

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

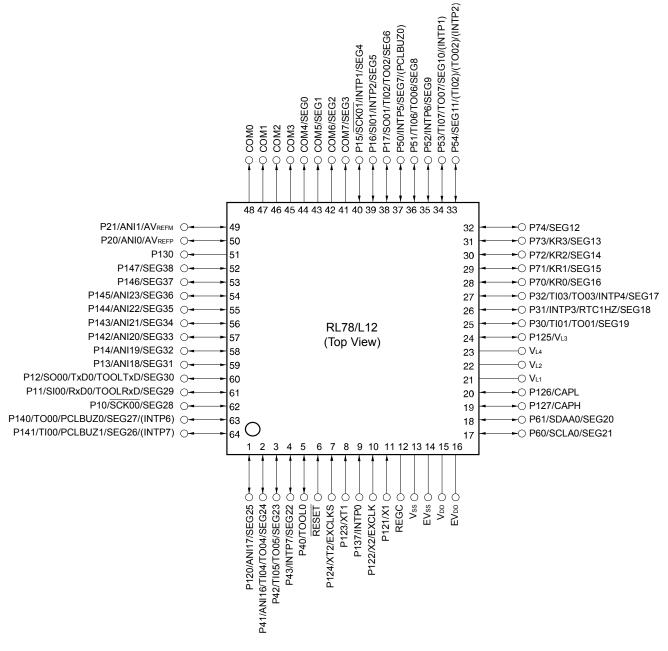
Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	47
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rlcafa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

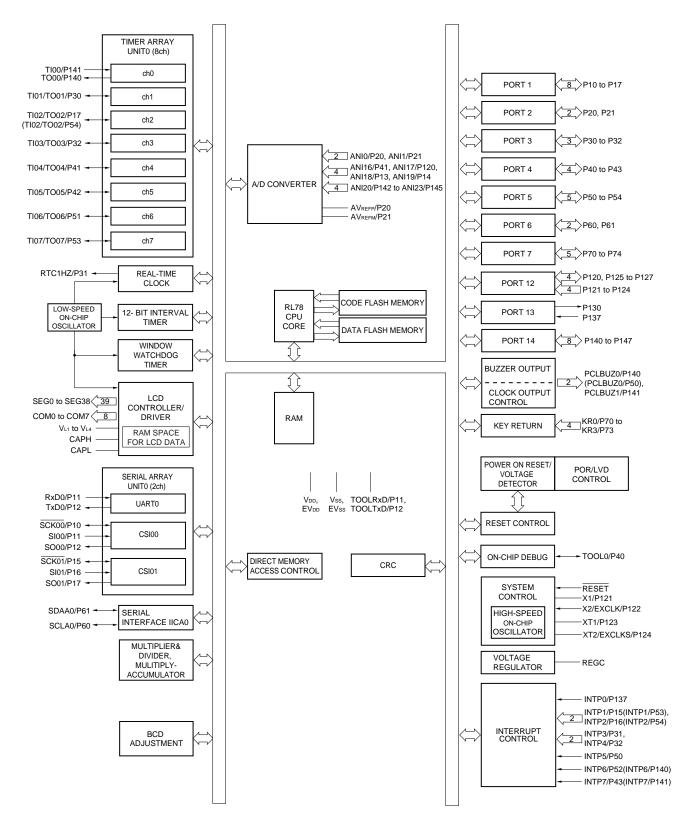
Pin count	Package	Fields of	Part Number
		Application Note	
32 pins	32-pin plastic LQFP (7 \times 7)	А	R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP
		G	R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP
44 pins	44-pin plastic LQFP (10×10)	А	R5F10RF8AFP, R5F10RFAAFP, R5F10RFCAFP
		G	R5F10RF8GFP, R5F10RFAGFP, R5F10RFCGFP
48 pins	48-pin plastic LQFP (fine pitch)	А	R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB
	(7 × 7)	G	R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB
52 pins	52-pin plastic LQFP (10×10)	А	R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA
		G	R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA
64 pins	64-pin plastic WQFN (8×8)	А	R5F10RLAANB, R5F10RLCANB
		G	R5F10RLAGNB, R5F10RLCGNB
	64-pin plastic LQFP (fine pitch)	А	R5F10RLAAFB, R5F10RLCAFB
	(10 × 10)	G	R5F10RLAGFB, R5F10RLCGFB
	64-pin plastic LQFP (12×12)	А	R5F10RLAAFA, R5F10RLCAFA
		G	R5F10RLAGFA, R5F10RLCGFA


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/L12.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

- 64-pin plastic LQFP (fine pitch) (10×10)
- 64-pin plastic LQFP (12 × 12)

<R>



Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

1.5.5 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, Io Iow ^{Note 1}	Iol1		P10 to P17, P30 to P32, F 4, P70 to P74, P120, P125 147				20.0 Note 2	mA
		Per pin for	P60, P61				15.0 Note 2	mA
		Total of P1	0 to P14, P40 to P43,	$4.0~V \le EV_{\text{DD}} \le 5.5~V$			70.0	mA
			0, P140 to P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		(When duty = 70% ^{Note 3})		$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			80.0	mA
			4, P60, P61, P70 to P74,	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
		P125 to P127 (When duty = 70% ^{Note 3})		$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		(,,	$1.6~V \leq EV_{\text{DD}} < 1.8~V$			10.0	mA
			Total of all pins (When duty = 70% ^{Note 3})				150.0	mA
	IOL2	P20, P21 Per pin					0.4	mA
			Total of all pins	$1.6~V \le V_{\text{DD}} \le 5.5~V$			0.8	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

•	,	,	,				•
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EVDD		EVdd	V
	VIH2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$	2.2		EVDD	V
		TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	2.0		EVDD	V	
			TTL input buffer 1.6 V \leq EV _{DD} $<$ 3.3 V	1.50		EVDD	V
	Vінз	P20, P21		0.7V _{DD}		VDD	V
	VIH4	P60, P61	0.7EVDD		EVDD	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0.8V _{DD}		VDD	V
Input voltage, low	VIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD}	V
	VIL2	P10, P11, P15, P16	TTL input buffer 4.0 V \leq EV _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V \leq EV _{DD} $<$ 3.3 V	0		0.32	V
	VIL3	P20, P21	0		0.3Vdd	V	
	VIL4	P60, P61		0		0.3EVDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0		0.2VDD	V

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

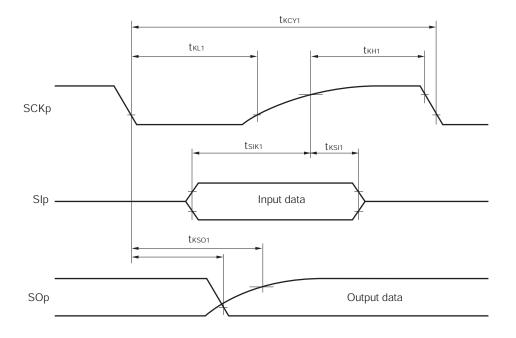
(TA = -40 to $+85^{\circ}$ C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

(1/3)

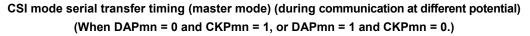
Parameter	Symbol			Conditions		-	MIN.	TYP.	MAX.	Unit
Supply	DD1	Operating HS (high-	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA	
current		mode	speed main)		operation	V _{DD} = 3.0 V		1.5		mA
Note 1			mode ^{Note 5}	Normal operation	V _{DD} = 5.0 V		3.3	5.0	mA	
					operation	V _{DD} = 3.0 V		3.3	5.0	mA
					Normal	V _{DD} = 5.0 V		2.5	3.7	mA
					operation	V _{DD} = 3.0 V		2.5	3.7	mA
			LS (low-speed	file = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
	main) mode ^{Note}		operation	V _{DD} = 2.0 V		1.2	1.8	mA		
		LV (low-	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	mA	
		voltage main) mode ^{Note 5} HS (high- speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.7	mA	
			f _{MX} = 20 MHz ^{Note 2} ,	Normal operation	Square wave input		2.8	4.4	mA	
			V _{DD} = 5.0 V		Resonator connection		3.0	4.6	mA	
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
			V _{DD} = 3.0 V	operation	Resonator connection		3.0	4.6	mA	
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.8	2.6	mA	
			V _{DD} = 5.0 V	operation	Resonator connection		1.8	2.6	mA	
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.8	2.6	mA	
				V _{DD} = 3.0 V	operation	Resonator connection		1.8	2.6	mA
			LS (low-speed	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
			main) mode ^{Note} ₅	V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.5	4.9	μA
			clock operation	⁴ T _A = −40°C	operation	Resonator connection		3.6	5.0	μA
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.6	4.9	μA
				⁴ T _A = +25°C	operation	Resonator connection		3.7	5.0	μA
				fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		3.7	5.5	μA
				₄ T _A = +50°C	operation	Resonator connection		3.8	5.6	μA
			f _{SUB} = 32.768 kHz ^{Note}	Normal operation	Square wave input		3.8	6.3	μA	
			₄ T _A = +70°C		Resonator connection		3.9	6.4	μA	
			fsuв = 32.768 kHz ^{Note}	Normal	Square wave input		4.1	7.7	μA	
				4	operation	Resonator connection		4.2	7.8	μA
				T _A = +85°C						

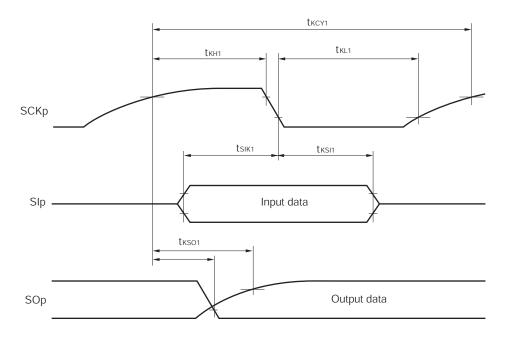
(Notes and Remarks are listed on the next page.)

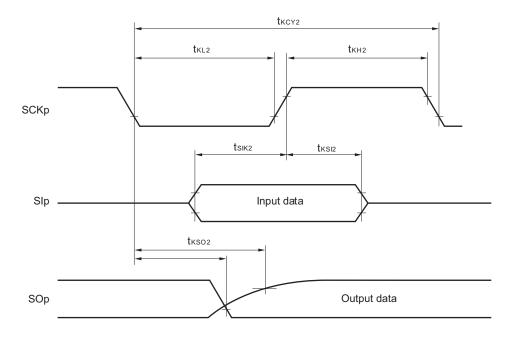
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) ($T_A = -40$ to $+85^{\circ}C$, 1.6 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)


Parameter	Symbol	Cc	onditions	HS (high- speed main) Mode	LS (low- speed main) Mode	LV (low- voltage main) Mode	Unit	Para meter	Symbol	Conditions
Delay time from SCKp↓ to SOp	tkso2	C = 30 pF ^{Note 4}	$4.0~V \leq EV_{DD} \leq 5.5~V$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
output ^{Note 3}			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.4 \text{ V}$				2/fмск + 110		2/fмск + 110	ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$						2/fмск + 220	ns

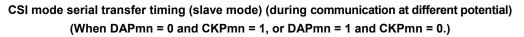
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

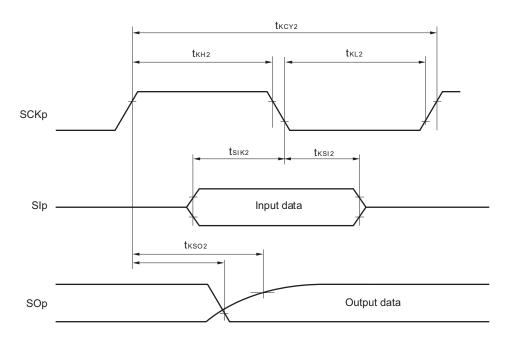

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

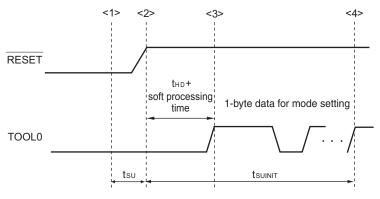
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2,	VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB1	VPOC2,	VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB2		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
-	VLVDB3	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V	
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB4	/DB4	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time


(T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

2.11 Timing Specifications for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after a reset is released during this period.
 - $t_{\text{SU:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

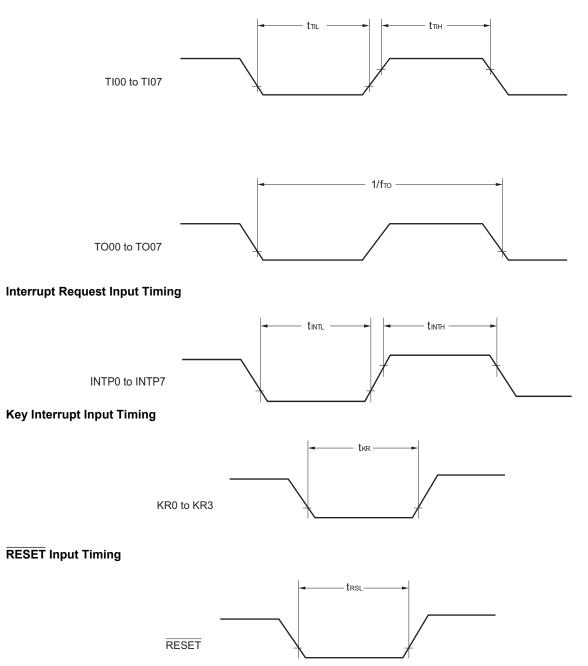
- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
 - For derating with T_A = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

Parameter	Арр	lication
	A: Consumer applications, G: Industrial applications (with TA = -40 to +85°C)	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz	2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$:	$2.4~V \leq V_{\text{DD}} \leq 5.5~V:$
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -20 to +85°C	
	±5.5%@ T _A = -40 to -20°C	
Serial array unit	UART	UART
	CSI00: fcLk/2 (supporting 16 Mbps), fcLk/4	CSI00: fclк/4
	CSI01	CSI01
	Simplified I ² C communication	Simplified I ² C communication
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(14 levels)	(8 levels)
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(14 levels)	(8 levels)

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and G: Industrial applications ($T_A = -40$ to $+85^{\circ}$ C)".

Remark The electrical characteristics of the products G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$) are different from those of the products "A: Consumer applications, and G: Industrial applications (only with $T_A = -40$ to $+85^{\circ}C$)". For details, refer to **3.1** to **3.10**.

(T _A = –40 to +	105°C, 2.	$4 V \le EV_{DD} = V_{DI}$	$4 V \le EV_{DD} = V_{DD} \le 5.5 V, V_{SS} = EV_{SS} = 0 V$						
Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit	
Low-speed on- chip oscillator operating current	_{FIL} Note 1					0.20		μA	
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped				0.08		μA	
12-bit interval timer current	I⊤ Notes 1, 2, 4					0.08		μA	
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊪ = 15 kHz				0.24		μA	
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed		$V_{REFP} = V_{DD} = 5.0 V$ de, AV _{REFP} = V _{DD} = 3.0 V		1.3 0.5	1.7 0.7	mA mA	
A/D converter reference voltage current	IADREF Note 1					75.0		μA	
Temperature sensor operating current	ITMPS Note 1					75.0		μA	
LVD operating current	ILVD Notes 1, 7					0.08		μA	
Self- programming operating current	IFSP Notes 1, 9					2.50	12.20	mA	
BGO operating current	BGO Notes 1, 8					2.50	12.20	mA	
LCD operating current	ILCD1 Notes 11, 12	External resistance	division method	$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA	
	ILCD2 Note 11	Internal voltage boo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.70	μA	
ILCD				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.20	μA	
	ILCD3 Note 11	Capacitor split method $V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$				0.12	0.50	μA	
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	1.10	mA	
operating current			The A/D conversion			1.20	2.04	mA	
		CSI/UART operatio	n			0.70	1.54	mA	


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(3/3)

(Notes and Remarks are listed on the next page.)

TI/TO Timing

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

($T_{A} = -40$ to +105°C.	, 2.4 V \leq EV _{DD} = V _{DD} \leq 5.5 V, V _{SS} = EV _{SS}	= 0 V
	TA = -40 10 + 105 0	, 2.4 • <u>3</u> L • D D <u>3</u> 3.5 • , • 33 - L • 33	-0

(1/2)

Parameter	Symbol		Conditions	HS (high-speed	l main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{\text{KCY1}} \ge 4/f_{\text{CLK}}$	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	600		ns
			C_b = 30 pF, R_b = 1.4 k Ω			
			$2.7 \text{ V} \le \text{EV}_{\text{DD}}$ < 4.0 V, 2.3 V \le V _b \le 2.7 V,	600		ns
			C_b = 30 pF, R_b = 2.7 k Ω			
			$2.4 \ V \le EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \le V_{\text{b}} \le 2.0 \ V,$	2300		ns
			C_b = 30 pF, R_b = 5.5 k Ω			
SCKp high-level width	t KH1	$4.0~V \leq EV_{\text{DD}}$	$\leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V,$	tксү1/2 – 150		ns
		C_b = 30 pF, R_b = 1.4 k Ω				
		$2.7 \ V \leq EV_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		tkcy1/2 - 340		ns
		C _b = 30 pF, R	$R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V,$		tксү1/2 – 916		ns
		C_b = 30 pF, R_b = 5.5 k Ω				
SCKp low-level width	t ĸ∟1	$4.0~V \leq EV_{\text{DD}}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$	tксү1/2 – 24		ns
		C _b = 30 pF, R	$R_b = 1.4 \text{ k}\Omega$			ns ns ns
		$2.7 \ V \leq EV_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		tксү1/2 – 36		ns
		C _b = 30 pF, R	R_b = 2.7 k Ω			
		$2.4~V \leq EV_{\text{DD}}$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V,	tксү1/2 – 100		ns
			R _b = 5.5 kΩ			

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin

products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC

characteristics with TTL input buffer selected.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

3.7 LCD Characteristics

3.7.1 Resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +105^{\circ}C, V_{L4} \text{ (MIN.)} \le V_{DD}^{Note} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

Note Must be 2.4 V or higher.

(2) 1/2 bias method, 1/4 bias method

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) 1/3 bias method

(T_A = -40 to +105°C, V_L4 (MIN.) \leq V_DD \leq 5.5 V, V_SS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +105°C, 2.4 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 V∟1 –0.1	2 VL1	2 V _{L1}	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	: 0.47 <i>μ</i> F	3 V∟1 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

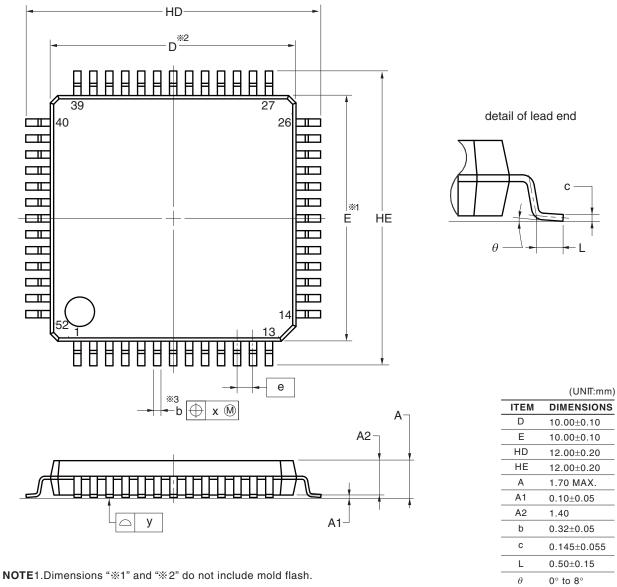
C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\mbox{\tiny L4}}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F \pm 30%


2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

4.4 52-pin Products

R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

2.Dimension "X3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

е

x y 0.65

0.10

