

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rjcafa-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 44-pin products

• 44-pin plastic LQFP (10 × 10)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.5 Block Diagram

1.5.1 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

1.6 Outline of Functions

RL78/L12

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

						(1/2)			
	Item	32-pin	44-pin	48-pin	52-pin	64-pin			
		R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx			
Code flash	n memory (KB)	8 to 32	8 to 32	8 to 32	8 to 32	16, 32			
Data flash	memory (KB)	2	2	2	2	2			
RAM (KB)		1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}			
Memory s	bace	1 MB							
Main system clock	High-speed system clock	system clock X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) operation: 1 to 20 MHz (V _{DD} = 2.7 to 5.5 V), HS (high-speed main) operation: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (low-speed main) operation: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), LV (low-voltage main) operation: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V)							
	High-speed on-chip oscillator clock	HS (high-speed HS (high-speed LS (low-speed r LV (low-voltage	I main) operation I main) operation main) operation: main) operation	: 1 to 24 MHz (Vi : 1 to 16 MHz (Vi 1 to 8 MHz (Vi : 1 to 4 MHz (Vie	be = 2.7 to 5.5 V = 2.4 to 5.5 V = 1.8 to 5.5 V), = 1.6 to 5.5 V)),),			
Subsysten	n clock	_	XT1 (crystal) os 32.768 kHz (TY	cillation , external 'P.): V _{DD} = 1.6 to	subsystem clock 5.5 V	input (EXCLKS)			
Low-speed	d on-chip oscillator clock	Internal oscillati 15 kHz (TYP.):	on V _{DD} = 1.6 to 5.5 '	V					
General-p	urpose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)							
Minimum i	nstruction execution time	0.04167 <i>μ</i> s (Hig	gh-speed on-chip	oscillator clock:	fін = 24 MHz ope	eration)			
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)							
		30.5 µs (Subsystem clock: fsue = 32.768 kHz operation)							
Instruction	set	 Data transfer Adder and su Multiplication Rotate, barre operation), et 	(8/16 bits) $ibtractor/logical c (8 bits \times 8 bits)I shift, and bit matc.$	operation (8/16 bi anipulation (Set, r	ts) reset, test, and E	Boolean			
Total num pins dedic	ber of I/O port pins and ated to drive an LCD	28	40	44	48	58			
I/O port	Total	20	29	33	37	47			
	CMOS I/O	15	22	26	30	39			
	CMOS input	3	5	5	5	5			
	CMOS output	_	_	-	_	1			
	N-ch open-drain I/O (EV _{DD} tolerance)	2	2	2	2	2			
Pins d	edicated to drive an LCD	8	11	11	11	11			
LCD contr	oller/driver	Internal voltage division method	boosting method are switchable.	d, capacitor split	method, and ext	ernal resistance			
	Segment signal output	13	22 (18) Note 2	26 (22) Note 2	30 (26) Note 2	39 (35) Note 2			
	Common signal output	4		4 (8)	Note 2				

Notes 1. In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.

2. The values in parentheses are the number of signal outputs when 8 com is used.

2. ELECTRICAL SPECIFICATIONS (A, G: $T_A = -40$ to $+85^{\circ}$ C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)" and "G: Industrial applications (with $T_A = -40$ to $+85^{\circ}$ C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD, or EVSS pin, replace EVDD with VDD, or replace EVSS with VSS.

(2/3)

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VL1	VL1 voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V∟4 + 0.3	V
	VL2	VL2 voltage ^{Note 1}		-0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to V_{L4} + 0.3 $^{\text{Note 2}}$	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH vol	tage ^{Note 1}	–0.3 to VL4 + 0.3 $^{\text{Note 2}}$	V
VLOUT	VLOUT	COM0 to COM7, SEG0 to	External resistance division method	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
		SEG38,	Capacitor split method	-0.3 to V_{DD} + 0.3 $^{\text{Note 2}}$	
		output voltage	Internal voltage boosting method	-0.3 to V _{L4} + 0.3 ^{Note 2}	

Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.

- 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss : Reference voltage

2.4 AC Characteristics

2.4.1 Basic operation

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Items	Symbol		Conditio	ns		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-spe	eed	$2.7 \text{V} \le V_{\text{DD}} \le 5.5 \text{V}$	0.04167		1	μs
instruction execution time)		system	main) mode		$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
		operation	LV (low volta main) mode	age	$1.6 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	0.25		1	μs
			LS (low-spee main) mode	ed	$1.8 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	0.125		1	μs
		Subsystem operation	clock (fsub)		$1.8 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	28.5	30.5	31.3	μs
		In the self	HS (high-spe	eed	$2.7 V \le V_{DD} \le 5.5 V$	0.04167		1	μs
		programmin a mode	main) mode		$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
		9	LV (low volta main) mode	age	$1.8 V \le V_{DD} \le 5.5 V$	0.25		1	μs
			LS (low-spee main) mode	ed	$1.8 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	0.125		1	μs
External main system clock	fex	$2.7~V \leq V_{\text{DD}}$	≤ 5.5 V			1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}}$	< 2.7 V			1.0		16.0	MHz
		$1.8 \ V \leq V_{\text{DD}}$	< 2.4 V			1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}}$	< 1.8 V			1.0		4.0	MHz
	fexs				32		35	kHz	
External main system clock input	texh, texl	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$			24			ns	
high-level width, low-level width		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			30			ns	
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$			60			ns	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			120			ns	
	texhs, texls					13.7			μs
TI00 to TI07 input high-level width, low-level width	tт⊪, tт⊫					1/fмск+10			ns
TO00 to TO07 output frequency	fтo	HS (high-sp	eed 4.0	V ≤	$EV_{DD} \le 5.5 V$			16	MHz
		main) mode	2.7	V≤	EV _{DD} < 4.0 V			8	MHz
			2.4	V≤	EV _{DD} < 2.7 V			4	MHz
		LS (low-spe main) mode	ed 1.8	V≤	$EV_{DD} \le 5.5 V$			4	MHz
		LV (low volt main) mode	age 1.6	V≤	$EVDD \leq 5.5 V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-sp	eed 4.0	V≤	$EV_{DD} \leq 5.5 V$			16	MHz
frequency		main) mode	2.7	V≤	EV _{DD} < 4.0 V			8	MHz
			2.4	V≤	EV _{DD} < 2.7 V			4	MHz
		LS (low-spe main) mode	ed 1.8	V≤	$EV_{DD} \le 5.5 V$			4	MHz
		LV (low-volt	age 1.8	V≤	$EV_{DD} \leq 5.5 V$			4	MHz
		main) mode	1.6	V≤	EVDD < 1.8 V			2	MHz
Interrupt input high-level width,	tinth,	INTP0	1.6	V≤	$V_{DD} \leq 5.5 V$	1			μs
	UNTL	INTP1 to IN	TP7 1.6	V≤	$EV_{DD} \leq 5.5 V$	1			μs
Key interrupt input low-level width	t kr	KR0 to KR3	1.8	V≤	$EV_{DD} \le 5.5 V$	250			ns
			1.6	V≤	EV _{DD} < 1.8 V	1			μs
RESET low-level width	trsl					10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \text{ [%]}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $EV_{DD} \ge V_b$.
- **6.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
 - For derating with T_A = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

(1/3)

3.1 Absolute Maximum Ratings

Absolute	Maximum	Ratings	$(T_{A} = 25^{\circ}C)$
----------	---------	---------	-------------------------

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVss		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} + 0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
	V _{I2}	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
	V _{I3}	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Output voltage	Vo1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 $^{\rm Note\ 2}$	V
	V _{O2}	P20, P21	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Analog input voltage	Vai1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V
	Vai2	ANIO, ANI1	-0.3 to V_{DD} + 0.3 and -0.3 to $AV_{\text{REF}}(+)$ + $0.3^{\text{Notes 2, 3}}$	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$
--

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **3.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator clock frequency accuracy		–20 to +85°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1		+1	%
		–40 to –20°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to 3.4 AC Characteristics for instruction execution time.

3.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscl	Standard mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
		$f_{CLK} \geq 1 \; MHz$	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
Hold time when SCLA0 = "L"	t LOW	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
Hold time when SCLA0 = "H"	t HIGH	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	250		ns
		$2.4 V \le EV_{DD} \le 5.$	5 V	250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	0	3.45	μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	0	3.45	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$			μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) I²C fast mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	kHz
		fclk≥ 3.5 MHz	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	0.6		
Hold time Note 1	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	5 V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	0.6		
Hold time when SCLA0 = "L"	t LOW	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	5 V	1.3		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	1.3		
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	0.6		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	100		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	100		
Data hold time (transmission)Note 2	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	5 V	0	0.9	μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	0	0.9	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5 V	0.6		
Bus-free time	t _{BUF}	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	5 V	1.3		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	5 V	1.3		

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

3.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	/ _{TMPS25} Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR} Setting ADS register = 81H		1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

3.6.3 POR circuit characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

<R> 3.8 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.9 Flash Memory Programming Characteristics

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fськ	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		24	MHz
<r></r>	Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	1,000			Times
<r></r>	Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C^{Note 4}$		1,000,000		
<r></r>			Retained for 5 years $T_A = 85^{\circ}C^{Note 4}$	100,000			
<r></r>			Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

4. This temperature is the average value at which data are retained.

3.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

<R>

3.11 Timing Specifications for Switching Flash Memory Programming Modes (T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication tsuinit POF for the initial setting after the external reset is released		POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset tsu after the TOOL0 pin is set to the low level		POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.3 48-pin Products

R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ΖE

0.75

4.4 52-pin Products

R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

2.Dimension "X3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

е

x y 0.65

0.10

		Description		
Rev.	Date	Page	Summary	
2.00	Jan 10, 2014	35	Modification of table in 2.4 AC Characteristics	
		36	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		37	Modification of AC Timing Test Points and External System Clock Timing	
		39	Modification of AC Timing Test Points	
		39	Modification of description, notes 1 and 2 in (1) During communication at same potential (UART mode)	
		41, 42	Modification of description, remark 2 in (2) During communication at same potential (CSI mode)	
		42, 43	Modification of description in (3) During communication at same potential (CSI mode)	
		45	Modification of description, notes 1 and 3, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		46, 48	Modification of description, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		49, 50	Modification of table, and note 1, caution, and remark 3 in (5) Communication at different potential (2.5 V, 3 V) (CSI mode)	
		51	Modification of table and note in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (1/3)	
		52	Modification of table and notes 1 to 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (2/3)	
		53, 54	Modification of table, note 3, and remark 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (3/3)	
		56	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)	
		57	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)	
		59, 60	Addition of (1) I ² C standard mode	
		61	Addition of (2) I ² C fast mode	
		62	Addition of (3) I ² C fast mode plus	
		63	Addition of table in 2.6.1 A/D converter characteristics	
		63, 64	Modification of description and notes 3 to 5 in 2.6.1 (1)	
		65	Modification of description, notes 3 and 4 in 2.6.1 (2)	
		67	Modification of description, notes 3 and 4 in 2.6.1 (3)	
		67	Modification of the table in 2.6.2 Temperature sensor/internal reference voltage	
		07	characteristics	
		68	Modification of the table and note in 2.6.3 POR circuit characteristics	
		70	Modification of the table of LVD Detection Voltage of Interrupt & Reset Mode	
		70	Modification from V_{DD} rise slope to Power supply voltage rising slope in 2.6.5 Supply voltage rise time	
		75	Modification of description in 2.10 Dedicated Flash Memory Programmer Communication (UART)	
		76	Modification of the figure in 2.11 Timing Specifications for Switching Flash Memory Programming Modes	
		77 to 126	Addition of products for industrial applications (G: T _A = -40 to +105°C)	
		127 to 133	Addition of product names for industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)	
2.10	Sep 30, 2016	5	Modification of pin configuration in 1.3.1 32-pin products	
		6	Modification of pin configuration in 1.3.2 44-pin products	
		7	Modification of pin configuration in 1.3.3 48-pin products	
		δ 0 10	Modification of pin configuration in 1.3.4 52-pin products	
		9, 10	Modification of phil conliguration in 1.5.5 64-phil products	
		74	Modification of title of 2.8 RAM Data Retention Characteristics Note and figure	
		74	Modification of table of 2.9 Flash Memory Programming Characteristics	
		123	Modification of title of 3.8 RAM Data Retention Characteristics. Note, and figure	
		123	Modification of table of 3.9 Flash Memory Programming Characteristics and addition of Note 4	
		131	Modification of 4.5 64-pin Products	

The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.