

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \mathbf{X}

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	47
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFQFN Exposed Pad
Supplier Device Package	64-HWQFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rlaanb-u0

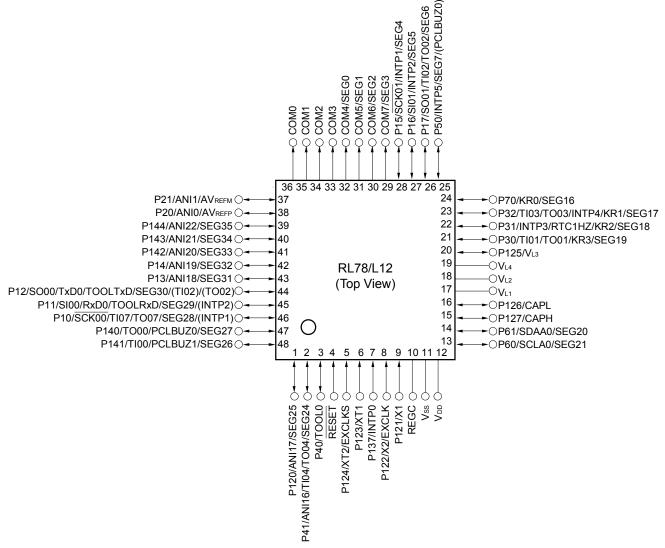
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data flash	RAM		RL78/L12							
			32 pins	44 pins	48 pins	52 pins	64 pins				
32 KB	2 KB	1.5 KB ^{Note}	R5F10RBC	R5F10RFC	R5F10RGC	R5F10RJC	R5F10RLC				
16 KB		1 KB ^{Note}		R5F10RFA	R5F10RGA	R5F10RJA	R5F10RLA				
8KB	2 KB	1 KB ^{Note}	R5F10RB8	R5F10RF8	R5F10RG8	R5F10RJ8	-				

Note In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.


Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

1.3.3 48-pin products

• 48-pin plastic LQFP (fine pitch) (7 × 7)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/5)

	· · , ·		,	,		-		(110
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147					-10.0 Note 2	mA
		Total of P10) to P14, P40 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-40.0	mA
		P130, P140		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA
		(when duty	= 70% ^{Note 3})	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
1			$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-2.0	mA	
	Total of P15 to P17, P30 to P32,		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-60.0	mA	
		· · · · · · · · · · · · · · · · · · ·	P70 to P74, P125 to P127 = 70% ^{Note 3})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
		(when duty	= 70%)	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-4.0	mA
		Total of all p (When duty					-100.0	mA
	Іон2	P20, P21	P20, P21 Per pin				-0.1	mA
			Total of all pins	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and $I_{OH} = -40.0$ mA

Total output current of pins = $(-40.0 \times 0.7)/(80 \times 0.01) \approx -35.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1		P10 to P17, P30 to P32, F 4, P70 to P74, P120, P125 147				20.0 Note 2	mA
		Per pin for	P60, P61				15.0 Note 2	mA
		Total of P1	0 to P14, P40 to P43,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			70.0	mA
			0, P140 to P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		(When duty = $70\%^{\text{Note 3}}$)		$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			80.0	mA
			4, P60, P61, P70 to P74,	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
		P125 to P1 (When dut	y = 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		(,,	$1.6~V \leq EV_{\text{DD}} < 1.8~V$			10.0	mA
			Total of all pins (When duty = 70% ^{Note 3})				150.0	mA
	IOL2	P20, P21	Per pin				0.4	mA
			Total of all pins	$1.6~V \le V_{\text{DD}} \le 5.5~V$			0.8	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol		Conditions	speed	high- main) ode	`	/-speed Mode	voltage	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/f с∟к	$\begin{array}{l} 4.0 \; V \leq E V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq E V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{array}{l} 2.4 \ V \leq E V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		1150		ns
			$\begin{split} & 1.8 \ V \leq E V_{DD} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$			1150		1150		ns
SCKp high-level width	tкнı	$4.0 V \le EV_{DD} \le C_b = 30 \text{ pF}, R_b = 100 \text{ F}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 – 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			tксү1/2 - 458		tксү1/2 - 458		ns
		$1.8 V \le EV_{DD} < 30 C_b = 30 pF, R_b = 30 PF$	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} , = 5.5 kΩ			tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = \end{array}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 V \le EV_{DD} < C_b = 30 \text{ pF}, R_b = 100 \text{ F}$	4.0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 – 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 V \le EV_{DD} < 3$ $C_b = 30 \text{ pF}, R_b = 3$	3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V, = 5.5 kΩ	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
			$\begin{array}{l} .8 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}, \\ c_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			tксү1/2 - 50		tксү1/2 - 50		ns

Note Use it with $EV_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Parameter	Symbol	Con	ditions	speed mo	high- main) ode	main)	/-speed mode	voltage mo	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0 V \le EV_{DD} \le 5.5 V$,	20 MHz < fмск ≤ 24 MHz	12/ f мск						ns
		$2.7 V \le V_b \le 4.0 V$	8 MHz < fмск ≤ 20 MHz	10/ f мск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск				ns
			fмск≤4 MHz	6/fмск		10/f мск		10/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	16/ f мск						ns
		$2.3 V \le V_b \le 2.7 V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	14/ f мск						ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	12/fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск				ns
			fмск ≤4 MHz	6/ f мск		10/fмск		10/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	36/fмск						ns
		$1.6 V {\le} V_b {\le} 2.0 V$	16 MHz < fмск ≤ 20 MHz	32/fмск						ns
			8 MHz < fмск ≤ 16 MHz	26/fмск						ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск				ns
			fмск≤4 MHz	10/fмск		10/fмск		10/f мск		ns
		$1.8 V \le EV_{DD} < 3.3 V$,	4 MHz < fмск ≤ 8 MHz			16/f мск				ns
		$1.6~V\!\le\!V_b\!\le\!2.0~V^{Note2}$	fмск≤4 MHz			10/fмск		10/fмск		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \ V \le EV_{DD} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V$		tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm r}, 1.6 \ V \le V_{\rm b} \le 2.0 \ V_{\rm b}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
		$1.8 V \le EV_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{No}$				tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$V, 2.7 V \le V_b \le 4.0 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm r}, 1.6 \ V \le V_{\rm b} \le 2.0 \ V_{\rm b}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} < 3.3 \ V \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{No}} \end{array}$				1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$	$V, 2.7 V \le V_b \le 4.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$	$V, 1.6 V \le V_b \le 2.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{No}} \end{array}$				1/fмск + 31		1/fмск + 31		ns

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(Notes, Caution and Remarks are listed on the next page.)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD} – 0.7			V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	EV _{DD} – 0.6			V
			$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -1.5 \text{ mA}$	EV _{DD} – 0.5			V
V _{OH2}	Voh2	P20, P21	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	V _{DD} - 0.5			V
Output voltage, Vo low	Vol1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.7	V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	>
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \end{array} \label{eq:eq:obs}$			0.4	V
	Vol2	P20, P21	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL2}} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60, P61	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 15.0 \text{ mA}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \label{eq:DD}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 3.0 \ \text{mA} \end{array} \end{array} \label{eq:eq:entropy}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array} \label{eq:DD}$			0.4	V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

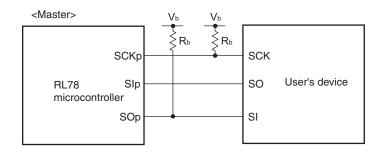
Items	Symbol	Conditio	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ilih1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EV _{DD}	VI = EV _{DD}			1	μA
	ILIH2	P20, P21, P137, RESET VI = VDD					1	μA
Шн	Ілнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilili	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVss	Vi = EVss			-1	μA
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up	Ruı	VI = EVss	SEGxx po	rt				
resistance			2.4 V ≤ I	$2.4~\text{V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5~\text{V}$		20	100	kΩ
	Ru2		Ports other than above (Except for P60, P61, and P130)		10	20	100	kΩ

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(5/5)

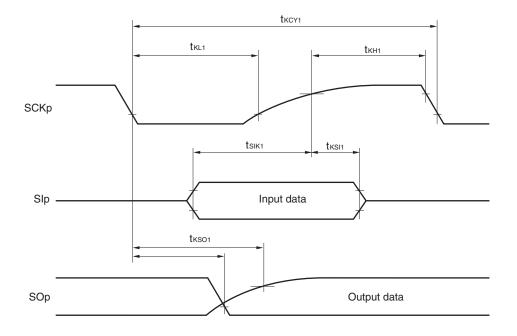
(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

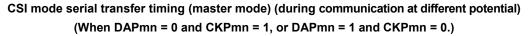
(2/2)

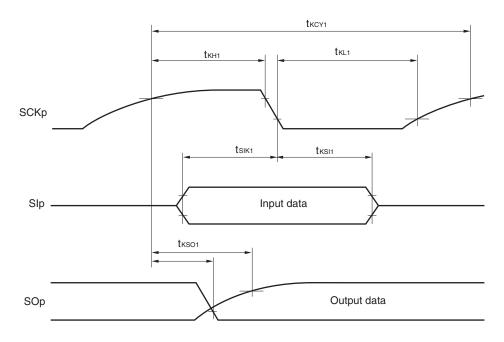

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsiĸ1	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	162		ns
(to SCKp↑) ^{Note 1}		C _b = 30 pF, R _b = 1.4 kΩ			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	354		ns
		C _b = 30 pF, R _b = 2.7 kΩ			
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	958		ns
		C _b = 30 pF, R _b = 5.5 kΩ			
SIp hold time	tksi1	$4.0 \text{ V} \le EV_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	38		ns
(from SCKp↑) ^{Note 1}		C _b = 30 pF, R _b = 1.4 kΩ			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ < 4.0 V, 2.3 V $\le \text{V}_{\text{b}} \le 2.7 \text{ V}$,	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD}}$ < 3.3 V , $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$,	38		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
Delay time from SCKp↓ to	tkso1	$4.0 \ V \le EV_{\text{DD}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V,$		200	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		390	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		966	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
SIp setup time	tsik1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	88		ns
(to SCKp↓) ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ < 4.0 V, 2.3 V \le V _b \le 2.7 V,	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$	220		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
SIp hold time	tksi1	$4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V,$	38		ns
(from SCKp↓) ^{Note 2}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$	38		ns
		C _b = 30 pF, R _b = 2.7 kΩ			
		$2.4~V \leq EV_{\text{DD}} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	38		ns
		C _b = 30 pF, R _b = 5.5 kΩ			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		50	ns
SOp output Note 2		C _b = 30 pF, R _b = 1.4 kΩ			
		$2.7 \text{ V} \leq EV_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq V_{\text{b}} \leq 2.7 \text{ V},$		50	ns
	C	C _b = 30 pF, R _b = 2.7 kΩ			
		$2.4~V \leq EV_{\text{DD}} < 3.3~V,~1.6~V \leq V_{\text{b}} \leq 2.0~V,$		50	ns
		C_b = 30 pF, R_b = 5.5 k Ω			

(Notes, Caution and Remarks are listed on the page after the next page.)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - **2.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

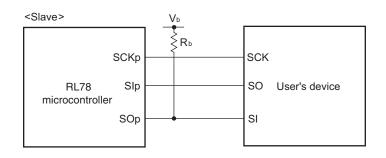

CSI mode connection diagram (during communication at different potential)


- Remarks 1. Rb[Ω]:Communication line (SCKp, SOp) pull-up resistance,


 Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)


(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	0	Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$	20 MHz < fмск ≤ 24 MHz	24/f мск		ns
		$2.7V\!\le\!V_{b}\!\le\!4.0V$	$8 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.7 V \le EV_{DD} < 4.0 V$,	20 MHz < fмск ≤ 24 MHz	32/f мск		ns
		$2.3V\!\le\!V_{b}\!\le\!2.7V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/f мск		ns
			8 MHz < fмск ≤ 16 MHz	24/f мск		ns
			4 MHz < fмск ≤ 8 MHz	16/ f мск		ns
			fмск ≤ 4 MHz	12/f мск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	72/f мск		ns
		$1.6V\!\le\!V_{b}\!\le\!2.0V$	16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			8 MHz < fмск ≤ 16 MHz	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/f мск		ns
			fмск ≤4 MHz	20/f мск		ns
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	V,	tkcy2/2 - 24		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq E V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V \end{array}$		tkcy2/2 - 36		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	V,	tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note2}	tsik2	$\begin{array}{l} 4.0 \ V \leq EV_{DD} < 5.5 \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	V,	1/fмск + 40		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		1/fмск + 40		ns
		$\begin{array}{c} 2.4 \ V \leq EV_{DD} < 3.3 \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	V,	1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2	$\begin{array}{l} 4.0 \; V \leq EV_{DD} < 5.5 \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	V,	1/fмск + 62		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	V,	1/fмск + 62		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$			ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tĸso2	$4.0 V \le EV_{DD} \le 5.5$ $C_b = 30 \text{ pF}, R_b = 1.4$	$V, 2.7 V \le V_b \le 4.0 V,$ 4 kΩ		2/fмск + 240	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0$ $C_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 2.$	$V, 2.3 V \le V_b \le 2.7 V,$ 7 kΩ		2/fмск + 428	ns
		$2.4 V \le EV_{DD} < 3.3$ C _b = 30 pF, R _b = 5.5	V, 1.6 V ≤ V₅ ≤ 2.0 V 5 kΩ		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the page after the next page.)

- Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

Remarks 1. $R_b[\Omega]$:Communication line (SOp) pull-up resistance,

 $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage

- **2.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 - g: PIM and POM number (g = 1)
- 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2) I²C fast mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Co	nditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	kHz
		$f_{\text{CLK}} \geq 3.5 \; MHz$	$2.4~V \le EV_{\text{DD}} \le 5.5~V$	0	400	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	0.6		
Hold time Note 1	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	0.6		
Hold time when SCLA0 = "L"	tLOW	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		1.3		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	1.3		
Hold time when SCLA0 = "H"	thigh $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		V	0.6		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	100		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	100		
Data hold time (transmission)Note 2	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	ν	0	0.9	μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	0	0.9	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	0.6		
Bus-free time	tbur	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	1.3		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	ν.	1.3		1

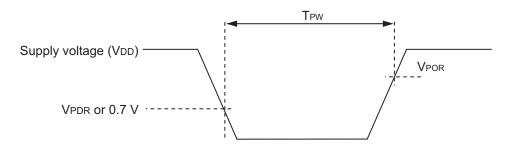
Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

3.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

3.6.3 POR circuit characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	V _{POR} Power supply rise time		1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

(TA = -40 to +105°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pu	Ilse width	t∟w		300			μs
Detection d	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{PDR} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1,	2.64	2.75	2.86	V	
mode	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

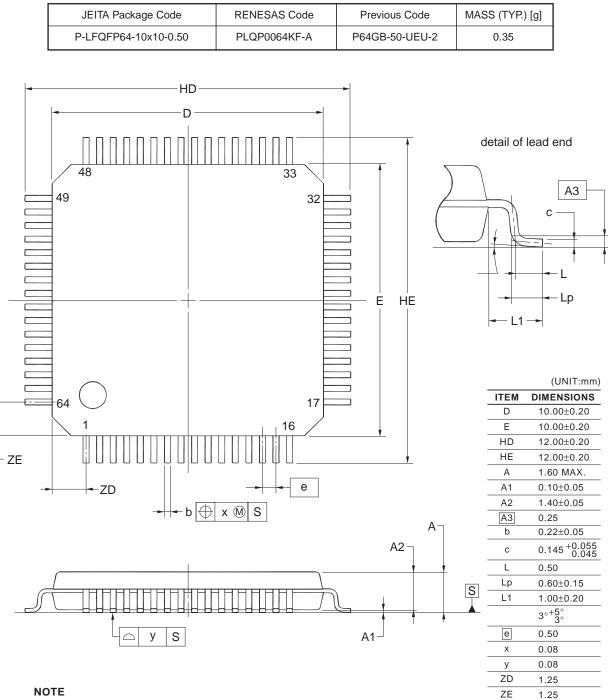
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 31.4 AC Characteristics.

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1 Note 4	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 <i>µ</i> F	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	$3 V_{L1} - 0.12$	3 VL1	3 VL1	V
Quadruply output voltage	VL4 Note 4	C1 to C5 ^{Note 1} =	0.47 μF	4 V _{L1} -0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	500			ms


Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND
- $C1 = C2 = C3 = C4 = C5 = 0.47 \,\mu\text{F}{\pm}30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- **4.** VL4 must be 5.5 V or lower.

R5F10RLAAFB, R5F10RLCAFB R5F10RLAGFB, R5F10RLCGFB

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/L12 Datasheet

			Description					
Rev.	Date	Page	Summary					
0.01	Feb 20, 2012	-	First Edition issued					
0.02	Sep 26, 2012	7, 8	Modification of caution 2 in 1.3.5 64-pin products					
		15	Modification of I/O port in 1.6 Outline of Functions					
		-	Modification of 2. ELECTRICAL SPECIFICATIONS (TARGET)					
		-	Update of package drawings in 3. PACKAGE DRAWINGS					
1.00	Jan 31, 2013	11 to 15	Modification of 1.5 Block Diagram					
		16	Modification of Note 2 in 1.6 Outline of Functions					
		17	Modification of 1.6 Outline of Functions					
		-	Deletion of target in 2. ELECTRICAL SPECIFICATIONS					
		18	Addition of caution 2 to 2. ELECTRICAL SPECIFICATIONS					
		19	Addition of description, note 3, and remark 2 to 2.1 Absolute Maximum Ratings					
		20	Modification of description and addition of note to 2.1 Absolute Maximum Ratings					
		22, 23	Modification of 2.2 Oscillator Characteristics					
		30	Modification of notes 1 to 4 in 2.3.2 Supply current characteristics					
		32	Modification of notes 1, 3 to 6, 8 in 2.3.2 Supply current characteristics					
		34	Modification of notes 7, 9, 11, and addition of notes 8, 12 to 2.3.2 Supply current					
			characteristics					
		36	Addition of description to 2.4 AC Characteristics					
		38, 40 to	Modification of 2.5.1 Serial array unit					
		42, 44 to						
		46, 48 to						
		52, 54, 55						
		57, 58	Modification of 2.5.2 Serial interface IICA					
		62	Modification of 2.6.2 Temperature sensor/internal reference voltage characteristics					
		64	Addition of note and caution in 2.6.5 Supply voltage rise time					
		69	Modification of 2.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics					
		69	Modification of conditions in 2.9 Timing Specs for Switching Flash Memory Programming Modes					
		70	Modification of 2.10 Timing Specifications for Switching Flash Memory					
			Programming Modes					
2.00	Jan 10, 2014	1	Modification of 1.1 Features					
		3	Modification of Figure 1-1					
		4	Modification of part number, note, and caution					
		5 to 10	Deletion of COMEXP pin in 1.3.1 to 1.3.5.					
		11	Modification of description in 1.4 Pin Identification					
		12 to 16	Deletion of COMEXP pin in 1.5.1 to 1.5.5					
		17	Modification of table and note 2 in 1.6 Outline of Functions					
		20	Modification of description in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/3)					
		21	Modification of description and note 2 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (2/3)					
		23	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics					
		23	Modification of table in 2.2.2 On-chip oscillator characteristics					
		24	Modification of table, notes 2 and 3 in 2.3.1 Pin characteristics (1/5)					
		25	Modification of notes 1 and 3 in 2.3.1 Pin characteristics (2/5)					
		30	Modification of notes 1 and 4 in 2.3.2 Supply current characteristics (1/3)					
		31, 32	Modification of table, notes 1, 5, and 6 in 2.3.2 Supply current characteristics (2/3)					
		33, 34	Modification of table, notes 1, 3, 4, and 5 to 10 in 2.3.2 Supply current characteristics (3/3)					

		Description	
Rev.	Date	Page	Summary
2.00	Jan 10, 2014	35	Modification of table in 2.4 AC Characteristics
		36	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		37	Modification of AC Timing Test Points and External System Clock Timing
		39	Modification of AC Timing Test Points
		39	Modification of description, notes 1 and 2 in (1) During communication at same potential (UART mode)
		41, 42	Modification of description, remark 2 in (2) During communication at same potential (CSI mode)
		42, 43	Modification of description in (3) During communication at same potential (CSI mode)
		45	Modification of description, notes 1 and 3, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		46, 48	Modification of description, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		49, 50	Modification of table, and note 1, caution, and remark 3 in (5) Communication at different potential (2.5 V, 3 V) (CSI mode)
		51	Modification of table and note in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (1/3)
		52	Modification of table and notes 1 to 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (2/3)
		53, 54	Modification of table, note 3, and remark 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (3/3)
		56	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)
		57	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)
		59, 60	Addition of (1) I ² C standard mode
		61	Addition of (2) I ² C fast mode
		62	Addition of (3) I ² C fast mode plus
		63	Addition of table in 2.6.1 A/D converter characteristics
		63, 64	Modification of description and notes 3 to 5 in 2.6.1 (1)
		65	Modification of description, notes 3 and 4 in 2.6.1 (2)
		66	Modification of description, notes 3 and 4 in 2.6.1 (3)
		67	Modification of description, notes 3 and 4 in 2.6.1 (4)
		67	Modification of the table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		68	Modification of the table and note in 2.6.3 POR circuit characteristics
		70	Modification of the table of LVD Detection Voltage of Interrupt & Reset Mode
		70	Modification from V _{DD} rise slope to Power supply voltage rising slope in 2.6.5 Supply voltage rise time
		75	Modification of description in 2.10 Dedicated Flash Memory Programmer Communication (UART)
		76	Modification of the figure in 2.11 Timing Specifications for Switching Flash Memory Programming Modes
		77 to 126	Addition of products for industrial applications (G: T _A = -40 to +105°C)
		127 to 133	Addition of product names for industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)
2.10	Sep 30, 2016	5	Modification of pin configuration in 1.3.1 32-pin products
		6	Modification of pin configuration in 1.3.2 44-pin products
		7	Modification of pin configuration in 1.3.3 48-pin products
		8	Modification of pin configuration in 1.3.4 52-pin products
		9, 10 17	Modification of pin configuration in 1.3.5 64-pin products
		17 74	Modification of description of main system clock in 1.6 Outline of Functions
		74	Modification of title of 2.8 RAM Data Retention Characteristics, Note, and figure Modification of table of 2.9 Flash Memory Programming Characteristics
		123	Modification of table of 2.9 Flash Memory Programming Characteristics Modification of title of 3.8 RAM Data Retention Characteristics, Note, and figure
		123	Modification of table of 3.9 Flash Memory Programming Characteristics and addition of Note 4
		131	Modification of 4.5 64-pin Products
		151	