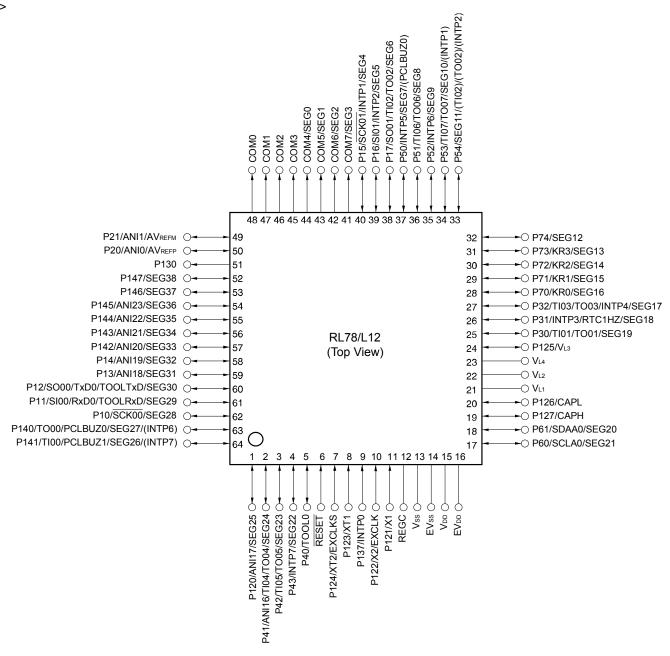


Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                        |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LCD, LVD, POR, PWM, WDT                                                    |
| Number of I/O              | 47                                                                              |
| Program Memory Size        | 16KB (16K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 2K x 8                                                                          |
| RAM Size                   | 1K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 10x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 64-LQFP                                                                         |
| Supplier Device Package    | 64-LFQFP (10x10)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rlagfb-v0 |

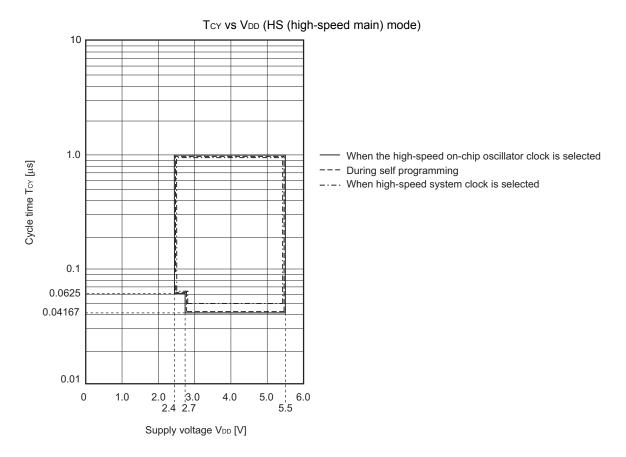
RL78/L12 1. OUTLINE

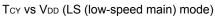
- 64-pin plastic LQFP (fine pitch) (10 × 10)
- 64-pin plastic LQFP (12 × 12)

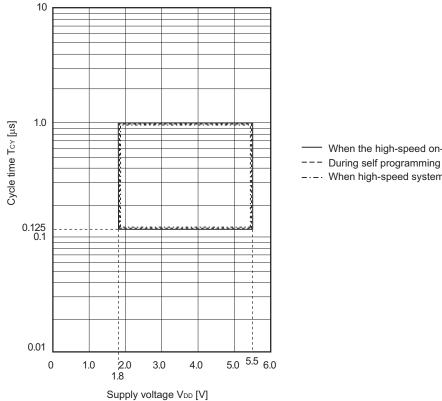
<R>



- Cautions 1. Make EVss pin the same potential as Vss pin.
  - 2. Make VDD pin the same potential as EVDD pin.
  - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
  - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V<sub>DD</sub> and EV<sub>DD</sub> pins and connect the V<sub>SS</sub> and EV<sub>SS</sub> pins to separate ground lines.
  - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).


# (Ta = -40 to +85°C, 1.6 V $\leq$ EV<sub>DD</sub> = V<sub>DD</sub> $\leq$ 5.5 V, Vss = EVss = 0 V)


(3/3)


| chip oscillator operating current  RTC operating current  12-bit interval timer current  Watchdog timer operating current  A/D converter operating current                | Symbol  IFIL Note 1  IRTC Notes 1, 2, 3  IIT Notes 1, 2, 4  IWDT Notes 1, 2, 5  IADC Notes 1, 6 | fmain is stopped  fil = 15 kHz  When conversion | Conditions                                                                          |                                                                                            | MIN. | 0.20<br>0.08 | MAX.  | Unit<br>μA<br>μA |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|--------------|-------|------------------|
| chip oscillator operating current  RTC operating current  12-bit interval timer current  Watchdog timer operating current  A/D converter operating current  A/D converter | IRTC Notes 1, 2, 3  IIT Notes 1, 2, 4  IWDT Notes 1, 2, 5                                       | fiL = 15 kHz                                    |                                                                                     |                                                                                            |      | 0.08         |       | μΑ               |
| current  12-bit interval timer current  Watchdog timer operating current  A/D converter operating current  A/D converter                                                  | Notes 1, 2, 3  IIT  Notes 1, 2, 4  IWDT  Notes 1, 2, 5                                          | fiL = 15 kHz                                    |                                                                                     |                                                                                            |      |              |       | •                |
| timer current  Watchdog timer operating current  A/D converter operating current  A/D converter                                                                           | Notes 1, 2, 4  I <sub>WDT</sub> Notes 1, 2, 5                                                   |                                                 |                                                                                     |                                                                                            |      | 0.08         |       |                  |
| operating current  A/D converter operating current  A/D converter                                                                                                         | Notes 1, 2, 5                                                                                   |                                                 |                                                                                     | ∟ = 15 kHz                                                                                 |      |              |       |                  |
| operating current  A/D converter                                                                                                                                          |                                                                                                 | When conversion                                 |                                                                                     |                                                                                            | 0.24 |              | μΑ    |                  |
| current  A/D converter                                                                                                                                                    | Notes 1, 6                                                                                      |                                                 | Normal mode, A                                                                      |                                                                                            | 1.3  | 1.7          | mA    |                  |
|                                                                                                                                                                           |                                                                                                 | at maximum speed                                | d Low voltage mode, AV <sub>REFP</sub> = V <sub>DD</sub> = 3.0 V                    |                                                                                            |      | 0.5          | 0.7   | mA               |
| voltage current                                                                                                                                                           | ADREF Note 1                                                                                    |                                                 |                                                                                     |                                                                                            |      | 75.0         |       | μΑ               |
| Temperature sensor operating current                                                                                                                                      | I <sub>TMPS</sub> Note 1                                                                        |                                                 |                                                                                     |                                                                                            |      | 75.0         |       | μΑ               |
| LVD operating current                                                                                                                                                     | ILVD<br>Notes 1, 7                                                                              |                                                 |                                                                                     |                                                                                            |      | 0.08         |       | μΑ               |
| Self-<br>programming<br>operating<br>current                                                                                                                              | FSP<br>Notes 1, 9                                                                               |                                                 |                                                                                     |                                                                                            |      | 2.50         | 12.20 | mA               |
| BGO operating current                                                                                                                                                     | BGO<br>Notes 1, 8                                                                               |                                                 |                                                                                     |                                                                                            |      | 2.00         | 12.20 | mA               |
| LCD operating current                                                                                                                                                     | ILCD1<br>Notes 11, 12                                                                           | External resistance                             | division method                                                                     | $V_{DD} = EV_{DD} = 5.0 \text{ V}$ $V_{L4} = 5.0 \text{ V}$                                |      | 0.04         | 0.20  | μΑ               |
|                                                                                                                                                                           | ILCD2 Note 11                                                                                   | Internal voltage boo                            | osting method                                                                       | $V_{DD} = EV_{DD} = 5.0 \text{ V}$ $V_{L4} = 5.1 \text{ V (VLCD} = 12\text{H)}$            |      | 1.12         | 3.70  | μΑ               |
|                                                                                                                                                                           |                                                                                                 |                                                 |                                                                                     | $V_{DD} = EV_{DD} = 3.0 \text{ V}$<br>$V_{L4} = 3.0 \text{ V} \text{ (VLCD} = 04\text{H)}$ |      | 0.63         | 2.20  | μΑ               |
|                                                                                                                                                                           | ILCD3 Note 11                                                                                   | Capacitor split meth                            |                                                                                     |                                                                                            |      | 0.12         | 0.50  | μΑ               |
| SNOOZE                                                                                                                                                                    | I <sub>SNOZ</sub> Note 1                                                                        | ADC operation                                   |                                                                                     |                                                                                            |      | 0.50         | 0.60  | mA               |
| operating<br>current                                                                                                                                                      |                                                                                                 |                                                 | The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V |                                                                                            |      | 1.20         | 1.44  | mA               |
|                                                                                                                                                                           |                                                                                                 | CSI/UART operatio                               |                                                                                     |                                                                                            |      | 0.70         | 0.84  | mA               |

(Notes and Remarks are listed on the next page.)

## Minimum Instruction Execution Time during Main System Clock Operation







- When the high-speed on-chip oscillator clock is selected
- --- When high-speed system clock is selected

# (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = V_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(2/2)

| Parameter     | Symbol                                                                                                                      |  | Conditions |                                                                                                                       | , ,  | h-speed<br>Mode        |      | v-speed<br>Mode        | ,    | /-voltage<br>Mode      | Unit |
|---------------|-----------------------------------------------------------------------------------------------------------------------------|--|------------|-----------------------------------------------------------------------------------------------------------------------|------|------------------------|------|------------------------|------|------------------------|------|
|               |                                                                                                                             |  |            |                                                                                                                       | MIN. | MAX.                   | MIN. | MAX.                   | MIN. | MAX.                   |      |
| Transfer rate | r rate Transmissio $4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $n \qquad 2.7 \text{ V} \le V_b \le 4.0 \text{ V}$ |  |            | Note 1                                                                                                                |      | Note 1                 |      | Note 1                 | bps  |                        |      |
|               |                                                                                                                             |  |            | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 1.4 k $\Omega$ , $V_b$ = 2.7 V                  |      | 2.8 <sup>Note 2</sup>  |      | 2.8 <sup>Note 2</sup>  |      | 2.8 <sup>Note 2</sup>  | Mbps |
|               |                                                                                                                             |  |            | EV <sub>DD</sub> < 4.0 V,<br>/ <sub>b</sub> ≤ 2.7 V                                                                   |      | Note 3                 |      | Note 3                 |      | Note 3                 | bps  |
|               |                                                                                                                             |  |            | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ $V_b = 2.3 \text{ V}$ |      | 1.2 <sup>Note 4</sup>  |      | 1.2 <sup>Note 4</sup>  |      | 1.2 <sup>Note 4</sup>  | Mbps |
|               |                                                                                                                             |  |            | EV <sub>DD</sub> < 3.3 V,<br>/ <sub>b</sub> ≤ 2.0 V                                                                   |      | Note 6                 |      | Note 6                 |      | Note 6                 | bps  |
|               |                                                                                                                             |  |            | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 5.5 k $\Omega$ $V_b$ = 1.6 V                    |      | 0.43 <sup>Note 7</sup> |      | 0.43 <sup>Note 7</sup> |      | 0.43 <sup>Note 7</sup> | Mbps |
|               |                                                                                                                             |  |            | EV <sub>DD</sub> < 3.3 V,<br>/b ≤ 2.0 V                                                                               |      |                        |      | Notes<br>5, 6          |      | Notes<br>5, 6          | bps  |
|               |                                                                                                                             |  |            | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 5.5 k $\Omega$ , $V_b$ = 1.6 V                  |      |                        |      | 0.43 <sup>Note 7</sup> |      | 0.43 <sup>Note 7</sup> | Mbps |

**Notes 1.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  EV<sub>DD</sub>  $\leq$  5.5 V and 2.7 V  $\leq$  V<sub>b</sub>  $\leq$  4.0 V

$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times ln\ (1-\frac{2.2}{V_b})\} \times 3} \ [bps] \end{aligned}$$

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- **2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
  - 2. The maximum value (MAX.) of  $t_{HD:DAT}$  is during normal transfer and a wait state is inserted in the  $\overline{ACK}$  (acknowledge) timing.

**Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode:  $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ 

## (2) I<sup>2</sup>C fast mode

# (Ta = -40 to +85°C, 1.6 V $\leq$ EV<sub>DD</sub> = V<sub>DD</sub> $\leq$ 5.5 V, Vss = EVss = 0 V)

| Parameter                                       | Symbol        | Conditions                                               |                                  | speed | high-<br>main)<br>ode | `    | -speed<br>Mode | voltage main)<br>Mode |      | Unit |
|-------------------------------------------------|---------------|----------------------------------------------------------|----------------------------------|-------|-----------------------|------|----------------|-----------------------|------|------|
|                                                 |               |                                                          |                                  | MIN.  | MAX.                  | MIN. | MIN.           | MAX.                  | MIN. |      |
| SCLA0 clock frequency                           | fscL          | Fast mode:                                               | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V | 0     | 400                   | 0    | 400            | 0                     | 400  | kHz  |
|                                                 |               | fcLk ≥ 3.5                                               | 2.4 V ≤ L V DD ≤ 3.3 V           |       | 400                   | 0    | 400            | 0                     | 400  |      |
|                                                 |               | MHz $1.8 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$ |                                  |       |                       | 0    | 400            | 0                     | 400  |      |
| Setup time of restart condition                 | tsu:sta       | 2.7 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 0.6   |                       | 0.6  |                | 0.6                   |      | μs   |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 0.6   |                       | 0.6  |                | 0.6                   |      |      |
|                                                 |               | 1.8 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          |       |                       | 0.6  |                | 0.6                   |      |      |
| Hold time Note 1                                | thd:sta       | 2.7 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 0.6   |                       | 0.6  |                | 0.6                   |      | μs   |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 0.6   |                       | 0.6  |                | 0.6                   |      |      |
|                                                 |               | 1.8 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          |       |                       | 0.6  |                | 0.6                   |      |      |
| Hold time when SCLA0 = "L"                      | tLOW          | 2.7 V ≤ EV <sub>DD</sub>                                 | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V |       |                       | 1.3  |                | 1.3                   |      | μs   |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub> ≤ 5.5 V                         |                                  | 1.3   |                       | 1.3  |                | 1.3                   |      |      |
|                                                 |               | 1.8 V ≤ EV <sub>DD</sub> ≤ 5.5 V                         |                                  |       |                       | 1.3  |                | 1.3                   |      |      |
| Hold time when SCLA0 = "H"                      | <b>t</b> HIGH | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V                         |                                  | 0.6   |                       | 0.6  |                | 0.6                   |      | μs   |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 0.6   |                       | 0.6  |                | 0.6                   |      |      |
|                                                 |               | 1.8 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          |       |                       | 0.6  |                | 0.6                   |      |      |
| Data setup time (reception)                     | tsu:dat       | 2.7 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 100   |                       | 100  |                | 100                   |      | ns   |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 100   |                       | 100  |                | 100                   |      |      |
|                                                 |               | 1.8 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          |       |                       | 100  |                | 100                   |      |      |
| Data hold time (transmission) <sup>Note 2</sup> | thd:dat       | 2.7 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 0     | 0.9                   | 0    | 0.9            | 0                     | 0.9  | μs   |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 0     | 0.9                   | 0    | 0.9            | 0                     | 0.9  |      |
|                                                 |               | 1.8 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          |       |                       | 0    | 0.9            | 0                     | 0.9  |      |
| Setup time of stop condition                    | tsu:sto       | 2.7 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 0.6   |                       | 0.6  |                | 0.6                   |      | μs   |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub>                                 | 2.4 V ≤ EV <sub>DD</sub> ≤ 5.5 V |       |                       | 0.6  |                | 0.6                   |      |      |
|                                                 |               | 1.8 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          |       |                       | 0.6  |                | 0.6                   |      |      |
| Bus-free time                                   | <b>t</b> BUF  | 2.7 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 1.3   |                       | 1.3  |                | 1.3                   |      | μs   |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          | 1.3   |                       | 1.3  |                | 1.3                   |      |      |
|                                                 |               | 1.8 V ≤ EV <sub>DD</sub>                                 | ≤ 5.5 V                          |       |                       | 1.3  |                | 1.3                   |      |      |

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

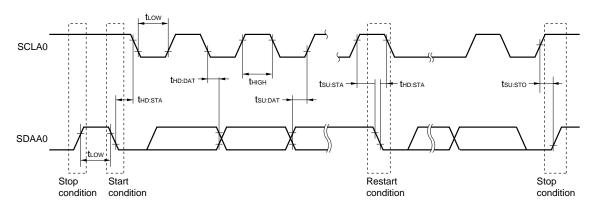
**Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode:  $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ 

#### (3) I<sup>2</sup>C fast mode plus

# (TA = -40 to $+85^{\circ}$ C, 1.6 V $\leq$ EV<sub>DD</sub> = V<sub>DD</sub> $\leq$ 5.5 V, Vss = EVss = 0 V)

| Parameter                                          | Symbol           | Conditions                                                                                 |      | h-speed<br>Mode | LS (low<br>main) |      | `    | -voltage<br>Mode | Unit |
|----------------------------------------------------|------------------|--------------------------------------------------------------------------------------------|------|-----------------|------------------|------|------|------------------|------|
|                                                    |                  |                                                                                            | MIN. | MAX.            | MIN.             | MAX. | MIN. | MAX.             |      |
| SCLA0 clock frequency                              | fscL             | Fast mode plus: $f_{CLK} \ge 10 \text{ MHz}$ $2.7 \text{ V} \le EV_{DD} \le 5.5 \text{ V}$ | 0    | 1000            | _                |      | _    |                  | kHz  |
| Setup time of restart condition                    | tsu:sta          | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V                                                           | 0.26 |                 | _                |      | _    | _                | μs   |
| Hold time <sup>Note 1</sup>                        | thd:STA          | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V                                                           | 0.26 |                 | _                |      | _    |                  | μS   |
| Hold time when SCLA0 = "L"                         | t <sub>LOW</sub> | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V                                                           | 0.5  |                 | _                |      | _    |                  | μs   |
| Hold time when SCLA0 = "H"                         | <b>t</b> HIGH    | $2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$                                       | 0.26 |                 | _                |      | _    |                  | μs   |
| Data setup time (reception)                        | tsu:dat          | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V                                                           | 50   |                 | _                | -    | _    | _                | μs   |
| Data hold time<br>(transmission) <sup>Note 2</sup> | thd:dat          | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V                                                           | 0    | 0.45            | _                | -    | _    | _                | μs   |
| Setup time of stop condition                       | tsu:sto          | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V                                                           | 0.26 |                 | _                | -    | _    | _                | μs   |
| Bus-free time                                      | <b>t</b> BUF     | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V                                                           | 0.5  |                 |                  | -    | _    | _                | μS   |


- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
  - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

**Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus:  $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ 

#### **IICA** serial transfer timing



## 2.7.2 Internal voltage boosting method

#### (1) 1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Parameter                                 | Symbol          | Cond                         | itions          | MIN.                        | TYP.  | MAX.              | Unit |
|-------------------------------------------|-----------------|------------------------------|-----------------|-----------------------------|-------|-------------------|------|
| LCD output voltage variation range        | V <sub>L1</sub> | C1 to C4 <sup>Note 1</sup>   | VLCD = 04H      | 0.90                        | 1.00  | 1.08              | V    |
|                                           |                 | = 0.47 μF                    | VLCD = 05H      | 0.95                        | 1.05  | 1.13              | V    |
|                                           |                 |                              | VLCD = 06H      | 1.00                        | 1.10  | 1.18              | V    |
|                                           |                 |                              | VLCD = 07H      | 1.05                        | 1.15  | 1.23              | V    |
|                                           |                 |                              | VLCD = 08H      | 1.10                        | 1.20  | 1.28              | V    |
|                                           |                 |                              | VLCD = 09H      | 1.15                        | 1.25  | 1.33              | V    |
|                                           |                 |                              | VLCD = 0AH      | 1.20                        | 1.30  | 1.38              | V    |
|                                           |                 |                              | VLCD = 0BH      | 1.25                        | 1.35  | 1.43              | V    |
|                                           |                 |                              | VLCD = 0CH      | 1.30                        | 1.40  | 1.48              | V    |
|                                           |                 |                              | VLCD = 0DH      | 1.35                        | 1.45  | 1.53              | V    |
|                                           |                 |                              | VLCD = 0EH      | 1.40                        | 1.50  | 1.58              | V    |
|                                           |                 |                              | VLCD = 0FH      | 1.45                        | 1.55  | 1.63              | V    |
|                                           |                 |                              | VLCD = 10H      | 1.50                        | 1.60  | 1.68              | V    |
|                                           |                 |                              | VLCD = 11H      | 1.55                        | 1.65  | 1.73              | V    |
|                                           |                 |                              | VLCD = 12H      | 1.60                        | 1.70  | 1.78              | V    |
|                                           |                 |                              | VLCD = 13H      | 1.65                        | 1.75  | 1.83              | V    |
| Doubler output voltage                    | V <sub>L2</sub> | C1 to C4 <sup>Note 1</sup> = | 0.47 <i>μ</i> F | 2 V <sub>L1</sub><br>- 0.1  | 2 VL1 | 2 V <sub>L1</sub> | V    |
| Tripler output voltage                    | V <sub>L4</sub> | C1 to C4 <sup>Note 1</sup> = | 0.47 <i>μ</i> F | 3 V <sub>L1</sub><br>- 0.15 | 3 VL1 | 3 V <sub>L1</sub> | V    |
| Reference voltage setup time Note 2       | tvwait1         |                              |                 | 5                           |       |                   | ms   |
| Voltage boost wait time <sup>Note 3</sup> | tvwait2         | C1 to C4 <sup>Note 1</sup> = | 0.47 μF         | 500                         |       |                   | ms   |

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V<sub>L1</sub> and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between V<sub>L4</sub> and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

## 3.1 Absolute Maximum Ratings

#### Absolute Maximum Ratings (TA = 25°C)

(1/3)

| Parameter              | Symbols          | Conditions                                                   | Ratings                                                                                             | Unit     |
|------------------------|------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------|
| Supply voltage         | V <sub>DD</sub>  | V <sub>DD</sub> = EV <sub>DD</sub>                           | -0.5 to +6.5                                                                                        | V        |
|                        | EV <sub>DD</sub> | V <sub>DD</sub> = EV <sub>DD</sub>                           | -0.5 to +6.5                                                                                        | V        |
|                        | EVss             |                                                              | -0.5 to +0.3                                                                                        | V        |
| REGC pin input voltage | VIREGC           | REGC                                                         | $-0.3 \text{ to } +2.8$ and $-0.3 \text{ to } V_{DD} + 0.3^{\text{Note 1}}$                         | ٧        |
| Input voltage          | V <sub>I1</sub>  | P10 to P17, P30 to P32, P40 to P43,                          | -0.3 to EV <sub>DD</sub> + 0.3                                                                      | ٧        |
|                        |                  | P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147     | and –0.3 to V <sub>DD</sub> + 0.3 <sup>Note 2</sup>                                                 |          |
|                        | V <sub>I2</sub>  | P60, P61 (N-ch open-drain)                                   | -0.3 to EV <sub>DD</sub> + 0.3                                                                      | ٧        |
|                        |                  |                                                              | and $-0.3$ to $V_{DD} + 0.3^{Note 2}$                                                               |          |
|                        | V <sub>I3</sub>  | P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET           | -0.3 to V <sub>DD</sub> + 0.3 <sup>Note 2</sup>                                                     | <b>V</b> |
| Output voltage         | V <sub>01</sub>  | P10 to P17, P30 to P32, P40 to P43, P50 to P54,              | -0.3 to EV <sub>DD</sub> + 0.3                                                                      | V        |
|                        |                  | P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147 | and -0.3 to V <sub>DD</sub> + 0.3 <sup>Note 2</sup>                                                 |          |
|                        | V <sub>O2</sub>  | P20, P21                                                     | -0.3 to V <sub>DD</sub> + 0.3 Note 2                                                                | ٧        |
| Analog input voltage   | Vai1             | ANI16 to ANI23                                               | -0.3 to EV <sub>DD</sub> + 0.3<br>and $-0.3$ to AV <sub>REF</sub> (+) + $0.3$ <sup>Notes 2, 3</sup> | V        |
|                        | V <sub>Al2</sub> | ANIO, ANI1                                                   | -0.3 to V <sub>DD</sub> + 0.3<br>and $-0.3$ to AV <sub>REF</sub> (+) + $0.3$ <sup>Notes 2, 3</sup>  | V        |

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
  - 2. Must be 6.5 V or lower.
  - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
  - **2.**  $AV_{REF}(+)$ : + side reference voltage of the A/D converter.
  - 3. Vss: Reference voltage

#### Absolute Maximum Ratings (TA = 25°C)

(2/3)

| Parameter   | Symbols           |                                           | Conditions                                | Ratings                                           | Unit |
|-------------|-------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------|------|
| LCD voltage | V <sub>L1</sub>   | V <sub>L1</sub> voltage <sup>Note 1</sup> |                                           | -0.3 to +2.8<br>and -0.3 to V <sub>L4</sub> + 0.3 | V    |
|             | V <sub>L2</sub>   | V <sub>L2</sub> voltage <sup>Note 1</sup> |                                           | -0.3 to V <sub>L4</sub> + 0.3 Note 2              | V    |
|             | V <sub>L3</sub>   | V <sub>L3</sub> voltage <sup>Note 1</sup> |                                           | -0.3 to V <sub>L4</sub> + 0.3 Note 2              | V    |
|             | V <sub>L4</sub>   | V <sub>L4</sub> voltage <sup>Note 1</sup> | V <sub>L4</sub> voltage <sup>Note 1</sup> |                                                   | V    |
|             | V <sub>LCAP</sub> | CAPL, CAPH vol                            | tage <sup>Note 1</sup>                    | $-0.3$ to $V_{L4} + 0.3^{Note 2}$                 | V    |
|             | SEG0 to<br>SEG38, |                                           | External resistance division method       | -0.3 to V <sub>DD</sub> + 0.3 <sup>Note 2</sup>   | V    |
|             |                   |                                           | Capacitor split method                    | -0.3 to V <sub>DD</sub> + 0.3 Note 2              |      |
|             |                   | output voltage                            | Internal voltage boosting method          | -0.3 to V <sub>L4</sub> + 0.3 Note 2              |      |

- Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the V<sub>L1</sub>, V<sub>L2</sub>, V<sub>L3</sub>, and V<sub>L4</sub> pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V<sub>SS</sub> via a capacitor (0.47  $\mu$  F  $\pm$  30%) and connect a capacitor (0.47  $\mu$  F  $\pm$  30%) between the CAPL and CAPH pins.
  - 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

# (Ta = -40 to +105°C, 2.4 V $\leq$ EV<sub>DD</sub> = V<sub>DD</sub> $\leq$ 5.5 V, Vss = EVss = 0 V)

(3/3)

| Parameter                                                | Symbol                           |                      | Conditions                                                                                                  |                                                                                    | MIN. | TYP. | MAX.  | Unit |
|----------------------------------------------------------|----------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------|------|-------|------|
| Low-speed on-<br>chip oscillator<br>operating<br>current | I <sub>FIL</sub> Note 1          |                      |                                                                                                             |                                                                                    |      | 0.20 |       | μΑ   |
| RTC operating current                                    | IRTC<br>Notes 1, 2, 3            | fmain is stopped     |                                                                                                             |                                                                                    |      | 0.08 |       | μΑ   |
| 12-bit interval timer current                            | I <sub>IT</sub><br>Notes 1, 2, 4 |                      |                                                                                                             |                                                                                    |      | 0.08 |       | μΑ   |
| Watchdog timer operating current                         | Notes 1, 2, 5                    | fı∟ = 15 kHz         |                                                                                                             |                                                                                    |      | 0.24 |       | μΑ   |
| A/D converter                                            | IADC                             | When conversion      |                                                                                                             |                                                                                    |      | 1.3  | 1.7   | mA   |
| operating current                                        | Notes 1, 6                       | at maximum speed     | Low voltage mo                                                                                              |                                                                                    | 0.5  | 0.7  | mA    |      |
| A/D converter reference voltage current                  | ladref<br>Note 1                 |                      |                                                                                                             |                                                                                    | 75.0 |      | μΑ    |      |
| Temperature sensor operating current                     | ITMPS Note 1                     |                      |                                                                                                             |                                                                                    |      |      |       | μΑ   |
| LVD operating current                                    | I <sub>LVD</sub>                 |                      |                                                                                                             |                                                                                    |      |      |       | μΑ   |
| Self-<br>programming<br>operating<br>current             | FSP<br>Notes 1, 9                |                      |                                                                                                             |                                                                                    |      | 2.50 | 12.20 | mA   |
| BGO operating current                                    | I <sub>BGO</sub>                 |                      |                                                                                                             |                                                                                    |      | 2.50 | 12.20 | mA   |
| LCD operating current                                    | ILCD1<br>Notes 11, 12            | External resistance  | division method                                                                                             | V <sub>DD</sub> = EV <sub>DD</sub> = 5.0 V<br>V <sub>L4</sub> = 5.0 V              |      | 0.04 | 0.20  | μΑ   |
|                                                          | ILCD2                            | Internal voltage boo | osting method                                                                                               | V <sub>DD</sub> = EV <sub>DD</sub> = 5.0 V<br>V <sub>L4</sub> = 5.1 V (VLCD = 12H) |      | 1.12 | 3.70  | μΑ   |
|                                                          |                                  |                      |                                                                                                             | $V_{DD} = EV_{DD} = 3.0 \text{ V}$                                                 |      | 0.63 | 2.20  | μΑ   |
|                                                          |                                  |                      |                                                                                                             | V <sub>L4</sub> = 3.0 V (VLCD = 04H)                                               |      |      |       |      |
|                                                          | ILCD3 Note 11                    | Capacitor split met  |                                                                                                             |                                                                                    |      | 0.12 | 0.50  | μΑ   |
| SNOOZE                                                   | I <sub>SNOZ</sub> Note 1         | ADC operation        | $V_{L4} = 3.0 \text{ V}$ C operation The mode is performed Note 10                                          |                                                                                    |      | 0.50 | 1.10  | mA   |
| operating                                                | .0102                            |                      | The A/D conversion operations are performed, Low voltage mode, AV <sub>REFP</sub> = V <sub>DD</sub> = 3.0 V |                                                                                    |      | 1.20 | 2.04  | mA   |
| current                                                  |                                  |                      |                                                                                                             |                                                                                    |      | 1.20 | 2.04  | IIIA |
|                                                          |                                  | CSI/UART operation   | on                                                                                                          |                                                                                    |      | 0.70 | 1.54  | mA   |

(Notes and Remarks are listed on the next page.)

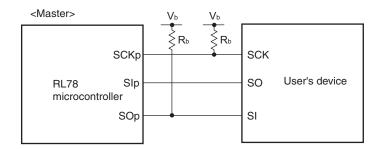
# 3.4 AC Characteristics

# 3.4.1 Basic operation

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ 

| Items                                                | Symbol          |                                                   | Conditions     |                                                     | MIN.      | TYP. | MAX. | Unit |
|------------------------------------------------------|-----------------|---------------------------------------------------|----------------|-----------------------------------------------------|-----------|------|------|------|
| Instruction cycle (minimum                           | Tcy             | Main                                              | HS (high-speed | $2.7  V \le V_{DD} \le 5.5  V$                      | 0.04167   |      | 1    | μS   |
| instruction execution time)                          |                 | system<br>clock (f <sub>MAIN</sub> )<br>operation | main) mode     | 2.4 V ≤ V <sub>DD</sub> < 2.7 V                     | 0.0625    |      | 1    | μs   |
|                                                      |                 | Subsystem of operation                            | lock (fsuв)    | 2.4 V ≤ V <sub>DD</sub> ≤ 5.5 V                     | 28.5      | 30.5 | 31.3 | μs   |
|                                                      |                 | In the self                                       | HS (high-speed | $2.7  \text{V} \le \text{V}_{DD} \le 5.5  \text{V}$ | 0.04167   |      | 1    | μS   |
|                                                      |                 | programming mode                                  | main) mode     | $2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$ | 0.0625    |      | 1    | μS   |
| External system clock frequency                      | fex             | 2.7 V ≤ V <sub>DD</sub> ≤                         | 5.5 V          |                                                     | 1.0       |      | 20.0 | MHz  |
|                                                      |                 | 2.4 V ≤ V <sub>DD</sub> <                         | 2.7 V          |                                                     | 1.0       |      | 16.0 | MHz  |
|                                                      | fexs            |                                                   |                |                                                     | 32        |      | 35   | kHz  |
| External system clock input high-                    | texh, texl      | 2.7 V ≤ V <sub>DD</sub> ≤                         | ≤ 5.5 V        |                                                     | 24        |      |      | ns   |
| level width, low-level width                         |                 | 2.4 V ≤ V <sub>DD</sub> <                         | 2.7 V          |                                                     | 30        |      |      | ns   |
|                                                      | texhs,<br>texhs |                                                   |                |                                                     | 13.7      |      |      | μs   |
| TI00 to TI07 input high-level width, low-level width | tтıн,<br>tтı∟   |                                                   |                |                                                     | 1/fмск+10 |      |      | ns   |
| TO00 to TO07 output frequency                        | fто             | HS (high-spe                                      | ed 4.0 V       | ≤ EV <sub>DD</sub> ≤ 5.5 V                          |           |      | 16   | MHz  |
|                                                      |                 | main) mode                                        | 2.7 V          | ≤ EV <sub>DD</sub> < 4.0 V                          |           |      | 8    | MHz  |
|                                                      |                 |                                                   | 2.4 V          | ≤ EV <sub>DD</sub> < 2.7 V                          |           |      | 4    | MHz  |
| PCLBUZ0, PCLBUZ1 output                              | <b>f</b> PCL    | HS (high-spe                                      | ed 4.0 V       | ≤ EV <sub>DD</sub> ≤ 5.5 V                          |           |      | 16   | MHz  |
| frequency                                            |                 | main) mode                                        | 2.7 V          | ≤ EV <sub>DD</sub> < 4.0 V                          |           |      | 8    | MHz  |
|                                                      |                 |                                                   | 2.4 V          | ≤ EV <sub>DD</sub> < 2.7 V                          |           |      | 4    | MHz  |
| Interrupt input high-level width,                    | tinth,          | INTP0                                             | 2.4 V          | ≤ V <sub>DD</sub> ≤ 5.5 V                           | 1         |      |      | μs   |
| low-level width                                      | <b>t</b> intl   | INTP1 to INT                                      | P7 2.4 V :     | ≤ EV <sub>DD</sub> ≤ 5.5 V                          | 1         |      |      | μs   |
| Key interrupt input low-level width                  | <b>t</b> kr     | KR0 to KR3                                        | 2.4 V          | ≤ EV <sub>DD</sub> ≤ 5.5 V                          | 250       |      |      | ns   |
| RESET low-level width                                | trsL            |                                                   | •              |                                                     | 10        |      |      | μS   |

Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n).

n: Channel number (n = 0 to 7))

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
  - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.**  $R_b[\Omega]$ :Communication line (SCKp, SOp) pull-up resistance,
  - $C_b[F]: Communication \ line \ (SCKp, SOp) \ load \ capacitance, \ V_b[V]: Communication \ line \ voltage$
  - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
  - 3. fmck: Serial array unit operation clock frequency
    (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

## (2) I<sup>2</sup>C fast mode

# (Ta = -40 to +105°C, 2.4 V $\leq$ EV<sub>DD</sub> = V<sub>DD</sub> $\leq$ 5.5 V, Vss = EVss = 0 V)

| Parameter                                       | Symbol        | C                                           | onditions                                                     | HS (high-spe | ed main) Mode | Unit |  |
|-------------------------------------------------|---------------|---------------------------------------------|---------------------------------------------------------------|--------------|---------------|------|--|
|                                                 |               |                                             |                                                               | MIN.         | MAX.          |      |  |
| SCLA0 clock frequency                           | fscL          | Fast mode:                                  | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ | 0            | 400           | kHz  |  |
|                                                 |               | fclк≥ 3.5 MHz                               | 2.4 V ≤ EV <sub>DD</sub> ≤ 5.5 V                              | 0            | 400           |      |  |
| Setup time of restart condition                 | tsu:sta       | $2.7 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 0.6          |               | μs   |  |
|                                                 |               | $2.4 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 0.6          |               |      |  |
| Hold time Note 1                                | thd:sta       | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.               | 5 V                                                           | 0.6          |               | μs   |  |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub> ≤ 5.               | 5 V                                                           | 0.6          |               |      |  |
| Hold time when SCLA0 = "L"                      | tLOW          | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V            |                                                               | 1.3          |               | μs   |  |
|                                                 |               | $2.4 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 1.3          |               |      |  |
| Hold time when SCLA0 = "H"                      | <b>t</b> HIGH | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V            |                                                               | 0.6          |               | μs   |  |
|                                                 |               | $2.4 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 0.6          |               |      |  |
| Data setup time (reception)                     | tsu:dat       | $2.7 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 100          |               | ns   |  |
|                                                 |               | $2.4 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 100          |               |      |  |
| Data hold time (transmission) <sup>Note 2</sup> | thd:dat       | $2.7 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 0            | 0.9           | μs   |  |
|                                                 |               | $2.4 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 0            | 0.9           |      |  |
| Setup time of stop condition                    | tsu:sto       | $2.7 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 0.6          |               | μs   |  |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub> ≤ 5.               | 5 V                                                           | 0.6          |               | ]    |  |
| Bus-free time                                   | <b>t</b> BUF  | $2.7 \text{ V} \leq \text{EV}_{DD} \leq 5.$ | 5 V                                                           | 1.3          |               | μs   |  |
|                                                 |               | 2.4 V ≤ EV <sub>DD</sub> ≤ 5.5 V            |                                                               | 1.3          |               |      |  |

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
  - 2. The maximum value (MAX.) of  $t_{HD:DAT}$  is during normal transfer and a wait state is inserted in the  $\overline{ACK}$  (acknowledge) timing.

**Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode:  $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ 

## 3.6 Analog Characteristics

#### 3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

| Classification of A/D converte                               |                                            |                                         |                                            |
|--------------------------------------------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------------|
|                                                              |                                            | Reference Voltage                       |                                            |
|                                                              | Reference voltage (+) = AV <sub>REFP</sub> | Reference voltage (+) = V <sub>DD</sub> | Reference voltage (+) = V <sub>BGR</sub>   |
| Input channel                                                | Reference voltage (–) = AVREFM             | Reference voltage (-) = Vss             | Reference voltage (–) = AV <sub>REFM</sub> |
| ANI0, ANI1                                                   | -                                          | Refer to 3.6.1 (3).                     | Refer to 3.6.1 (4).                        |
| ANI16 to ANI23                                               | Refer to 3.6.1 (2).                        |                                         |                                            |
| Internal reference voltage Temperature sensor output voltage | Refer to <b>3.6.1 (1)</b> .                |                                         | -                                          |

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$ 

| Parameter                              | Symbol | Conditions                                                                         |                                                              |                         | TYP.                     | MAX.  | Unit |
|----------------------------------------|--------|------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|--------------------------|-------|------|
| Resolution                             | RES    |                                                                                    |                                                              | 8                       |                          | 10    | bit  |
| Overall error <sup>Note 1</sup>        | AINL   | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> Note 3                   | 2.4 V ≤ AV <sub>REFP</sub> ≤ 5.5 V                           |                         | 1.2                      | ±3.5  | LSB  |
| Conversion time                        | tconv  | 10-bit resolution                                                                  | $3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ | 2.375                   |                          | 39    | μs   |
|                                        |        | Target pin: Internal reference                                                     | $2.7~V \leq V_{DD} \leq 5.5~V$                               | 3.5625                  |                          | 39    | μs   |
|                                        |        | voltage, and temperature<br>sensor output voltage (HS<br>(high-speed main) mode)   | $2.4~V \le V_{DD} \le 5.5~V$                                 | 17                      |                          | 39    | μs   |
| Zero-scale error <sup>Notes 1, 2</sup> | Ezs    | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> Note 3                   | 1.8 V ≤ AV <sub>REFP</sub> ≤ 5.5 V                           |                         |                          | ±0.25 | %FSR |
| Full-scale error <sup>Notes 1, 2</sup> | Ers    | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> Note 3                   | 1.8 V ≤ AV <sub>REFP</sub> ≤ 5.5 V                           |                         |                          | ±0.25 | %FSR |
| Integral linearity error               | ILE    | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> Note 3                   | 1.8 V ≤ AV <sub>REFP</sub> ≤ 5.5 V                           |                         |                          | ±2.5  | LSB  |
| Differential linearity error           | DLE    | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> Note 3                   | 1.8 V ≤ AV <sub>REFP</sub> ≤ 5.5 V                           |                         |                          | ±1.5  | LSB  |
| Analog input voltage                   | Vain   | Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)        |                                                              | V <sub>BGR</sub> Note 4 |                          | V     |      |
|                                        |        | Temperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode) |                                                              |                         | V <sub>TMPS25</sub> Note | 4     | V    |

- **Notes 1.** Excludes quantization error (±1/2 LSB).
  - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
  - 3. When AVREFP < VDD, the MAX. values are as follows.

Overall error: Add  $\pm 1.0$  LSB to the MAX. value when AVREFP = VDD.

Zero-scale error/Full-scale error: Add  $\pm 0.05\%$  FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Integral linearity error/ Differential linearity error: Add  $\pm 0.5$  LSB to the MAX. value when AVREFP = VDD.

4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.



(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

(TA = -40 to +105°C, 2.4 V  $\leq$  EV<sub>DD</sub> = V<sub>DD</sub>  $\leq$  5.5 V, V<sub>SS</sub> = EV<sub>SS</sub> = 0 V, Reference voltage (+) = V<sub>BGR</sub> Note 3, Reference voltage (-) = AV<sub>REFM</sub> Note 4 = 0 V, HS (high-speed main) mode)

| Parameter                              | Symbol | Conditions       |                                                     | MIN. | TYP. | MAX.                    | Unit |
|----------------------------------------|--------|------------------|-----------------------------------------------------|------|------|-------------------------|------|
| Resolution                             | RES    |                  |                                                     |      | 8    |                         | bit  |
| Conversion time                        | tconv  | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$                      | 17   |      | 39                      | μs   |
| Zero-scale error <sup>Notes 1, 2</sup> | Ezs    | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$                      |      |      | ±0.60                   | %FSR |
| Integral linearity error Note 1        | ILE    | 8-bit resolution | $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ |      |      | ±2.0                    | LSB  |
| Differential linearity error Note 1    | DLE    | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$                      |      |      | ±1.0                    | LSB  |
| Analog input voltage                   | Vain   |                  |                                                     | 0    |      | V <sub>BGR</sub> Note 3 | V    |

- **Notes 1.** Excludes quantization error (±1/2 LSB).
  - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
  - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
  - **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add  $\pm 0.35\%$  FSR to the MAX. value when reference voltage (–) = AVREFM.

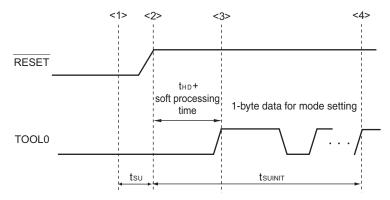
Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (–) = AVREFM.

#### (2) 1/4 bias method

(TA = -40 to +105°C, 2.4 V  $\leq$  VDD  $\leq$  5.5 V, Vss = 0 V)

| Parameter                                 | Symbol                 | Conditions                                |                 | MIN.         | TYP.  | MAX.              | Unit |
|-------------------------------------------|------------------------|-------------------------------------------|-----------------|--------------|-------|-------------------|------|
| LCD output voltage variation range        | V <sub>L1</sub> Note 4 | C1 to C5 <sup>Note 1</sup>                | VLCD = 04H      | 0.90         | 1.00  | 1.08              | V    |
|                                           |                        | = 0.47 μF                                 | VLCD = 05H      | 0.95         | 1.05  | 1.13              | V    |
|                                           |                        |                                           | VLCD = 06H      | 1.00         | 1.10  | 1.18              | V    |
|                                           |                        |                                           | VLCD = 07H      | 1.05         | 1.15  | 1.23              | V    |
|                                           |                        |                                           | VLCD = 08H      | 1.10         | 1.20  | 1.28              | V    |
|                                           |                        |                                           | VLCD = 09H      | 1.15         | 1.25  | 1.33              | V    |
|                                           |                        |                                           | VLCD = 0AH      | 1.20         | 1.30  | 1.38              | V    |
|                                           |                        |                                           | VLCD = 0BH      | 1.25         | 1.35  | 1.43              | V    |
|                                           |                        |                                           | VLCD = 0CH      | 1.30         | 1.40  | 1.48              | V    |
|                                           |                        |                                           | VLCD = 0DH      | 1.35         | 1.45  | 1.53              | V    |
|                                           |                        |                                           | VLCD = 0EH      | 1.40         | 1.50  | 1.58              | V    |
|                                           |                        |                                           | VLCD = 0FH      | 1.45         | 1.55  | 1.63              | V    |
|                                           |                        |                                           | VLCD = 10H      | 1.50         | 1.60  | 1.68              | V    |
|                                           |                        |                                           | VLCD = 11H      | 1.55         | 1.65  | 1.73              | V    |
|                                           |                        |                                           | VLCD = 12H      | 1.60         | 1.70  | 1.78              | V    |
|                                           |                        |                                           | VLCD = 13H      | 1.65         | 1.75  | 1.83              | V    |
| Doubler output voltage                    | V <sub>L2</sub>        | C1 to C5 <sup>Note 1</sup> = 0.47 $\mu$ F |                 | 2 VL1 - 0.08 | 2 VL1 | 2 V <sub>L1</sub> | V    |
| Tripler output voltage                    | VL3                    | C1 to C5 <sup>Note 1</sup> =              | 0.47 μF         | 3 VL1 – 0.12 | 3 VL1 | 3 V <sub>L1</sub> | V    |
| Quadruply output voltage                  | V <sub>L4</sub> Note 4 | C1 to C5 <sup>Note 1</sup> = 0.47 $\mu$ F |                 | 4 VL1 – 0.16 | 4 VL1 | 4 V <sub>L1</sub> | V    |
| Reference voltage setup time Note 2       | tvwait1                |                                           |                 | 5            |       |                   | ms   |
| Voltage boost wait time <sup>Note 3</sup> | tvwait2                | C1 to C5 <sup>Note 1</sup> =              | 0.47 <i>μ</i> F | 500          |       |                   | ms   |


**Notes 1.** This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V<sub>L1</sub> and GND
- C3: A capacitor connected between V<sub>L2</sub> and GND
- C4: A capacitor connected between  $V_{{\mbox{\tiny L3}}}$  and GND
- C5: A capacitor connected between  $V_{\text{\tiny L4}}$  and GND
- C1 = C2 = C3 = C4 = C5 = 0.47  $\mu$ F±30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- 4. V<sub>L4</sub> must be 5.5 V or lower.

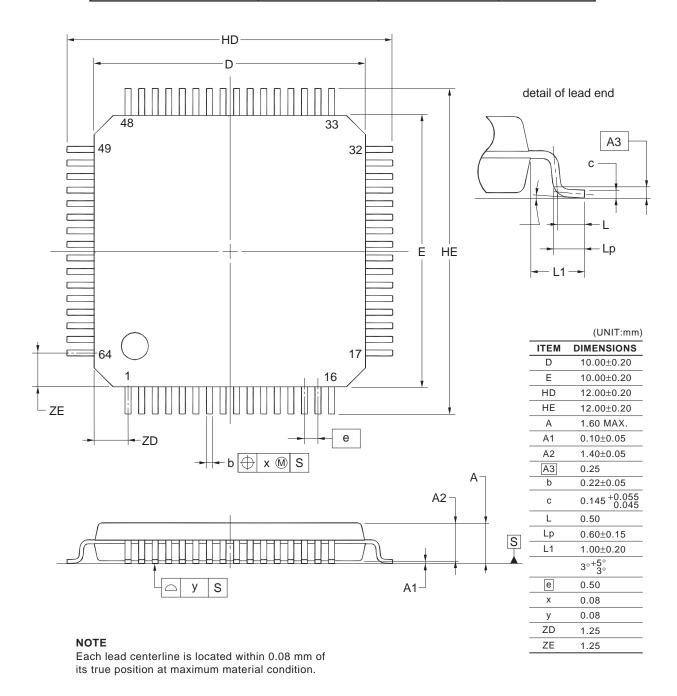
# 3.11 Timing Specifications for Switching Flash Memory Programming Modes

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

| Parameter                                                                                                                                                    | Symbol      | Conditions                                                                | MIN. | TYP. | MAX. | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|------|------|------|------|
| Time to complete the communication for the initial setting after the external reset is released                                                              | tsuinit     | POR and LVD reset must be released before the external reset is released. |      |      | 100  | ms   |
| Time to release the external reset after the TOOL0 pin is set to the low level                                                                               | tsu         | POR and LVD reset must be released before the external reset is released. | 10   |      |      | μs   |
| Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) | <b>t</b> HD | POR and LVD reset must be released before the external reset is released. | 1    |      |      | ms   |



- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.


Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

# R5F10RLAAFB, R5F10RLCAFB R5F10RLAGFB, R5F10RLCGFB

| JEITA Package Code   | RENESAS Code | Previous Code  | MASS (TYP.) [g] |  |
|----------------------|--------------|----------------|-----------------|--|
| P-LFQFP64-10x10-0.50 | PLQP0064KF-A | P64GB-50-UEU-2 | 0.35            |  |



 $\bigcirc$  2012 Renesas Electronics Corporation. All rights reserved.

| The mark " <r>" shows major revised points. The revised points can be easily searched by copying an "<r>" in the PDF file and specifying it in the "Find what:" field.</r></r> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All trademarks and registered trademarks are the property of their respective owners.                                                                                          |
| SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.                                           |
| Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.                                                                               |