

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rjcgfa-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.4 52-pin products

• 52-pin plastic LQFP (10 × 10)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

ANIO, ANI1,		P130, P137:	Port 13
ANI16 to ANI23:	Analog Input	P140 to P147:	Port 14
AVREFM:	Analog Reference	PCLBUZ0, PCLBUZ1:	Programmable Clock
	Voltage Minus		Output/Buzzer Output
AVREFP:	Analog Reference	REGC:	Regulator Capacitance
	Voltage Plus	RESET:	Reset
CAPH, CAPL:	Capacitor for LCD	RTC1HZ:	Real-time Clock Correction Clock
COM0 to COM7,			(1 Hz) Output
EVDD:	Power Supply for Port	RxD0:	Receive Data
EVss:	Ground for Port	SCK00, SCK01:	Serial Clock Input/Output
EXCLK:	External Clock Input	SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SDAA0:	Serial Data Input/Output
EXCLKS:	External Clock Input	SEG0 to SEG38:	LCD Segment Output
	(Subsystem Clock)	SI00, SI01:	Serial Data Input
INTP0 to INTP7:	Interrupt Request From	SO00, SO01:	Serial Data Output
	Peripheral	TI00 to TI07:	Timer Input
KR0 to KR3:	Key Return	TO00 to TO07:	Timer Output
P10 to P17:	Port 1	TOOL0:	Data Input/Output for Tool
P20, P21:	Port 2	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P30 to P32:	Port 3	TxD0:	Transmit Data
P40 to P43:	Port 4	VDD:	Power Supply
P50 to P54:	Port 5	VL1 to VL4:	LCD Power Supply
P60, P61:	Port 6	Vss:	Ground
P70 to P74:	Port 7	X1, X2:	Crystal Oscillator (Main System Clock)
P120 to P127:	Port 12	XT1, XT2:	Crystal Oscillator (Subsystem Clock)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	Per pin for P50 to P54 P140 to P1	P10 to P17, P30 to P32, P I, P70 to P74, P120, P125 47	40 to P43, to P127, P130,			20.0 Note 2	mA
		Per pin for	P60, P61				15.0 Note 2	mA
		Total of P1	0 to P14, P40 to P43,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			70.0	mA
		P120, P13	0, P140 to P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		(when dut	y = 70%)	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			9.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			80.0	mA
		P50 to P54	I, P60, P61, P70 to P74,	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
		(When dut	$v = 70\%^{\text{Note 3}}$	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			20.0	mA
			,	$1.6~V \leq EV_{\text{DD}} < 1.8~V$			10.0	mA
		Total of all (When dut	pins y = 70% ^{Note 3})				150.0	mA
	IOL2	P20, P21	Per pin				0.4	mA
			Total of all pins	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			0.8	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \cong 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz
 - $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz to } 16 \text{ MHz}$
 - LS (low-speed main) mode: $1.8 V \le V_{DD} \le 5.5 V@1 MHz$ to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

- Notes 1. Current flowing to VDD.
 - 2. When high speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 8. Current flowing only during data flash rewrite.
 - 9. Current flowing only during self programming.
 - **10.** For shift time to the SNOOZE mod.
 - 11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.

The TYP. value and MAX. value are following conditions.

- When fsuB is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows through the external divider resistor when the external resistance division method is used.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fcLK: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is T_A = 25°C

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Conditions		h-speed Mode	LS (lov main)	v-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n	$4.0 V \le EV_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$		Note 1		Note 1		Note 1	bps
			$\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_{b} = 50 \mbox{ pF}, \mbox{ R}_{b} = 1.4 \mbox{ k}\Omega, \\ \mbox{V}_{b} = 2.7 \mbox{ V} \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
			$2.7 V \le EV_{DD} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		Note 3		Note 3		Note 3	bps
			$\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \\ \mbox{V}_b = 2.3 \mbox{ V} \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
			$2.4 V \le EV_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 6		Note 6		Note 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V_b = 1.6 V		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps
			$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$				Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 kΩ, V_b = 1.6 V				0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (speed	HS (high- speed main)		/-speed Mode	LV (voltage	(low- e main)	Unit
					de			Mode		
			1	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 2/f с∟к	$4.0 V \le EV_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$,	200 Note 1		1150 Note 1		1150 Note 1		ns
			$C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
			$2.7 V \le EV_{DD} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$	300 Note 1		1150 Note 1		1150 Note 1		ns
CKn high lovel width	6		$C_{\rm b} = 20 \text{pr}, R_{\rm b} = 2.7 \text{K}_2$	t		t		t		20
	IKH1	$C_b = 20 \text{ pF, F}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$ $R_{\text{b}} = 1.4 \text{ k}\Omega$	- 50		- 50		- 50		115
		$2.7~V \leq EV_{\text{DD}}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V,	t ксү1/2		t ксү1/2		t ксү1/2		ns
		C _b = 20 pF, F	$R_b = 2.7 \text{ k}\Omega$	- 120		- 120		- 120		
SCKp low-level width	t ĸ∟1	$4.0~V \leq EV_{DD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	t ксү1/2		t ксү1/2		t ксү1/2		ns
		C _b = 20 pF, F	& _b = 1.4 kΩ	-7		- 50		- 50		
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$	$< 4.0 V, 2.3 V \le V_b \le 2.7 V,$	t ксү1/2		t ксү1/2		t ксү1/2		ns
		C _b = 20 pF, F	& _b = 2.7 kΩ	- 10		- 50		- 50		
SIp setup time	tsik1	$4.0 V \le EV_{DD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	58		479		479		ns
(to SCKp ⁺) ^{Note 2}		C _b = 20 pF, F	& _b = 1.4 kΩ							
		$2.7 \text{ V} \leq EV_{DD}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V,	121		479		479		ns
		C _b = 20 pF, F	& _b = 2.7 kΩ							
SIp hold time	tksi1	$4.0~V \leq EV_{DD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10		10		10		ns
(from SCKp↑) Note 2		C _b = 20 pF, F	R _b = 1.4 kΩ							
		$2.7~V \leq EV_{DD}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V,	10		10		10		ns
		C _b = 20 pF, F	& = 2.7 kΩ							
Delay time from SCKp↓ to	t KSO1	$4.0~V \leq EV_{DD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,		60		60		60	ns
SOp output Note 2		C _b = 20 pF, F	& _b = 1.4 kΩ							
		$2.7~V \leq EV_{DD}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V,		130		130		130	ns
		C _b = 20 pF, F	& = 2.7 kΩ							
SIp setup time	tsik1	$4.0 V \le EV_{DD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	23		110		110		ns
		C _b = 20 pF, F	R _b = 1.4 kΩ							
		2.7 V ≤ EV _{DD}	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	33		110		110		ns
		C₀ = 20 pF, F	$R_b = 2.7 \text{ k}\Omega$							
SIp hold time	tksi1	$4.0 V \le EV_{DD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10		10		10		ns
(IIOIII SCKP+)		C _b = 20 pF, F	& _b = 1.4 kΩ							
		$2.7 V \leq EV_{DD}$	$< 4.0 V, 2.3 V \le V_b \le 2.7 V,$	10		10		10		ns
		C _b = 20 pF, F	R _b = 2.7 kΩ							
Delay time from SCKp↑ to	t KSO1	$4.0 V \le EV_{DD}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,		10		10		10	ns
SOp output		C _b = 20 pF, F	R _b = 1.4 kΩ							
		$2.7 V \le EV_{DD}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V,		10		10		10	ns
		C _b = 20 pF, F	$R_b = 2.7 \text{ k}\Omega$							

(TA = -40 to +85°C, 2.7 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EV_{ss} = 0 V)

(Notes, Caution and Remarks are listed on the next page.)

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

2.6.4 LVD circuit characteristics

(T _A = -40 to +85°C	, $V_{PDR} \leq EV_{DD} = V_{DD} \leq 5.5$	V, Vss = EVss = 0 V)
--------------------------------	--	----------------------

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection Supply voltage level V		VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	lse width	tLW		300			μs
Detection de	elay time	t LD				300	μs

Parameter	Appli	cation
	A: Consumer applications, G: Industrial applications (with TA = -40 to +85°C)	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz	2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_DD \leq 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V \leq V _{DD} \leq 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$:	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -20 to +85°C	
	±5.5%@ T _A = -40 to -20°C	
Serial array unit	UART	UART
	CSI00: fcLk/2 (supporting 16 Mbps), fcLk/4	CSI00: fclк/4
	CSI01	CSI01
	Simplified I ² C communication	Simplified I ² C communication
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(14 levels)	(8 levels)
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(14 levels)	(8 levels)

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and G: Industrial applications ($T_A = -40$ to $+85^{\circ}$ C)".

Remark The electrical characteristics of the products G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$) are different from those of the products "A: Consumer applications, and G: Industrial applications (only with $T_A = -40$ to $+85^{\circ}C$)". For details, refer to **3.1** to **3.10**.

5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol		Conditions		ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0 V \le EV_{DD} \le 5.5 V$,	20 MHz < fмск ≤ 24 MHz	24/f мск		ns
		$2.7V\!\le\!V_b\!\le\!4.0V$	$1.7 V \le V_b \le 4.0 V$ 8 MHz < f _{MCK} $\le 20 \text{ MHz}$			ns
			4 MHz < fмск ≤ 8 MHz	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.7 V \le EV_{DD} < 4.0 V$,	20 MHz < fмск ≤ 24 MHz	32/f мск		ns
		$2.3V \!\leq\! V_b \!\leq\! 2.7V$	16 MHz < fмск ≤ 20 MHz	28/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤ 4 MHz	12/f мск		ns
		$2.4 V \le EV_{DD} < 3.3 V$,	20 MHz < fмск ≤ 24 MHz	72/f мск		ns
		$1.6V{\leq}V_b{\leq}2.0V$	16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			$8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/f мск		ns
			fмск ≤4 MHz	20/f мск		ns
SCKp high-/low-level width	tкн2, tкL2		$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 $ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 $	V,	tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	V,	tkcy2/2 - 100		ns
SIp setup time (to SCKp [↑]) ^{Note2}	tsık2	$4.0 V \le EV_{DD} < 5.5$ $2.7 V \le V_b \le 4.0 V$	V,	1/fмск + 40		ns
		$2.7 V \le EV_{DD} < 4.0 V$ $2.3 V \le V_b \le 2.7 V$	V,	1/fмск + 40		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	V,	1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2	$\begin{array}{c} 4.0 \; V \leq EV_{DD} < 5.5 \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	V,	1/fмск + 62		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	V,	1/fмск + 62		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	V,	1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2		$V, 2.7 V \le V_b \le 4.0 V,$ 4 kΩ		2/fмск + 240	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ V}$	$V, 2.3 V ≤ V_b ≤ 2.7 V,$ 7 kΩ		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.9 \text{ c}_{\text{b}}$	V, 1.6 V ≤ V₅ ≤ 2.0 V 5 kΩ		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the page after the next page.)

3.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscl	Standard mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
		$f_{CLK} \geq 1 \; MHz$	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
Hold time when SCLA0 = "L"	t LOW	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
		$2.4 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$		4.7		μs
Hold time when SCLA0 = "H"	t HIGH	$2.7 \text{ V} \leq EV_{DD} \leq 5.5 \text{ V}$		4.0		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.0		μs
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	250		ns
		$2.4 V \le EV_{DD} \le 5.$	5 V	250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.$	5 V	0	3.45	μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		0	3.45	μs
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs
		$2.4~V \leq EV_{\text{DD}} \leq 5.$	5 V	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

3.7.3 Capacitor split method

1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
V∟₂ voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
V∟1 voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V∟₄ – 0.1	1/3 VL4	1/3 V∟₄ + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{\mbox{\tiny L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F±30%

4.5 64-pin Products

R5F10RLAAFA, R5F10RLCAFA R5F10RLAGFA, R5F10RLCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F10RLAANB, R5F10RLCANB R5F10RLAGNB, R5F10RLCGNB

<r></r>	JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
	P-HWQFN64-8x8-0.40	PWQN0064LA-A	P64K8-40-9B5-4	0.16

Unit: mm

Reference	Dimensions in millimeters			
Symbol	Min	Nom	Max	
D	7.95	8.00	8.05	
E	7.95	8.00	8.05	
A	_	_	0.80	
A ₁	0.00		_	
b	0.17	0.20	0.23	
е	_	0.40	—	
Lp	0.30	0.40	0.50	
х	—	_	0.05	
у	_		0.05	
ZD	_	1.00	—	
ZE	_	1.00	—	
C2	0.15	0.20	0.25	
D ₂	_	6.50	_	
E ₂	—	6.50	_	

© 2015 Renesas Electronics Corporation. All rights reserved.

		Description		
Rev.	Date	Page	Summary	
2.00	Jan 10, 2014	35	Modification of table in 2.4 AC Characteristics	
		36	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		37	Modification of AC Timing Test Points and External System Clock Timing	
		39	Modification of AC Timing Test Points	
		39	Modification of description, notes 1 and 2 in (1) During communication at same potential (UART mode)	
		41, 42	Modification of description, remark 2 in (2) During communication at same potential (CSI mode)	
		42, 43	Modification of description in (3) During communication at same potential (CSI mode)	
		45	Modification of description, notes 1 and 3, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		46, 48	Modification of description, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		49, 50	Modification of table, and note 1, caution, and remark 3 in (5) Communication at different potential (2.5 V, 3 V) (CSI mode)	
		51	Modification of table and note in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (1/3)	
		52	Modification of table and notes 1 to 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (2/3)	
		53, 54	Modification of table, note 3, and remark 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (3/3)	
		56	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)	
		57	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)	
		59, 60	Addition of (1) I ² C standard mode	
		61	Addition of (2) I ² C fast mode	
		62	Addition of (3) I ² C fast mode plus	
		63	Addition of table in 2.6.1 A/D converter characteristics	
		63, 64	Modification of description and notes 3 to 5 in 2.6.1 (1)	
		65	Modification of description, notes 3 and 4 in 2.6.1 (2)	
		67	Modification of description, notes 3 and 4 in 2.6.1 (3)	
		67	Modification of the table in 2.6.2 Temperature sensor/internal reference voltage	
		07	characteristics	
		68	Modification of the table and note in 2.6.3 POR circuit characteristics	
		70	Modification of the table of LVD Detection Voltage of Interrupt & Reset Mode	
		70	Modification from V_{DD} rise slope to Power supply voltage rising slope in 2.6.5 Supply voltage rise time	
		75	Modification of description in 2.10 Dedicated Flash Memory Programmer Communication (UART)	
		76	Modification of the figure in 2.11 Timing Specifications for Switching Flash Memory Programming Modes	
		77 to 126	Addition of products for industrial applications (G: T _A = -40 to +105°C)	
		127 to 133	Addition of product names for industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)	
2.10	Sep 30, 2016	5	Modification of pin configuration in 1.3.1 32-pin products	
		6	Modification of pin configuration in 1.3.2 44-pin products	
		7	Modification of pin configuration in 1.3.3 48-pin products	
		8	Modification of pin configuration in 1.3.4 52-pin products	
		9, 10	Modification of phil conliguration in 1.5.5 64-phil products	
		74	Modification of title of 2.8 RAM Data Retention Characteristics Note and figure	
		74	Modification of table of 2.9 Flash Memory Programming Characteristics	
		123	Modification of title of 3.8 RAM Data Retention Characteristics. Note, and figure	
		123	Modification of table of 3.9 Flash Memory Programming Characteristics and addition of Note 4	
		131	Modification of 4.5 64-pin Products	

The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.