

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rjagfa-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data flash	RAM		RL78/L12								
			32 pins	44 pins	48 pins	52 pins	64 pins					
32 KB	2 KB	1.5 KB ^{Note}	R5F10RBC	R5F10RFC	R5F10RGC	R5F10RJC	R5F10RLC					
16 KB	2 KB	1 KB ^{Note}	R5F10RBA	R5F10RFA	R5F10RGA	R5F10RJA	R5F10RLA					
8KB	2 KB	1 KB ^{Note}	R5F10RB8	R5F10RF8	R5F10RG8	R5F10RJ8	-					

Note In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

1.4 Pin Identification

ANIO, ANI1,		P130, P137:	Port 13
ANI16 to ANI23:	Analog Input	P140 to P147:	Port 14
AVREFM:	Analog Reference	PCLBUZ0, PCLBUZ1:	Programmable Clock
	Voltage Minus		Output/Buzzer Output
AVREFP:	Analog Reference	REGC:	Regulator Capacitance
	Voltage Plus	RESET:	Reset
CAPH, CAPL:	Capacitor for LCD	RTC1HZ:	Real-time Clock Correction Clock
COM0 to COM7,			(1 Hz) Output
EVDD:	Power Supply for Port	RxD0:	Receive Data
EVss:	Ground for Port	SCK00, SCK01:	Serial Clock Input/Output
EXCLK:	External Clock Input	SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SDAA0:	Serial Data Input/Output
EXCLKS:	External Clock Input	SEG0 to SEG38:	LCD Segment Output
	(Subsystem Clock)	SI00, SI01:	Serial Data Input
INTP0 to INTP7:	Interrupt Request From	SO00, SO01:	Serial Data Output
	Peripheral	TI00 to TI07:	Timer Input
KR0 to KR3:	Key Return	TO00 to TO07:	Timer Output
P10 to P17:	Port 1	TOOL0:	Data Input/Output for Tool
P20, P21:	Port 2	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P30 to P32:	Port 3	TxD0:	Transmit Data
P40 to P43:	Port 4	VDD:	Power Supply
P50 to P54:	Port 5	VL1 to VL4:	LCD Power Supply
P60, P61:	Port 6	Vss:	Ground
P70 to P74:	Port 7	X1, X2:	Crystal Oscillator (Main System Clock)
P120 to P127:	Port 12	XT1, XT2:	Crystal Oscillator (Subsystem Clock)

1.5 Block Diagram

1.5.1 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

1.5.3 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

RENESAS

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ilih1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVDD				1	μA
	Ілна	P20, P21, P137, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilili	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	Vi = EVss				-1	μA
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	ILIL3 P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)		VI = VSS In input port or external clock input				-1	μA
				In resonator connection			-10	μA
On-chip pll-up	Ru1	Vi = EVss	SEGxx po	rt				
resistance			2.4 V≤E	$2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}$		20	100	kΩ
			$1.6 V \le EV_{DD} = V_{DD} < 2.4 V$		10	30	100	kΩ
	Ru2		Ports other than above (Except for P60, P61, and P130)		10	20	100	kΩ

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL Note 1					0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped				0.08		μA
12-bit interval timer current	li⊤ Notes 1, 2, 4					0.08		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz				0.24		μA
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, A		1.3 0.5	1.7 0.7	mA mA	
A/D converter reference voltage current	ADREF Note 1					75.0		μA
Temperature sensor operating current	ITMPS Note 1					75.0		μA
LVD operating current	ILVD Notes 1, 7							μA
Self- programming operating current	FSP Notes 1, 9					2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8					2.00	12.20	mA
LCD operating current	LCD1 Notes 11, 12	External resistance	division method	$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	ILCD2 Note 11	Internal voltage bo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.70	μA
				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.20	μA
	ILCD3 Note 11	Capacitor split met	hod	$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.50	μA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	0.60	mA
operating current			The A/D conversio performed, Low vo = 3.0 V	n operations are litage mode, AV _{REFP} = V _{DD}		1.20	1.44	mA
		CSI/UART operation	on			0.70	0.84	mA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(3/3)

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low main)	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	2.7 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$			500 Note 1		1000 Note 1		ns
		1.6 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$					1000 Note 1		ns
SCKp high-/low-level width	tкн1, tк∟1	4.0 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
		1.8 V ≤ E\	$1.8~V \leq EV_{\text{DD}} \leq 5.5~V$			tксү1/2 - 50		tксү1/2 - 50		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$						tксү1/2 - 100		ns
SIp setup time (to SCKp↑)	tsik1	2.7 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	44		110		110		ns
NOTE 2		2.4 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$			110		110		ns
		1.6 V ≤ E\	$I_{\text{DD}} \leq 5.5 \text{ V}$					220		ns
SIp hold time (from SCKp [↑])	tksi1	2.4 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$	19		19		19		ns
NOLE 5		1.8 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$			19		19		
		1.6 V ≤ E\	$I_{DD} \leq 5.5 \text{ V}$					19		
Delay time from SCKp↓ to	tkso1	C = 30 pF	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		25		25		25	ns
SOp output Note 4		NOLE 2	$1.8~V \le EV_{\text{DD}} \le 5.5~V$				25		25	
			$1.6~V \le EV_{\text{DD}} \le 5.5~V$						25	

Notes 1. For CSI00, set a cycle of 2/fмск or longer. For CSI01, set a cycle of 4/fмск or longer.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}) $ (1/2)											
Parameter	Symbol	Con	ditions	HS (speed	high- main) ode	LS (low-speed main) mode		LV (low- voltage main) mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCKp cycle time Note 1	tkCY2	$4.0 V \leq EV_{DD} \leq 5.5 V.$	20 MHz < fмск ≤ 24 MHz	12/fмск						ns	
		$2.7 V \le V_b \le 4.0 V$	8 MHz < fмск ≤ 20 MHz	10/fмск						ns	
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск				ns	
			fмск≤4 MHz	6/fмск		10/fмск		10/ f мск		ns	
		$2.7 V \le EV_{DD} < 4.0 V$,	20 MHz < fмск ≤ 24 MHz	16/fмск						ns	
		$2.3V{\leq}V_b{\leq}2.7V$	16 MHz < fмск ≤ 20 MHz	14/ f мск						ns	
			8 MHz < fмск ≤ 16 MHz	12/fмск						ns	
			4 MHz < fмск ≤ 8 MHz	8/f мск		16/fмск				ns	
			fмск ≤4 MHz	6/ f мск		10/fмск		10/fмск		ns	
		$2.4 V \le EV_{DD} < 3.3 V$,	20 MHz < fмск ≤ 24 MHz	36/f мск						ns	
		$1.6 V {\le} V_b {\le} 2.0 V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	32/fмск						ns	
			8 MHz < fмск ≤ 16 MHz	26/fмск						ns	
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск				ns	
			fмск≤4 MHz	10/fмск		10/fмск		10/fмск		ns	
		$1.8 V \le EV_{DD} < 3.3 V$,	4 MHz < fмск ≤ 8 MHz			16/fмск				ns	
		$1.6 \ V \! \le \! V_b \! \le \! 2.0 \ V^{\text{Note 2}}$	fмск≤4 MHz			10/fмск		10/fмск		ns	
SCKp high-/low-level tki width tki	tкн2, tк∟2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns		
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 – 50		ns		
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm t}, 1.6 \ V \le V_{\rm b} \le 2.0 \ V_{\rm b}$	tkcy2/2		tксү2/2 - 50		tkcy2/2 - 50		ns	
		$1.8 V \le EV_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Not}$	/, te 2			tксү2/2 - 50		tkcy2/2		ns	
Slp setup time	tsik2	$4.0 V \le EV_{DD} \le 5.5 V$	$V_{\rm h} = 2.7 \text{V} \le V_{\rm h} \le 4.0 \text{V}$	1/fмск +		1/fмск +		1/fмск +		ns	
(to SCKp↑) Note 3			,	20		30		30			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	V , 1.6 V \le V _b \le 2.0 V	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns	
		$1.8 V \le EV_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Not}$	/, te 2			1/fмск + 30		1/fмск + 30		ns	
SIp hold time (from SCKp↑) ^{Note 4}	tksi2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$V_{\rm r}, 2.7 \ V \le V_b \le 4.0 \ V_b$	1/fмск+ 31		1/fмск + 31		1/fмск + 31		ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V_{\rm y}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	1/fмск+ 31		1/fмск + 31		1/fмск + 31		ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm t}, 1.6 \ V \le V_b \le 2.0 \ V_b$	1/fмск + 31		1/fмск+ 31		1/fмск + 31		ns	
		$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$	/, te 2			1/fмск + 31		1/fмск + 31		ns	

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(Notes, Caution and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

2.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +85°C, 1.6 V \leq EV_DD = V_DD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	(Conditions	HS (high- speed main) Mode		LS (low main)	/-speed Mode	LV (low- voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	Standard	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	
			$1.8~V \le EV_{\text{DD}} \le 5.5~V$			0	100	0	100	
			$1.6~V \le EV_{\text{DD}} \le 5.5~V$					0	100	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.7		4.7		4.7		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.7		4.7		
		$1.6 V \le EV_{DD} \le$	≤ 5.5 V					4.7		
Hold time Note 1	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.0		4.0		4.0		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.0		4.0		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.0		
Hold time when SCLA0 = "L"	t LOW	$2.7 \text{ V} \leq EV_{DD}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	≤ 5.5 V	4.7		4.7		4.7		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.7		4.7		
		$1.6~V \leq EV_{\text{DD}} \leq 5.5~V$						4.7		
Hold time when SCLA0 = "H"	t ніgh	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$2.4 V \le EV_{DD}$	≤ 5.5 V	4.0		4.0		4.0		
		$1.8 V \le EV_{DD} \le$	≤ 5.5 V			4.0		4.0		
		$1.6 V \le EV_{DD} \le$	≤ 5.5 V					4.0		
Data setup time (reception)	tsu:dat	$2.7 V \le EV_{DD}$	≤ 5.5 V	250		250		250		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le$	≤ 5.5 V	250		250		250		
		$1.8 V \le EV_{DD} \le$	≤ 5.5 V			250		250		
		$1.6 V \le EV_{DD} \le$	≤ 5.5 V					250		
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 V \le EV_{DD} \le$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$2.4 V \le EV_{DD}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	
		$1.8 V \le EV_{DD} \le$	≤ 5.5 V			0	3.45	0	3.45	
		$1.6 V \le EV_{DD} \le$	≤ 5.5 V					0	3.45	
Setup time of stop condition	tsu:sto	$2.7 V \le EV_{DD} \le$	≤ 5.5 V	4.0		4.0		4.0		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le$	≤ 5.5 V	4.0		4.0		4.0		
		$1.8 V \le EV_{DD} \le$	≤ 5.5 V			4.0		4.0		
		$1.6 V \le EV_{DD}$	≤ 5.5 V					4.0		
Bus-free time	t BUF	$2.7 V \le EV_{DD} \le$	≤ 5.5 V	4.7		4.7		4.7		μs
		$2.4 V \le EV_{DD} \le$	≤ 5.5 V	4.7		4.7		4.7		
		$1.8 V \le EV_{DD}$	≤ 5.5 V			4.7		4.7		
		$1.6 V \le EV_{DD} \le$	≤ 5.5 V					4.7		

(Notes and Remark are listed on the next page.)

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2	, VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	V LVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB1	VPOC2	, VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB2		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB4		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2	, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage		2.40	2.45	2.50	V
	VLVDC1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V	
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2	, VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V	
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time

(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +85°C, 1.8 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 <i>µ</i> F	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1	2 VL1	2 VL1	V
				- 0.1			
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1	3 VL1	3 VL1	V
				- 0.15			
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between V_{L4} and GND

 $C1 = C2 = C3 = C4 = 0.47 \ \mu\text{F} \pm 30\%$

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- **3.** This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

TI/TO Timing

- Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

Remarks 1. $R_b[\Omega]$:Communication line (SOp) pull-up resistance,

 $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage

- **2.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 - g: PIM and POM number (g = 1)
- 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

3.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
		fclk ≥ 1 MHz	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
		$2.4 V \le EV_{DD} \le 5.$	5 V	4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μs
Hold time when SCLA0 = "L"	t LOW	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
		$2.4 V \le EV_{DD} \le 5.$	5 V	4.7		μs
Hold time when SCLA0 = "H"	t HIGH	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
		$2.4~V \le EV_{\text{DD}} \le 5.$	5 V	4.0		μs
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	250		ns
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		0	3.45	μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	0	3.45	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
		$2.4~V \le EV_{\text{DD}} \le 5.$	5 V	4.0		μs
Bus-free time	t BUF	$2.7 V \le EV_{DD} \le 5.$	5 V	4.7		μs
		$2.4~V \le EV_{\text{DD}} \le 5.$	5 V	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

<R> 3.8 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.9 Flash Memory Programming Characteristics

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fс∟к	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		24	MHz
<r></r>	Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	1,000			Times
<r></r>	Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C^{Note 4}$		1,000,000		
<r></r>			Retained for 5 years $T_A = 85^{\circ}C^{Note 4}$	100,000			
<r></r>			Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

4. This temperature is the average value at which data are retained.

3.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

<R>

Revision History

RL78/L12 Datasheet

		Description		
Rev.	Date	Page	Summary	
0.01	Feb 20, 2012	-	First Edition issued	
0.02	Sep 26, 2012	7, 8	Modification of caution 2 in 1.3.5 64-pin products	
		15	Modification of I/O port in 1.6 Outline of Functions	
		-	Modification of 2. ELECTRICAL SPECIFICATIONS (TARGET)	
		-	Update of package drawings in 3. PACKAGE DRAWINGS	
1.00	Jan 31, 2013	11 to 15	Modification of 1.5 Block Diagram	
		16	Modification of Note 2 in 1.6 Outline of Functions	
		17	Modification of 1.6 Outline of Functions	
		_	Deletion of target in 2. ELECTRICAL SPECIFICATIONS	
		18	Addition of caution 2 to 2. ELECTRICAL SPECIFICATIONS	
		19	Addition of description, note 3, and remark 2 to 2.1. Absolute Maximum Ratings	
		20	Modification of description and addition of note to 2.1. Absolute Maximum	
		20	Ratings	
		22, 23	Modification of 2.2 Oscillator Characteristics	
		30	Modification of notes 1 to 4 in 2.3.2 Supply current characteristics	
		32	Modification of notes 1, 3 to 6, 8 in 2.3.2 Supply current characteristics	
		34	Modification of notes 7, 9, 11, and addition of notes 8, 12 to 2.3.2 Supply current	
			characteristics	
		36	Addition of description to 2.4 AC Characteristics	
		38, 40 to	Modification of 2.5.1 Serial array unit	
		42, 44 to		
		46, 48 to		
		52, 54, 55		
		57, 58	Modification of 2.5.2 Serial interface IICA	
		62	Modification of 2.6.2 Temperature sensor/internal reference voltage characteristics	
		64	Addition of note and caution in 2.6.5. Supply voltage rise time	
		69	Modification of 2.8 Data Memory STOP Mode Low Supply Voltage Data Retention	
			Characteristics	
		69	Modification of conditions in 2.9 Timing Specs for Switching Flash Memory	
			Programming Modes	
		70	Modification of 2.10 Timing Specifications for Switching Flash Memory	
2.00	lop 10, 2014	1	Modification of 1.1 Eastures	
2.00	Jan 10, 2014	2	Modification of Figure 1.1	
		3	Modification of part number, note, and caution	
		5 to 10	Deletion of COMEXP pin in 1.3.1 to 1.3.5	
		11	Modification of description in 1.4 Pin Identification	
		12 to 16	Deletion of COMEXP pin in 1.5.1 to 1.5.5	
		17	Modification of table and note 2 in 1.6 Outline of Functions	
		20	Modification of description in Absolute Maximum Ratings (T _A = 25°C) (1/3)	
		21	Modification of description and note 2 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$)	
			(2/3) Medification of table note coution and remark in 2.2.1.V1.VT1 excillator	
		23	characteristics	
		23	Modification of table in 2.2.2 On-chip oscillator characteristics	
		24	Modification of table, notes 2 and 3 in 2.3.1 Pin characteristics (1/5)	
		25	Modification of notes 1 and 3 in 2.3.1 Pin characteristics (2/5)	
		30	Modification of notes 1 and 4 in 2.3.2 Supply current characteristics (1/3)	
		31, 32	Modification of table, notes 1, 5, and 6 in 2.3.2 Supply current characteristics $(2/3)$	
		33. 34	Modification of table, notes 1, 3, 4, and 5 to 10 in 2.3.2 Supply current	
			characteristics (3/3)	

The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.