



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Discontinued at Digi-Key                                                        |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I²C, LINbus, UART/USART                                                    |
| Peripherals                | DMA, LCD, LVD, POR, PWM, WDT                                                    |
| Number of I/O              | 37                                                                              |
| Program Memory Size        | 16KB (16K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 2K x 8                                                                          |
| RAM Size                   | 1K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 10x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 52-LQFP                                                                         |
| Supplier Device Package    | 52-LQFP (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rjaafa-x0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.3.3 48-pin products

• 48-pin plastic LQFP (fine pitch) (7 × 7)





### Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu$ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

|                  |                            |                       |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | -                                                    |                  | (2/2                             |  |  |  |
|------------------|----------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------|----------------------------------|--|--|--|
|                  | Iter                       | m                     | 32-pin                                                                                                                                                                                                                                                                                                                                         | 44-pin                                                                                                                                                                                                                          | 48-pin                                               | 52-pin           | 64-pin                           |  |  |  |
|                  |                            |                       | R5F10RBx                                                                                                                                                                                                                                                                                                                                       | R5F10RFx                                                                                                                                                                                                                        | R5F10RGx                                             | R5F10RJx         | R5F10RLx                         |  |  |  |
| Time             | r 16-b                     | it timer              | 8 channels                                                                                                                                                                                                                                                                                                                                     | 8 channels                                                                                                                                                                                                                      | (with 1 channel i                                    | emote control ou | tput function)                   |  |  |  |
|                  | Wate                       | chdog timer           |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | 1 channel                                            |                  |                                  |  |  |  |
|                  | Real-                      | -time clock (RTC)     |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | 1 channel                                            |                  |                                  |  |  |  |
|                  | 12-bi                      | t interval timer (IT) |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | 1 channel                                            |                  |                                  |  |  |  |
|                  | Time                       | er output             | 4 channels<br>(PWM outputs:<br>3 <sup>Note 1</sup> )                                                                                                                                                                                                                                                                                           | 5 channels<br>(PWM outputs:<br>4 <sup>Note 1</sup> )                                                                                                                                                                            | 6 channels<br>(PWM outputs:<br>5 <sup>Note 1</sup> ) | 8 channels (PWN  | 1 outputs: 7 <sup>Note 1</sup> ) |  |  |  |
|                  | RTC                        | output                | -                                                                                                                                                                                                                                                                                                                                              | 1<br>• 1 Hz (subsys                                                                                                                                                                                                             | tem clock: fsub =                                    | 32.768 kHz or )  |                                  |  |  |  |
| Clock            | coutput/buzze              | er output             | 1                                                                                                                                                                                                                                                                                                                                              | 1 2                                                                                                                                                                                                                             |                                                      |                  |                                  |  |  |  |
|                  |                            |                       | <ul> <li>2.44 kHz, 4.8<br/>(Main system)</li> <li>256 Hz 512</li> </ul>                                                                                                                                                                                                                                                                        | <ul> <li>2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz<br/>(Main system clock: f<sub>MAIN</sub> = 20 MHz operation)</li> <li>256 Hz, 512 Hz, 4.024 kHz, 2.048 kHz, 4.006 kHz, 8.102 kHz, 16.284 kHz</li> </ul> |                                                      |                  |                                  |  |  |  |
|                  |                            |                       | $32.768 \text{ kHz}$ (Subsystem clock: $f_{SUB} = 32.768 \text{ kHz}$ operation)                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                      |                  |                                  |  |  |  |
| 8/10-            | bit resolution             | A/D converter         | 4 channels                                                                                                                                                                                                                                                                                                                                     | 7 channels                                                                                                                                                                                                                      | 9 channels                                           | 10 channels      | 10 channels                      |  |  |  |
| Serial interface |                            |                       | CSI: 2 chann                                                                                                                                                                                                                                                                                                                                   | el/UART (LIN-bu                                                                                                                                                                                                                 | s supported): 1 o                                    | hannel           |                                  |  |  |  |
|                  | I <sup>2</sup> C bus       |                       | 1 channel                                                                                                                                                                                                                                                                                                                                      | 1 channel                                                                                                                                                                                                                       | 1 channel                                            | 1 channel        | 1 channel                        |  |  |  |
| Multij<br>accu   | olier and divid<br>mulator | ler/multiply-         | <ul> <li>16 bits × 16 bits = 32 bits (Unsigned or signed)</li> <li>32 bits ÷ 32 bits = 32 bits (Unsigned)</li> <li>16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)</li> </ul>                                                                                                                                                       |                                                                                                                                                                                                                                 |                                                      |                  |                                  |  |  |  |
| DMA              | controller                 |                       | 2 channels                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                 |                                                      |                  |                                  |  |  |  |
| Vecto            | ored interrupt             | Internal              | 23                                                                                                                                                                                                                                                                                                                                             | 23                                                                                                                                                                                                                              | 23                                                   | 23               | 23                               |  |  |  |
| sourc            | es                         | External              | 4                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                               | 7                                                    | 7                | 9                                |  |  |  |
| Kev i            | nterrupt                   |                       |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | 4                                                    | I                |                                  |  |  |  |
| Reset            |                            |                       | <ul> <li>Reset by RESET pin</li> <li>Internal reset by watchdog timer</li> <li>Internal reset by power-on-reset</li> <li>Internal reset by voltage detector</li> <li>Internal reset by illegal instruction execution <sup>Note 2</sup></li> <li>Internal reset by RAM parity error</li> <li>Internal reset by illegal-memory access</li> </ul> |                                                                                                                                                                                                                                 |                                                      |                  |                                  |  |  |  |
| Powe             | er-on-reset cir            | cuit                  | Power-on-reset: 1.51 ±0.04 V     Power-down-reset: 1.50 ±0.04 V                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                      |                  |                                  |  |  |  |
| Volta            | ge detector                |                       | Rising edge : 1.67 V to 4.06 V (14 stages)     Falling edge : 1.63 V to 3.98 V (14 stages)                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                 |                                                      |                  |                                  |  |  |  |
| On-c             | hip debug fun              | ction                 | Provided                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                 |                                                      |                  |                                  |  |  |  |
| Powe             | er supply volta            | age                   | V <sub>DD</sub> = 1.6 to 5.5 V                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |                                                      |                  |                                  |  |  |  |
| Oper             | ating ambient              | temperature           | T <sub>A</sub> = -40 to +85 °C                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |                                                      |                  |                                  |  |  |  |

**Notes 1.** The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

 The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

temperature

Storage temperature

Tstg

-65 to +150

°C

(3/3)

### Absolute Maximum Ratings (T<sub>A</sub> = 25°C)

|                      |         |                              |                                                                                                                          |            | . ,  |
|----------------------|---------|------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------|------|
| Parameter            | Symbols |                              | Conditions                                                                                                               | Ratings    | Unit |
| Output current, high | Іон1    | Per pin                      | P10 to P17, P30 to P32,<br>P40 to P43, P50 to P54,<br>P70 to P74, P120, P125 to P127,<br>P130, P140 to P147              | -40        | mA   |
|                      |         | Total of all pins<br>–170 mA | P10 to P14, P40 to P43, P120,<br>P130, P140 to P147                                                                      | -70        | mA   |
|                      |         |                              | P15 to P17, P30 to P32,<br>P50 to P54, P70 to P74,<br>P125 to P127                                                       | -100       | mA   |
|                      | Іон2    | Per pin                      | P20, P21                                                                                                                 | -0.5       | mA   |
|                      |         | Total of all pins            |                                                                                                                          | -1         | mA   |
| Output current, low  | lol1    | Per pin                      | P10 to P17, P30 to P32,<br>P40 to P43, P50 to P54, P60,<br>P61, P70 to P74, P120,<br>P125 to P127, P130,<br>P140 to P147 | 40         | mA   |
|                      |         | Total of all pins<br>170 mA  | P10 to P14, P40 to P43, P120,<br>P130, P140 to P147                                                                      | 70         | mA   |
|                      |         |                              | P15 to P17, P30 to P32,<br>P50 to P54, P60, P61,<br>P70 to P74, P125 to P127                                             | 100        | mA   |
|                      | IOL2    | Per pin                      | P20, P21                                                                                                                 | 1          | mA   |
|                      |         | Total of all pins            |                                                                                                                          | 2          | mA   |
| Operating ambient    | TA      | In normal operati            | ion mode                                                                                                                 | -40 to +85 | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

In flash memory programming mode

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



## 2.2 Oscillator Characteristics

## 2.2.1 X1, XT1 oscillator characteristics

### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

| Parameter                                                | Resonator                               | Conditions                                                   | MIN. | TYP.   | MAX. | Unit |
|----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|------|--------|------|------|
| X1 clock oscillation frequency $(f_X)^{Note}$            | Ceramic resonator/<br>crystal resonator | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                        | 1.0  |        | 20.0 | MHz  |
|                                                          |                                         | $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}$ | 1.0  |        | 16.0 | MHz  |
|                                                          |                                         | $1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$           | 1.0  |        | 8.0  | MHz  |
|                                                          |                                         | $1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$     | 1.0  |        | 4.0  | MHz  |
| XT1 clock oscillation<br>frequency (fxT) <sup>Note</sup> | Crystal resonator                       |                                                              | 32   | 32.768 | 35   | kHz  |

**Note** Indicates only permissible oscillator frequency ranges. Refer to **2.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

### 2.2.2 On-chip oscillator characteristics

### $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

| Oscillators                                                            | Parameters | Conditions   |                                                           |      | TYP. | MAX. | Unit |
|------------------------------------------------------------------------|------------|--------------|-----------------------------------------------------------|------|------|------|------|
| High-speed on-chip oscillator<br>clock frequency <sup>Notes 1, 2</sup> | fін        |              |                                                           | 1    |      | 24   | MHz  |
| High-speed on-chip oscillator                                          |            | –20 to +85°C | $1.8~V \le V_{\text{DD}} \le 5.5~V$                       | -1   |      | +1   | %    |
| clock frequency accuracy                                               |            |              | $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$ | -5   |      | +5   | %    |
|                                                                        |            | -40 to -20°C | $1.8~V \leq V_{\text{DD}} \leq 5.5~V$                     | -1.5 |      | +1.5 | %    |
|                                                                        |            |              | $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$ | -5.5 |      | +5.5 | %    |
| Low-speed on-chip oscillator<br>clock frequency                        | fı∟        |              |                                                           |      | 15   |      | kHz  |
| Low-speed on-chip oscillator<br>clock frequency accuracy               |            |              |                                                           | -15  |      | +15  | %    |

**Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to 2.4 AC Characteristics for instruction execution time.

| Items                          | Symbol | Conditio                                                                                                        | ns                                                                                                                            |                                             | MIN. | TYP. | MAX. | Unit |
|--------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|------|------|------|
| Input leakage<br>current, high | Ilih1  | P10 to P17, P30 to P32,<br>P40 to P43, P50 to P54, P60,<br>P61, P70 to P74, P120,<br>P125 to P127, P140 to P147 | VI = EVDD                                                                                                                     |                                             |      |      | 1    | μA   |
|                                | Ілна   | P20, P21, P137, RESET                                                                                           | VI = VDD                                                                                                                      |                                             |      |      | 1    | μA   |
|                                | Іцнз   | P121 to P124<br>(X1, X2, XT1, XT2, EXCLK,<br>EXCLKS)                                                            | VI = VDD                                                                                                                      | In input port or<br>external clock<br>input |      |      | 1    | μA   |
|                                |        |                                                                                                                 |                                                                                                                               | In resonator connection                     |      |      | 10   | μA   |
| Input leakage<br>current, low  | Ilili  | P10 to P17, P30 to P32,<br>P40 to P43, P50 to P54, P60,<br>P61, P70 to P74, P120,<br>P125 to P127, P140 to P147 | <ul> <li>P17, P30 to P32,</li> <li>P43, P50 to P54, P60,</li> <li>P70 to P74, P120,</li> <li>to P127, P140 to P147</li> </ul> |                                             |      |      | -1   | μA   |
|                                | ILIL2  | P20, P21, P137, RESET                                                                                           | VI = VSS                                                                                                                      |                                             |      |      | -1   | μA   |
|                                | Ilili  | LI3 P121 to P124<br>(X1, X2, XT1, XT2, EXCLK,<br>EXCLKS)                                                        |                                                                                                                               | In input port or<br>external clock<br>input |      |      | -1   | μA   |
|                                |        |                                                                                                                 |                                                                                                                               | In resonator connection                     |      |      | -10  | μA   |
| On-chip pll-up                 | Ru1    | Vi = EVss                                                                                                       | SEGxx po                                                                                                                      | rt                                          |      |      |      |      |
| resistance                     |        |                                                                                                                 | 2.4 V≤E                                                                                                                       | $2.4~V \le EV_{DD} = V_{DD} \le 5.5~V$      |      | 20   | 100  | kΩ   |
|                                |        |                                                                                                                 | $1.6 V \le EV_{DD} = V_{DD} < 2.4 V$                                                                                          |                                             | 10   | 30   | 100  | kΩ   |
|                                | Ru2    |                                                                                                                 | Ports other than above<br>(Except for P60, P61, and<br>P130)                                                                  |                                             | 10   | 20   | 100  | kΩ   |

(5/5)

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| Parameter         | Symbol |                        |                                                    | Conditions                                   |                         | MIN. | TYP. | MAX. | Unit |
|-------------------|--------|------------------------|----------------------------------------------------|----------------------------------------------|-------------------------|------|------|------|------|
| Supply            |        | HALT                   | HS (high-                                          | f <sub>IH</sub> = 24 MHz <sup>Note 4</sup>   | V <sub>DD</sub> = 5.0 V |      | 0.44 | 1.28 | mA   |
| Current<br>Note 1 | Note 2 | mode                   | speed main)                                        |                                              | V <sub>DD</sub> = 3.0 V |      | 0.44 | 1.28 | mA   |
|                   |        |                        | mode                                               | file = 16 MHz <sup>Note 4</sup>              | V <sub>DD</sub> = 5.0 V |      | 0.40 | 1.00 | mA   |
|                   |        |                        |                                                    |                                              | V <sub>DD</sub> = 3.0 V |      | 0.40 | 1.00 | mA   |
|                   |        |                        | LS (low-                                           | file = 8 MHz <sup>Note 4</sup>               | V <sub>DD</sub> = 3.0 V |      | 260  | 530  | μA   |
|                   |        |                        | speed main)<br>mode <sup>Note 7</sup>              |                                              | V <sub>DD</sub> = 2.0 V |      | 260  | 530  | μA   |
|                   |        |                        | LV (low-                                           | f <sub>IH</sub> = 4 MHz <sup>Note 4</sup>    | V <sub>DD</sub> = 3.0 V |      | 420  | 640  | μA   |
|                   |        |                        | voltage<br>main) mode<br>Note 7                    |                                              | V <sub>DD</sub> = 2.0 V |      | 420  | 640  | μA   |
|                   |        |                        | HS (high-<br>speed main)<br>mode <sup>Note 7</sup> | f <sub>MX</sub> = 20 MHz <sup>Note 3</sup> , | Square wave input       |      | 0.28 | 1.00 | mA   |
|                   |        |                        |                                                    | V <sub>DD</sub> = 5.0 V                      | Resonator connection    |      | 0.45 | 1.17 | mA   |
|                   |        |                        |                                                    | f <sub>MX</sub> = 20 MHz <sup>Note 3</sup> , | Square wave input       |      | 0.28 | 1.00 | mA   |
|                   |        |                        |                                                    | V <sub>DD</sub> = 3.0 V                      | Resonator connection    |      | 0.45 | 1.17 | mA   |
|                   |        |                        |                                                    | f <sub>MX</sub> = 10 MHz <sup>Note 3</sup> , | Square wave input       |      | 0.19 | 0.60 | mA   |
|                   |        |                        |                                                    | V <sub>DD</sub> = 5.0 V                      | Resonator connection    |      | 0.26 | 0.67 | mA   |
|                   |        |                        |                                                    | f <sub>MX</sub> = 10 MHz <sup>Note 3</sup> , | Square wave input       |      | 0.19 | 0.60 | mA   |
|                   |        |                        |                                                    | V <sub>DD</sub> = 3.0 V                      | Resonator connection    |      | 0.26 | 0.67 | mA   |
|                   |        |                        | LS (low-<br>speed main)<br>mode <sup>Note 7</sup>  | f <sub>MX</sub> = 8 MHz <sup>Note 3</sup> ,  | Square wave input       |      | 95   | 330  | μA   |
|                   |        |                        |                                                    | V <sub>DD</sub> = 3.0 V                      | Resonator connection    |      | 145  | 380  | μA   |
|                   |        |                        | noue                                               | f <sub>MX</sub> = 8 MHz <sup>Note 3</sup> ,  | Square wave input       |      | 95   | 330  | μA   |
|                   |        |                        |                                                    | V <sub>DD</sub> = 2.0 V                      | Resonator connection    |      | 145  | 380  | μA   |
|                   |        |                        | Subsystem                                          | fsuв = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.31 | 0.57 | μA   |
|                   |        |                        | clock<br>operation                                 | T <sub>A</sub> = -40°C                       | Resonator connection    |      | 0.50 | 0.76 | μA   |
|                   |        |                        | operation                                          | fsuв = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.37 | 0.57 | μA   |
|                   |        |                        |                                                    | T <sub>A</sub> = +25°C                       | Resonator connection    |      | 0.56 | 0.76 | μA   |
|                   |        |                        |                                                    | fsuв = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.46 | 1.17 | μA   |
|                   |        |                        |                                                    | T <sub>A</sub> = +50°C                       | Resonator connection    |      | 0.65 | 1.36 | μA   |
|                   |        |                        |                                                    | fsue = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.57 | 1.97 | μA   |
|                   |        |                        |                                                    | T <sub>A</sub> = +70°C                       | Resonator connection    |      | 0.76 | 2.16 | μA   |
|                   |        |                        |                                                    | fsuв = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |      | 0.85 | 3.37 | μA   |
|                   |        |                        |                                                    | T <sub>A</sub> = +85°C                       | Resonator connection    |      | 1.04 | 3.56 | μA   |
|                   | IDD3   | STOP                   | $T_A = -40^{\circ}C$                               |                                              |                         |      | 0.17 | 0.50 | μA   |
|                   |        | mode <sup>Note o</sup> | T <sub>A</sub> = +25°C                             |                                              |                         |      | 0.23 | 0.50 | μA   |
|                   |        |                        | T <sub>A</sub> = +50°C                             |                                              |                         |      | 0.32 | 1.10 | μA   |
|                   |        |                        | T <sub>A</sub> = +70°C                             |                                              |                         | 0.43 | 1.90 | μA   |      |
|                   |        |                        | T <sub>A</sub> = +85°C                             |                                              |                         | 0.71 | 3.30 | μA   |      |

## (TA = -40 to +85°C, 1.6 V $\leq$ EV<sub>DD</sub> = V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = EV<sub>SS</sub> = 0 V)

(2/3)

(Notes and  $\ensuremath{\textit{Remarks}}$  are listed on the next page.)



### TCY VS VDD (LV (low-voltage main) mode)

### **AC Timing Test Points**



### **External System Clock Timing**



## (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$ 

(2/2)

| Parameter     | Symbol |                  | HS (hig<br>main)                                                                                                                                                                                                     | h-speed<br>Mode | LS (lov<br>main)       | v-speed<br>Mode | LV (low<br>main)       | -voltage<br>Mode | Unit                   |      |
|---------------|--------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|-----------------|------------------------|------------------|------------------------|------|
|               |        |                  |                                                                                                                                                                                                                      | MIN.            | MAX.                   | MIN.            | MAX.                   | MIN.             | MAX.                   |      |
| Transfer rate |        | Transmissio<br>n | $4.0 V \le EV_{DD} \le 5.5 V$ ,<br>$2.7 V \le V_b \le 4.0 V$                                                                                                                                                         |                 | Note 1                 |                 | Note 1                 |                  | Note 1                 | bps  |
|               |        |                  | $\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_b = 50 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega, \\ \mbox{V}_b = 2.7 \mbox{ V} \end{array}$ |                 | 2.8 <sup>Note 2</sup>  |                 | 2.8 <sup>Note 2</sup>  |                  | 2.8 <sup>Note 2</sup>  | Mbps |
|               |        |                  | $2.7 V \le EV_{DD} < 4.0 V,$<br>$2.3 V \le V_b \le 2.7 V$                                                                                                                                                            |                 | Note 3                 |                 | Note 3                 |                  | Note 3                 | bps  |
|               |        |                  | $\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \\ \mbox{V}_b = 2.3 \mbox{ V} \end{array}$  |                 | 1.2 <sup>Note 4</sup>  |                 | 1.2 <sup>Note 4</sup>  |                  | 1.2 <sup>Note 4</sup>  | Mbps |
|               |        |                  | $2.4 V \le EV_{DD} < 3.3 V,$<br>$1.6 V \le V_b \le 2.0 V$                                                                                                                                                            |                 | Note 6                 |                 | Note 6                 |                  | Note 6                 | bps  |
|               |        |                  | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 5.5 k $\Omega$ $V_b$ = 1.6 V                                                                                                                   |                 | 0.43 <sup>Note 7</sup> |                 | 0.43 <sup>Note 7</sup> |                  | 0.43 <sup>Note 7</sup> | Mbps |
|               |        |                  | $\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$                                                                                                                      |                 |                        |                 | Notes<br>5, 6          |                  | Notes<br>5, 6          | bps  |
|               |        |                  | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 5.5 kΩ, $V_b$ = 1.6 V                                                                                                                          |                 |                        |                 | 0.43 <sup>Note 7</sup> |                  | 0.43 <sup>Note 7</sup> | Mbps |

**Notes 1.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  EV\_{DD}  $\leq$  5.5 V and 2.7 V  $\leq$  V\_b  $\leq$  4.0 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides.

**2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.



# (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{Ss}} = 0 \text{ V})$

| Parameter                                                | Symbol | Conditions                                                                                                                                                  | HS (  | high- | LS (low- |       | LV (    | low-    | Unit |
|----------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------|-------|---------|---------|------|
|                                                          |        |                                                                                                                                                             | speed | main) | speed    | main) | voltage | e main) |      |
|                                                          |        |                                                                                                                                                             | Mo    | ode   | Mode     |       | Mo      | Mode    |      |
|                                                          |        |                                                                                                                                                             | MIN.  | MAX.  | MIN.     | MAX.  | MIN.    | MAX.    |      |
| SIp hold time<br>(from SCKp↓) <sup>Note 2</sup>          | tksi1  | $\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V,  2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$            | 19    |       | 19       |       | 19      |         | ns   |
|                                                          |        | $\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                     | 19    |       | 19       |       | 19      |         | ns   |
|                                                          |        | $\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$                     | 19    |       | 19       |       | 19      |         | ns   |
|                                                          |        |                                                                                                                                                             |       |       | 19       |       | 19      |         | ns   |
| Delay time from SCKp↑ to<br>SOp output <sup>Note 2</sup> | tkso1  | $\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V,  2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$            |       | 25    |          | 25    |         | 25      | ns   |
|                                                          |        | $\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                     |       | 25    |          | 25    |         | 25      | ns   |
|                                                          |        | $\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$                     |       | 25    |          | 25    |         | 25      | ns   |
|                                                          |        | $ \begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array} $ |       |       |          | 25    |         | 25      | ns   |

- **Notes** 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
  - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** Use it with  $EV_{DD} \ge V_b$ .
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V<sub>DD</sub> tolerance (32-pin to 52pin products)/EV<sub>DD</sub> tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected.





## CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





**Remark** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
  - 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode:  $C_b$  = 400 pF,  $R_b$  = 2.7 k $\Omega$ 



# (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV<sub>REFM</sub>/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$ 

| Parameter                                  | Symbol        | Cond             | MIN.                                                    | TYP. | MAX. | Unit        |      |
|--------------------------------------------|---------------|------------------|---------------------------------------------------------|------|------|-------------|------|
| Resolution                                 | RES           |                  |                                                         |      | 8    |             | bit  |
| Conversion time                            | <b>t</b> CONV | 8-bit resolution | $2.4~V \leq V \text{DD} \leq 5.5~V$                     | 17   |      | 39          | μs   |
| Zero-scale error <sup>Notes 1, 2</sup>     | Ezs           | 8-bit resolution | $2.4~V \leq V \text{DD} \leq 5.5~V$                     |      |      | ±0.60       | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE           | 8-bit resolution | $2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$ |      |      | ±2.0        | LSB  |
| Differential linearity error Note 1        | DLE           | 8-bit resolution | $2.4~V \leq V \text{DD} \leq 5.5~V$                     |      |      | ±1.0        | LSB  |
| Analog input voltage                       | VAIN          |                  |                                                         | 0    |      | VBGR Note 3 | V    |

### **Notes 1.** Excludes quantization error ( $\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add  $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV<sub>REFM</sub>. Integral linearity error: Add  $\pm 0.5$  LSB to the MAX. value when reference voltage (–) = AV<sub>REFM</sub>. Differential linearity error: Add  $\pm 0.2$  LSB to the MAX. value when reference voltage (–) = AV<sub>REFM</sub>.

## 2.6.2 Temperature sensor/internal reference voltage characteristics

| •                                 |         |                                                    |      | •    |      |       |
|-----------------------------------|---------|----------------------------------------------------|------|------|------|-------|
| Parameter                         | Symbol  | Conditions                                         | MIN. | TYP. | MAX. | Unit  |
| Temperature sensor output voltage | VTMPS25 | Setting ADS register = 80H, TA = +25°C             |      | 1.05 |      | V     |
| Internal reference voltage        | VBGR    | Setting ADS register = 81H                         | 1.38 | 1.45 | 1.5  | V     |
| Temperature coefficient           | Fvtmps  | Temperature sensor that depends on the temperature |      | -3.6 |      | mV/°C |
| Operation stabilization wait time | tamp    |                                                    | 5    |      |      | μs    |

### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (HS (high-speed main) mode)



## LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR  $\leq$  EVDD = VDD  $\leq$  5.5 V, Vss = EVss = 0 V)

| Parameter           | Symbol         |                     | Conc                                              | litions                      | MIN. | TYP. | MAX. | Unit |
|---------------------|----------------|---------------------|---------------------------------------------------|------------------------------|------|------|------|------|
| Interrupt and reset | VLVDA0         | VPOC2               | , VPOC1, VPOC0 = 0, 0, 0                          | , falling reset voltage      | 1.60 | 1.63 | 1.66 | V    |
| mode                | VLVDA1         |                     | LVIS1, LVIS0 = 1, 0                               | Rising release reset voltage | 1.74 | 1.77 | 1.81 | V    |
|                     |                |                     |                                                   | Falling interrupt voltage    | 1.70 | 1.73 | 1.77 | V    |
|                     | VLVDA2         | LVIS1, LVIS0 = 0, 1 | Rising release reset voltage                      | 1.84                         | 1.88 | 1.91 | V    |      |
|                     |                |                     |                                                   | Falling interrupt voltage    | 1.80 | 1.84 | 1.87 | V    |
|                     | <b>V</b> LVDA3 |                     | LVIS1, LVIS0 = 0, 0                               | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V    |
|                     |                |                     |                                                   | Falling interrupt voltage    | 2.80 | 2.86 | 2.91 | V    |
|                     | VLVDB1         | VPOC2               | , VPOC1, VPOC0 = 0, 0, 1                          | , falling reset voltage      | 1.80 | 1.84 | 1.87 | V    |
|                     | VLVDB2         |                     | LVIS1, LVIS0 = 1, 0                               | Rising release reset voltage | 1.94 | 1.98 | 2.02 | V    |
|                     |                |                     |                                                   | Falling interrupt voltage    | 1.90 | 1.94 | 1.98 | V    |
|                     | VLVDB3         |                     | LVIS1, LVIS0 = 0, 1                               | Rising release reset voltage | 2.05 | 2.09 | 2.13 | V    |
|                     |                |                     |                                                   | Falling interrupt voltage    | 2.00 | 2.04 | 2.08 | V    |
|                     | VLVDB4         | LVIS1, LVIS0 = 0, 0 | Rising release reset voltage                      | 3.07                         | 3.13 | 3.19 | V    |      |
|                     |                |                     |                                                   | Falling interrupt voltage    | 3.00 | 3.06 | 3.12 | V    |
|                     | VLVDC0         | VPOC2               | , VPOC1, VPOC0 = 0, 1, 0                          | , falling reset voltage      | 2.40 | 2.45 | 2.50 | V    |
|                     | VLVDC1         |                     | LVIS1, LVIS0 = 1, 0                               | Rising release reset voltage | 2.56 | 2.61 | 2.66 | V    |
|                     |                |                     |                                                   | Falling interrupt voltage    | 2.50 | 2.55 | 2.60 | V    |
|                     | VLVDC2         |                     | LVIS1, LVIS0 = 0, 1                               | Rising release reset voltage | 2.66 | 2.71 | 2.76 | V    |
|                     |                |                     | Falling interrupt voltage                         | 2.60                         | 2.65 | 2.70 | V    |      |
|                     | VLVDC3         |                     | LVIS1, LVIS0 = 0, 0                               | Rising release reset voltage | 3.68 | 3.75 | 3.82 | V    |
|                     |                |                     | Falling interrupt voltage                         | 3.60                         | 3.67 | 3.74 | V    |      |
|                     | VLVDD0         | VPOC2               | c2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage |                              | 2.70 | 2.75 | 2.81 | V    |
|                     | VLVDD1         | LVIS1, LVIS0 = 1, 0 | Rising release reset voltage                      | 2.86                         | 2.92 | 2.97 | V    |      |
|                     |                |                     |                                                   | Falling interrupt voltage    | 2.80 | 2.86 | 2.91 | V    |
|                     | VLVDD2         |                     | LVIS1, LVIS0 = 0, 1                               | Rising release reset voltage | 2.96 | 3.02 | 3.08 | V    |
|                     |                |                     |                                                   | Falling interrupt voltage    | 2.90 | 2.96 | 3.02 | V    |
|                     | VLVDD3         |                     | LVIS1, LVIS0 = 0, 0                               | Rising release reset voltage | 3.98 | 4.06 | 4.14 | V    |
|                     |                |                     |                                                   | Falling interrupt voltage    | 3.90 | 3.98 | 4.06 | V    |

## 2.6.5 Supply voltage rise time

### (T<sub>A</sub> = -40 to +85°C, Vss = 0 V)

| Parameter                         | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
|-----------------------------------|--------|------------|------|------|------|------|
| Power supply voltage rising slope | SVDD   |            |      |      | 54   | V/ms |

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V<sub>DD</sub> reaches the operating voltage range shown in 30.4 AC Characteristics.

## 3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ( $T_A = -40$  to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
  - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
  - For derating with T<sub>A</sub> = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.



| $(1A40 \ (0 + 105 \ C, 2.4 \ V \le EV \ DD - V \ DD \le 5.5 \ V, V \ SS - EV \ SS - 0 \ V) $ (3/3) |                                                     |                                  |                                                                                    |                                                                      |      |            |            |          |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|------------|------------|----------|--|
| Parameter                                                                                          | Symbol                                              |                                  | Conditions                                                                         |                                                                      | MIN. | TYP.       | MAX.       | Unit     |  |
| Low-speed on-<br>chip oscillator<br>operating<br>current                                           | <sub>FIL</sub> Note 1                               |                                  |                                                                                    |                                                                      |      | 0.20       |            | μA       |  |
| RTC operating<br>current                                                                           | IRTC<br>Notes 1, 2, 3                               | fmain is stopped                 |                                                                                    | 0.08                                                                 |      | μA         |            |          |  |
| 12-bit interval timer current                                                                      | i⊤<br>Notes 1, 2, 4                                 |                                  |                                                                                    | 0.08                                                                 |      | μA         |            |          |  |
| Watchdog timer<br>operating<br>current                                                             | I <sub>WDT</sub><br>Notes 1, 2, 5                   | f⊩ = 15 kHz                      |                                                                                    | 0.24                                                                 |      | μA         |            |          |  |
| A/D converter<br>operating<br>current                                                              | IADC<br>Notes 1, 6                                  | When conversion at maximum speed | Normal mode, A                                                                     | VREFP = VDD = 5.0 V<br>de, AVREFP = VDD = 3.0 V                      |      | 1.3<br>0.5 | 1.7<br>0.7 | mA<br>mA |  |
| A/D converter<br>reference<br>voltage current                                                      | IADREF<br>Note 1                                    | I                                |                                                                                    |                                                                      |      | 75.0       |            | μA       |  |
| Temperature<br>sensor<br>operating<br>current                                                      | ITMPS<br>Note 1                                     |                                  |                                                                                    | 75.0                                                                 |      | μA         |            |          |  |
| LVD operating<br>current                                                                           | ILVD<br>Notes 1, 7                                  |                                  |                                                                                    |                                                                      |      | 0.08       |            | μA       |  |
| Self-<br>programming<br>operating<br>current                                                       | IFSP<br>Notes 1, 9                                  |                                  |                                                                                    |                                                                      |      | 2.50       | 12.20      | mA       |  |
| BGO operating<br>current                                                                           | IBGO<br>Notes 1, 8                                  |                                  |                                                                                    |                                                                      |      | 2.50       | 12.20      | mA       |  |
| LCD operating<br>current                                                                           | ILCD1<br>Notes 11, 12                               | External resistance              | e division method                                                                  | $V_{DD} = EV_{DD} = 5.0 V$<br>$V_{L4} = 5.0 V$                       |      | 0.04       | 0.20       | μA       |  |
|                                                                                                    | ILCD2 Internal voltage bo                           |                                  | bosting method $V_{DD} = EV_{DD} = 5.0 V$<br>$V_{L4} = 5.1 V (VLCD = 12H)$         |                                                                      |      | 1.12       | 3.70       | μA       |  |
|                                                                                                    |                                                     |                                  | V <sub>DD</sub> = EV <sub>DD</sub> = 3.0 V<br>V <sub>L4</sub> = 3.0 V (VLCD = 04H) |                                                                      |      | 0.63       | 2.20       | μA       |  |
|                                                                                                    | ILCD3 Note 11                                       | Capacitor split met              | thod $V_{DD} = EV_{DD} = 3.0 V$<br>$V_{L4} = 3.0 V$                                |                                                                      |      | 0.12       | 0.50       | μA       |  |
| SNOOZE                                                                                             | ISNOZ Note 1                                        | ADC operation                    | The mode is perfo                                                                  | rmed Note 10                                                         |      | 0.50       | 1.10       | mA       |  |
| operating<br>current                                                                               | current The A/D conver<br>performed, Low<br>= 3.0 V |                                  | The A/D conversion<br>performed, Low vote<br>= 3.0 V                               | n operations are<br>ltage mode, AV <sub>REFP</sub> = V <sub>DD</sub> |      | 1.20       | 2.04       | mA       |  |
|                                                                                                    |                                                     | CSI/UART operation               |                                                                                    |                                                                      |      | 0.70       | 1.54       | mA       |  |

## $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(3/3)

(Notes and Remarks are listed on the next page.)



## (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T<sub>A</sub> = -40 to +105°C, 2.4 V $\leq$ EV<sub>DD</sub> = V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = EV<sub>SS</sub> = 0 V)

| Parameter     | Symbol |           | Conditio                                                                                                                | ns                                                                          | HS (high-spee | ed main) Mode             | Unit |
|---------------|--------|-----------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------|---------------------------|------|
|               |        |           |                                                                                                                         |                                                                             | MIN.          | MAX.                      |      |
| Transfer rate |        | Reception | $4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$                                                                                 |                                                                             |               | fмск/12 <sup>Note 1</sup> | bps  |
|               |        |           | $2.7 \ V \leq V_b \leq 4.0 \ V$ Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} \xrightarrow{Note 2}$ |                                                                             | 2.0           | Mbps                      |      |
|               |        |           | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ |                                                                             |               | fмск/12 <sup>Note 1</sup> | bps  |
|               |        |           |                                                                                                                         | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$ |               | 2.0                       | Mbps |
|               |        |           | $\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$         |                                                                             |               | fмск/12<br>Note 1         | bps  |
|               |        |           |                                                                                                                         | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$ |               | 2.0                       | Mbps |

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:<br/>HS (high-speed main) mode:24 MHz (2.7 V  $\leq$  VDD  $\leq$  5.5 V)16 MHz (2.4 V  $\leq$  VDD  $\leq$  5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V<sub>b</sub>[V]: Communication line voltage
  - **2.** q: UART number (q = 0), g: PIM and POM number (g = 1)
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)





## CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





**Remark** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

# (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

| Parameter                                                  | Symbol        | Conditions                                                                                                                                                                             |                                                     | HS (high-spee   | HS (high-speed main) Mode |    |  |
|------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|---------------------------|----|--|
|                                                            |               |                                                                                                                                                                                        |                                                     | MIN.            | MAX.                      |    |  |
| SCKp cycle time Note 1                                     | <b>t</b> ксү2 | $4.0 V \le EV_{DD} \le 5.5 V$ ,                                                                                                                                                        | 20 MHz < fмск ≤ 24 MHz                              | <b>24/f</b> мск |                           | ns |  |
|                                                            |               | $2.7V\!\le\!V_{b}\!\le\!4.0V$                                                                                                                                                          | 8 MHz < fмск ≤ 20 MHz                               | <b>20/f</b> мск |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        | 4 MHz < fмск ≤ 8 MHz                                | <b>16/f</b> мск |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        | fмск ≤4 MHz                                         | <b>12/f</b> мск |                           | ns |  |
|                                                            |               | $2.7 V \le EV_{DD} < 4.0 V$ ,                                                                                                                                                          | 20 MHz < fмск ≤ 24 MHz                              | <b>32/f</b> мск |                           | ns |  |
|                                                            |               | $2.3V \!\leq\! V_b \!\leq\! 2.7V$                                                                                                                                                      | 16 MHz < fмск ≤ 20 MHz                              | <b>28/f</b> мск |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        | $8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$ | <b>24/f</b> мск |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        | $4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$  | <b>16/f</b> мск |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        | fмск ≤ 4 MHz                                        | <b>12/f</b> мск |                           | ns |  |
|                                                            |               | $2.4 V \le EV_{DD} < 3.3 V,$<br>$1.6 V \le V_b \le 2.0 V$                                                                                                                              | 20 MHz < fмск ≤ 24 MHz                              | <b>72/f</b> мск |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        | 16 MHz < fмск ≤ 20 MHz                              | <b>64/f</b> мск |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        | $8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$        | <b>52/f</b> мск |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        | 4 MHz < fмск ≤ 8 MHz                                | <b>32/f</b> мск |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        | fмск ≤4 MHz                                         | <b>20/f</b> мск |                           | ns |  |
| SCKp high-/low-level width                                 | tкн2,<br>tкL2 |                                                                                                                                                                                        |                                                     | tkcy2/2 - 24    |                           | ns |  |
|                                                            |               |                                                                                                                                                                                        |                                                     | tkcy2/2 - 36    |                           | ns |  |
|                                                            |               | $2.4 V \le EV_{DD} < 3.3 V,$<br>1.6 V $\le V_b \le 2.0 V$                                                                                                                              |                                                     | tkcy2/2 - 100   |                           | ns |  |
| SIp setup time<br>(to SCKp <sup>↑</sup> ) <sup>Note2</sup> | tsik2         | $4.0 V \le EV_{DD} < 5.5 V,$<br>2.7 V $\le V_b \le 4.0 V$                                                                                                                              |                                                     | 1/fмск + 40     |                           | ns |  |
|                                                            |               | $2.7 V \le EV_{DD} < 4.0 V,$<br>$2.3 V \le V_b \le 2.7 V$                                                                                                                              |                                                     | 1/fмск + 40     |                           | ns |  |
|                                                            |               | $\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$                                                                                        |                                                     | 1/fмск + 60     |                           | ns |  |
| SIp hold time<br>(from SCKp↑) <sup>Note 3</sup>            | tksı2         | $\begin{array}{c} 4.0 \; V \leq EV_{DD} < 5.5 \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$                                                                                          | V,                                                  | 1/fмск + 62     |                           | ns |  |
|                                                            |               | $\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$                                                                                        |                                                     | 1/fмск + 62     |                           | ns |  |
|                                                            |               | $\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$                                                                  |                                                     | 1/fмск + 62     |                           | ns |  |
| Delay time from SCKp↓ to<br>SOp output <sup>Note 4</sup>   | tĸso2         |                                                                                                                                                                                        |                                                     |                 | 2/fмск + 240              | ns |  |
|                                                            |               | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$<br>$C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ V}$                                                      | $V, 2.3 V ≤ V_b ≤ 2.7 V,$<br>7 kΩ                   |                 | 2/fмск + 428              | ns |  |
|                                                            |               | $\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{array}$ |                                                     |                 | 2/fмск + 1146             | ns |  |

(Notes, Caution and Remarks are listed on the page after the next page.)



(3) When reference voltage (+) = V<sub>DD</sub> (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V<sub>ss</sub> (ADREFM = 0), target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage

| Parameter                                  | Symbol        | Condition                                                                                                    | s                                     | MIN.   | TYP.        | MAX.  | Unit |
|--------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-------------|-------|------|
| Resolution                                 | RES           |                                                                                                              |                                       | 8      |             | 10    | bit  |
| Overall error <sup>Note 1</sup>            | AINL          | 10-bit resolution                                                                                            | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |        | 1.2         | ±7.0  | LSB  |
| Conversion time                            | <b>t</b> CONV | 10-bit resolution                                                                                            | $3.6~V \leq V_{\text{DD}} \leq 5.5~V$ | 2.125  |             | 39    | μs   |
|                                            |               |                                                                                                              | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 3.1875 |             | 39    | μs   |
|                                            |               |                                                                                                              | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ | 17     |             | 39    | μs   |
|                                            |               | 10-bit resolution<br>Target pin: Internal reference<br>voltage, and temperature<br>sensor output voltage (HS | $3.6~V \leq V_{\text{DD}} \leq 5.5~V$ | 2.375  |             | 39    | μs   |
|                                            |               |                                                                                                              | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 3.5625 |             | 39    | μs   |
|                                            |               |                                                                                                              | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ | 17     |             | 39    | μs   |
|                                            |               | (high-speed main) mode)                                                                                      |                                       |        |             |       |      |
| Zero-scale error <sup>Notes 1, 2</sup>     | Ezs           | 10-bit resolution                                                                                            | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |        |             | ±0.60 | %FSR |
| Full-scale errorNotes 1, 2                 | Efs           | 10-bit resolution                                                                                            | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |        |             | ±0.60 | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE           | 10-bit resolution                                                                                            | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |        |             | ±4.0  | LSB  |
| Differential linearity error               | DLE           | 10-bit resolution                                                                                            | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |        |             | ±2.0  | LSB  |
| Analog input voltage                       | Vain          | ANIO, ANI1                                                                                                   |                                       | 0      |             | VDD   | V    |
|                                            |               | ANI16 to ANI23                                                                                               | 0                                     |        | EVDD        | V     |      |
|                                            |               | Internal reference voltage output<br>(2.4 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V, HS (high-speed main) mode)  |                                       |        | VBGR Note 3 |       | V    |
|                                            |               | Temperature sensor output volt (2.4 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V, HS (high-s)                       | V <sub>TMPS25</sub> Note 3            |        |             | V     |      |

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$ 

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.



#### NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.