмск + 31		1/fмск + 31		ns

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(Notes, Caution and Remarks are listed on the next page.)

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset VLVDA0	VPOC2	, VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V	
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	V LVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
VLVDB1 VLVDB2 VLVDB3	VLVDB1	VPOC2	, VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB2		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
VLVDB	VLVDB4		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2	, VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1	_	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2	, VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time

(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
 - For derating with T_A = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

(1/3)

3.1 Absolute Maximum Ratings

Absolute	Maximum	Ratings	$(T_{A} = 25^{\circ}C)$
----------	---------	---------	-------------------------

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVss		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} + 0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
	V _{I2}	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
	V _{I3}	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Output voltage	Vo1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 $^{\rm Note\ 2}$	V
	V _{O2}	P20, P21	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Analog input voltage	Vai1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V
	Vai2	ANIO, ANI1	-0.3 to V_{DD} + 0.3 and -0.3 to $AV_{\text{REF}}(+)$ + $0.3^{\text{Notes 2, 3}}$	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

(2/3)

Absolute Maximum Ratings (T_A = 25°C)

		-			
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		-0.3 to +2.8 and -0.3 to V _{L4} + 0.3	V
	VL2	VL2 voltage ^{Note 1}		-0.3 to $V_{\rm L4}$ + 0.3 $^{\rm Note\ 2}$	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
	VL4	VL4 voltage ^{Note 1}		-0.3 to +6.5	V
	VLCAP	CAPL, CAPH vol	tage ^{Note 1}	–0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
VLOUT	Vlout	COM0 to COM7, SEG0 to	External resistance division method	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
	SEG38	SEG38,	Capacitor split method	-0.3 to V _{DD} + 0.3 ^{Note 2}	
	output voltage		Internal voltage boosting method	-0.3 to V _{L4} + 0.3 ^{Note 2}	

Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.

- 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss : Reference voltage

3.3.2 Supply current characteristics

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/3)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
Current Note 1		mode	speed main)	n)	operation	V _{DD} = 3.0 V		1.5		mA
			mode		Normal	V _{DD} = 5.0 V		3.3	5.3	mA
					operation	V _{DD} = 3.0 V		3.3	5.3	mA
				f _{IH} = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.5	3.9	mA
					operation	V _{DD} = 3.0 V		2.5	3.9	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.7	mA
			speed main)	V _{DD} = 5.0 V	operation	Resonator connection		3.0	4.8	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.0	4.8	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.8	2.8	mA
				V _{DD} = 5.0 V 0	operation	Resonator connection		1.8	2.8	mA
				f_{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.8	2.8	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.8	2.8	mA
			Subsystem clock operation	fsue = 32.768 kHz Normal Note 4 operation	Normal	Square wave input		3.5	4.9	μA
					operation	Resonator connection		3.6	5.0	μA
				$T_{A} = -40^{\circ}C$						
				TSUB = 32.768 KHZ Note 4	Normal	Square wave input		3.6	4.9	μA
				T _A = +25°C	opciation	Resonator connection		3.7	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		3.7	5.5	μA
				Note 4 Operation	operation	Resonator connection		3.8	5.6	μA
				T _A = +50°C						
				fsue = 32.768 kHz	Normal	Square wave input		3.8	6.3	μA
				$T_A = +70^{\circ}C$	operation	Resonator connection		3.9	6.4	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.1	7.7	μA
				Note 4	operation	Resonator connection		4.2	7.8	μA
				T _A = +85°C						
				fsue = 32.768 kHz	Normal	Square wave input		6.4	19.7	μA
				^{Note 4} T _A = +105°С	operation	Resonator connection		6.5	19.8	μA

(Notes and Remarks are listed on the next page.)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Conditions			HS (high-speed main) Mode		Unit
					MIN.	MAX.	
Transfer rate		Reception	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V,$			fмск/12 ^{Note 1}	bps
			$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
2.7 2.3 2.4 1.6	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V},$	$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$		fмск/12 ^{Note 1}	bps		
			$2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$			fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode:24 MHz (2.7 V \leq VDD \leq 5.5 V)16 MHz (2.4 V \leq VDD \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0 V \le EV_{DD} \le 5.5 V$,	20 MHz < fмск ≤ 24 MHz	24/f мск		ns
		$2.7V\!\le\!V_b\!\le\!4.0V$	8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			4 MHz < fмск ≤ 8 MHz	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.7 V \le EV_{DD} < 4.0 V$,	20 MHz < fмск ≤ 24 MHz	32/f мск		ns
		$2.3V \!\leq\! V_b \!\leq\! 2.7V$	16 MHz < fмск ≤ 20 MHz	28/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤ 4 MHz	12/f мск		ns
		$2.4 V \le EV_{DD} < 3.3 V$,	20 MHz < fмск ≤ 24 MHz	72/f мск		ns
		$1.6V \!\leq\! V_b \!\leq\! 2.0V$	16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			$8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/f мск		ns
			fмск ≤4 MHz	20/f мск		ns
SCKp high-/low-level width	tкн2, tк∟2		V,	tkcy2/2 - 24		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	V,	tkcy2/2 - 100		ns
SIp setup time (to SCKp [↑]) ^{Note2}	tsik2	$4.0 V \le EV_{DD} < 5.5 V$ $2.7 V \le V_b \le 4.0 V$	V,	1/fмск + 40		ns
		$2.7 V \le EV_{DD} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		1/fмск + 40		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	V,	1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2	$\begin{array}{c} 4.0 \; V \leq EV_{DD} < 5.5 \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	V,	1/fмск + 62		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		1/fмск + 62		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	V,	1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tĸso2	$4.0 V \le EV_{DD} \le 5.5$ $C_b = 30 \text{ pF}, R_b = 1.4$	$V, 2.7 V ≤ V_b ≤ 4.0 V,$ 4 kΩ		2/fмск + 240	ns
		$2.7 V \le EV_{DD} < 4.0$ $C_b = 30 \text{ pF}, R_b = 2.7$	V, 2.3 V ≤ V₅ ≤ 2.7 V, 7 kΩ		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.9 \text{ c}_{\text{b}}$	V, 1.6 V ≤ V₅ ≤ 2.0 V 5 kΩ		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the page after the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

	Reference Voltage					
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = V _{BGR}			
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM			
ANIO, ANI1	-	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).			
ANI16 to ANI23	Refer to 3.6.1 (2).					
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_			

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$			±1.5	LSB
Analog input voltage	Vain	Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			V _{BGR} ^{Note 4}		V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		VTMPS25 Note 4			V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.7.3 Capacitor split method

1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
V∟₂ voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
V∟1 voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V∟₄ – 0.1	1/3 VL4	1/3 V∟₄ + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{\mbox{\tiny L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F \pm 30%

4.4 52-pin Products

R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

2.Dimension "X3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

е

x y 0.65

0.10

		Description			
Rev.	Date	Page	Summary		
2.00	Jan 10, 2014	35	Modification of table in 2.4 AC Characteristics		
		36	Addition of Minimum Instruction Execution Time during Main System Clock Operation		
		37	Modification of AC Timing Test Points and External System Clock Timing		
		39	Modification of AC Timing Test Points		
		39	Modification of description, notes 1 and 2 in (1) During communication at same potential (UART mode)		
		41, 42	Modification of description, remark 2 in (2) During communication at same potential (CSI mode)		
		42, 43	Modification of description in (3) During communication at same potential (CSI mode)		
		45	Modification of description, notes 1 and 3, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)		
		46, 48	Modification of description, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)		
		49, 50	Modification of table, and note 1, caution, and remark 3 in (5) Communication at different potential (2.5 V, 3 V) (CSI mode)		
		51	Modification of table and note in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (1/3)		
		52	Modification of table and notes 1 to 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (2/3)		
		53, 54	Modification of table, note 3, and remark 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (3/3)		
		56	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)		
		57	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)		
		59, 60	Addition of (1) I ² C standard mode		
		61	Addition of (2) I ² C fast mode		
		62	Addition of (3) I ² C fast mode plus		
		63	Addition of table in 2.6.1 A/D converter characteristics		
		63, 64	Modification of description and notes 3 to 5 in 2.6.1 (1)		
		65	Modification of description, notes 3 and 4 in 2.6.1 (2)		
		67	Modification of description, notes 3 and 4 in 2.6.1 (3)		
		67	Modification of the table in 2.6.2 Temperature sensor/internal reference voltage		
		01	characteristics		
		68	Modification of the table and note in 2.6.3 POR circuit characteristics		
		70	Modification of the table of LVD Detection Voltage of Interrupt & Reset Mode		
		70	Modification from V_{DD} rise slope to Power supply voltage rising slope in 2.6.5 Supply voltage rise time		
		75	Modification of description in 2.10 Dedicated Flash Memory Programmer Communication (UART)		
		76	Modification of the figure in 2.11 Timing Specifications for Switching Flash Memory Programming Modes		
		77 to 126	Addition of products for industrial applications (G: T _A = -40 to +105°C)		
		127 to 133	Addition of product names for industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)		
2.10	Sep 30, 2016	5	Modification of pin configuration in 1.3.1 32-pin products		
		6	Modification of pin configuration in 1.3.2 44-pin products		
		7	Modification of pin configuration in 1.3.3 48-pin products		
		δ 0 10	Modification of pin configuration in 1.3.4 52-pin products		
		9, 10	Modification of phil conliguration in 1.5.5 64-phil products		
		74	Modification of title of 2.8 RAM Data Retention Characteristics Note and figure		
		74	Modification of table of 2.9 Flash Memory Programming Characteristics		
		123	Modification of title of 3.8 RAM Data Retention Characteristics. Note, and figure		
		123	Modification of table of 3.9 Flash Memory Programming Characteristics and addition of Note 4		
		131	Modification of 4.5 64-pin Products		