

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	47
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rlaafb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin count	Package	Fields of	Part Number
	U U	Application Note	
32 pins	32-pin plastic LQFP (7 \times 7)	А	R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP
		G	R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP
44 pins	44-pin plastic LQFP (10 $ imes$ 10)	А	R5F10RF8AFP, R5F10RFAAFP, R5F10RFCAFP
		G	R5F10RF8GFP, R5F10RFAGFP, R5F10RFCGFP
48 pins	48-pin plastic LQFP (fine pitch)	А	R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB
	(7 × 7)	G	R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB
52 pins	52-pin plastic LQFP (10 $ imes$ 10)	А	R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA
		G	R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA
64 pins	64-pin plastic WQFN (8 $ imes$ 8)	А	R5F10RLAANB, R5F10RLCANB
		G	R5F10RLAGNB, R5F10RLCGNB
	64-pin plastic LQFP (fine pitch)	А	R5F10RLAAFB, R5F10RLCAFB
	(10 × 10)	G	R5F10RLAGFB, R5F10RLCGFB
	64-pin plastic LQFP (12 $ imes$ 12)	А	R5F10RLAAFA, R5F10RLCAFA
		G	R5F10RLAGFA, R5F10RLCGFA

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/L12.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.4 52-pin products

• 52-pin plastic LQFP (10 × 10)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

- 64-pin plastic LQFP (fine pitch) (10×10)
- 64-pin plastic LQFP (12 × 12)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

1.6 Outline of Functions

RL78/L12

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

						(1/2)				
	Item	32-pin	44-pin	48-pin	52-pin	64-pin				
		R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx				
Code flash	n memory (KB)	8 to 32	8 to 32	8 to 32	8 to 32	16, 32				
Data flash	memory (KB)	2	2	2	2	2				
RAM (KB)		1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}	1, 1.5 ^{Note 1}				
Memory s	bace	1 MB								
Main system clock	in High-speed system clock X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) tem ck HS (high-speed main) operation: 1 to 20 MHz (V _{DD} = 2.7 to 5.5 V), HS (high-speed main) operation: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (low-speed main) operation: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), LV (low-voltage main) operation: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V)									
	High-speed on-chip oscillator clockHS (high-speed main) operation: 1 to 24 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) operation: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) operation: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) operation: 1 to 4 MHz (VDD = 1.6 to 5.5 V)									
Subsysten	n clock	_	XT1 (crystal) os 32.768 kHz (TY	cillation , external 'P.): V _{DD} = 1.6 to	subsystem clock 5.5 V	input (EXCLKS)				
Low-speed	d on-chip oscillator clock	Internal oscillation 15 kHz (TYP.): V _{DD} = 1.6 to 5.5 V								
General-p	urpose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)								
Minimum i	nstruction execution time	0.04167 <i>μ</i> s (Hig	gh-speed on-chip	oscillator clock:	fін = 24 MHz ope	eration)				
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)								
		30.5 µs (Subsystem clock: fsue = 32.768 kHz operation)								
Instruction	set	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 								
Total num pins dedic	ber of I/O port pins and ated to drive an LCD	28	40	44	48	58				
I/O port	Total	20	29	33	37	47				
	CMOS I/O	15	22	26	30	39				
	CMOS input	3	5	5	5	5				
	CMOS output	_	_	-	_	1				
	N-ch open-drain I/O (EV _{DD} tolerance)	2	2	2	2	2				
Pins d	edicated to drive an LCD	8	11	11	11	11				
LCD contr	oller/driver	Internal voltage division method	boosting method are switchable.	d, capacitor split	method, and ext	ernal resistance				
	Segment signal output	13	22 (18) Note 2	26 (22) Note 2	30 (26) Note 2	39 (35) Note 2				
	Common signal output	4		4 (8)	Note 2					

Notes 1. In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.

2. The values in parentheses are the number of signal outputs when 8 com is used.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ilih1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVDD				1	μA
	Ілна	P20, P21, P137, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilili	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	Vi = EVss				-1	μA
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	Ilili	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up	Ru1	Vi = EVss	SEGxx po	rt				
resistance			$2.4~V \le EV_{\text{DD}} = V_{\text{DD}} \le 5.5~V$		10	20	100	kΩ
				$1.6 V \le EV_{DD} = V_{DD} < 2.4 V$		30	100	kΩ
	Ru2		Ports other than above (Except for P60, P61, and P130)		10	20	100	kΩ

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

TI/TO Timing

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{Ss}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-	LS (low-	LV (low-	Unit
			speed main) speed main)		main)	voltage main)			
			Mo	ode	Mo	ode	Mo		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
					19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns
		$ \begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note } 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array} $				25		25	ns

- **Notes** 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** Use it with $EV_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

2.6.2 Temperature sensor/internal reference voltage characteristics

•				•		
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (HS (high-speed main) mode)

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

(T _A = -40 to +85°C	, $V_{PDR} \leq EV_{DD} = V_{DD} \leq 5.5$	V, Vss = EVss = 0 V)
--------------------------------	--	----------------------

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	lse width	tLW		300			μs
Detection de	elay time	t LD				300	μs

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1 Note 4	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 <i>µ</i> F	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	$2 V_{L1} - 0.08$	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} = 0.47 μ F		3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4 Note 4	C1 to C5 ^{Note 1} = 0.47 <i>µ</i> F		4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between VL1 and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between VL3 and GND

C5: A capacitor connected between V_{L4} and GND

- C1 = C2 = C3 = C4 = C5 = 0.47 µF±30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- 4. VL4 must be 5.5 V or lower.

2.7.3 Capacitor split method

1/3 bias method

(TA = -40 to +85°C, 2.2 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 VL4	2/3 VL4	2/3 VL4	V
			- 0.1		+ 0.1	
V _{L1} voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 VL4	1/3 VL4	1/3 VL4	V
			- 0.1		+ 0.1	
Capacitor split wait time ^{Note 1}	towait		100			ms

Parameter	Appli	cation
	A: Consumer applications, G: Industrial applications (with TA = -40 to +85°C)	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz	2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_DD \leq 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V \leq V _{DD} \leq 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$:	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -20 to +85°C	
	±5.5%@ T _A = -40 to -20°C	
Serial array unit	UART	UART
	CSI00: fcLk/2 (supporting 16 Mbps), fcLk/4	CSI00: fclк/4
	CSI01	CSI01
	Simplified I ² C communication	Simplified I ² C communication
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(14 levels)	(8 levels)
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(14 levels)	(8 levels)

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and G: Industrial applications ($T_A = -40$ to $+85^{\circ}$ C)".

Remark The electrical characteristics of the products G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$) are different from those of the products "A: Consumer applications, and G: Industrial applications (only with $T_A = -40$ to $+85^{\circ}C$)". For details, refer to **3.1** to **3.10**.

3.3.2 Supply current characteristics

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/3)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit	
Supply IDD1 current	IDD1	Operating mode	g HS (high- speed main)	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA	
					operation V	V _{DD} = 3.0 V		1.5		mA	
Note 1			mode		Normal	V _{DD} = 5.0 V		3.3	5.3	mA	
					operation	V _{DD} = 3.0 V		3.3	5.3	mA	
				f _{IH} = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.5	3.9	mA	
					operation	V _{DD} = 3.0 V		2.5	3.9	mA	
			HS (high- $f_{MX} = 20 \text{ MHz}^{\text{Note 2}}$,	Normal	Square wave input		2.8	4.7	mA		
			speed main)	V _{DD} = 5.0 V	operation	Resonator connection		3.0	4.8	mA	
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.7	mA	
				V _{DD} = 3.0 V	operation	Resonator connection		3.0	4.8	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.8	2.8	mA	
				V _{DD} = 5.0 V	operation	Resonator connection		1.8	2.8	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.8	2.8	mA	
				V _{DD} = 3.0 \	V _{DD} = 3.0 V	operation	Resonator connection		1.8	2.8	mA
		Subsystem f clock v operation	Subsystem	f _{SUB} = 32.768 kHz	Normal	Square wave input		3.5	4.9	μA	
			Note 4	operation	Resonator connection		3.6	5.0	μA		
			operation	$T_{A} = -40^{\circ}C$							
			$f_{SUB} = 32.768 \text{ KHz}$ Note 4 $T_A = +25^{\circ}\text{C}$ $f_{SUB} = 32.768 \text{ kHz}$	fsub = 32.768 kHz Note 4	Normal	Square wave input		3.6	4.9	μA	
				T _A = +25°C	opciation	Resonator connection		3.7	5.0	μA	
				fsue = 32.768 kHz Normal	Square wave input		3.7	5.5	μA		
				Note 4	e 4 operation	Resonator connection		3.8	5.6	μA	
				T _A = +50°C							
				fsue = 32.768 kHz Nom	Normal	Square wave input		3.8	6.3	μA	
		$T_A = +70^{\circ}C$	operation	Resonator connection		3.9	6.4	μA			
					Normal	Square wave input		4.1	7.7	μA	
					operation	Resonator connection		4.2	7.8	μA	
				fsue = 32.768 kHz	Normal	Square wave input		6.4	19.7	μA	
				^{Note 4} T _A = +105°С	operation	Resonator connection		6.5	19.8	μA	

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz
 - $2.4~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(2/2)

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
Slp setup time (to SCKp↑) ^{Note 1}	tsik1	$4.0 \ V \le EV_{\text{DD}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V,$	162		ns
		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	354		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	958		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
SIp hold time	tksi1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	38		ns
(from SCKp↑) ^{Note 1}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ < 4.0 V, 2.3 V $\le \text{V}_{\text{b}} \le 2.7 \text{ V}$,	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	38		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
Delay time from SCKp↓ to	tkso1	$4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V,$		200	ns
SOp output ^{Note 1}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$		390	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$		966	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
SIp setup time	tsıĸı	$4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V,$	88		ns
(to SCKp↓) ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4~V \leq EV_{\text{DD}} < 3.3~V,~1.6~V \leq V_{\text{b}} \leq 2.0~V,$	220		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
SIp hold time	tksi1	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	38		ns
(from SCKp↓)		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4~V \leq EV_{\text{DD}} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	38		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		50	ns
		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \ V \leq EV_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		50	ns
		C _b = 30 pF, R _b = 2.7 kΩ			
		$2.4 \ V \le EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \le V_{\text{b}} \le 2.0 \ V,$		50	ns
		C_b = 30 pF, R_b = 5.5 k Ω			

(Notes, Caution and Remarks are listed on the page after the next page.)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - **2.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- Remarks 1. Rb[Ω]:Communication line (SCKp, SOp) pull-up resistance,

 Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - **3.** fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1 Note 4	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	$3 V_{L1} - 0.12$	3 VL1	3 VL1	V
Quadruply output voltage	VL4 Note 4	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to $C5^{Note 1} =$	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND
- $C1 = C2 = C3 = C4 = C5 = 0.47 \,\mu\text{F}{\pm}30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- **4.** VL4 must be 5.5 V or lower.

R5F10RLAANB, R5F10RLCANB R5F10RLAGNB, R5F10RLCGNB

<r></r>	JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
	P-HWQFN64-8x8-0.40	PWQN0064LA-A	P64K8-40-9B5-4	0.16

Unit: mm

Reference	Dimensions in millimeters				
Symbol	Min	Nom	Max		
D	7.95	8.00	8.05		
E	7.95	8.00	8.05		
A	_	_	0.80		
A ₁	0.00		_		
b	0.17	0.20	0.23		
е	_	0.40	—		
Lp	0.30	0.40	0.50		
х	—	_	0.05		
у	_		0.05		
ZD	_	1.00	—		
ZE	_	1.00	—		
C2	0.15	0.20	0.25		
D ₂	_	6.50	_		
E ₂	—	6.50	_		

© 2015 Renesas Electronics Corporation. All rights reserved.

