

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

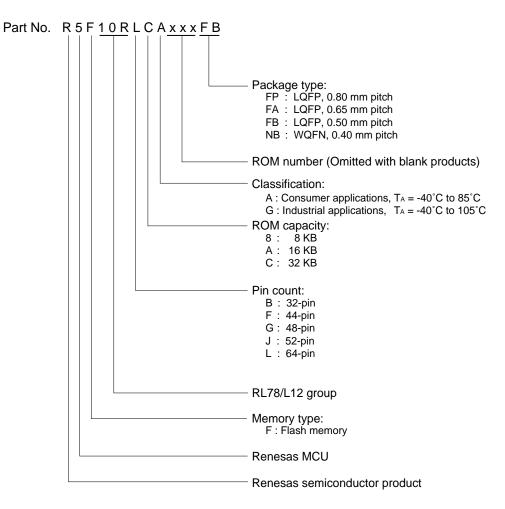
Ξ·ΧΕΙ

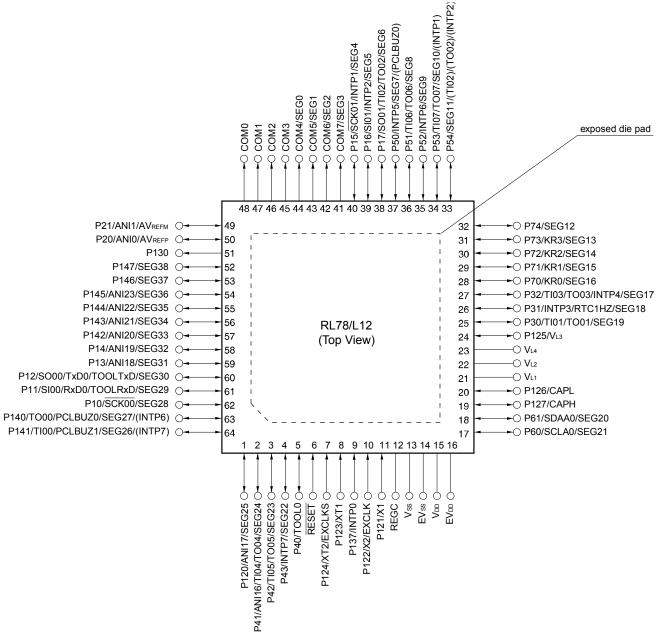
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	47
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rlcafb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers




Figure 1-1 Part Number, Memory Size, and Package of RL78/L12

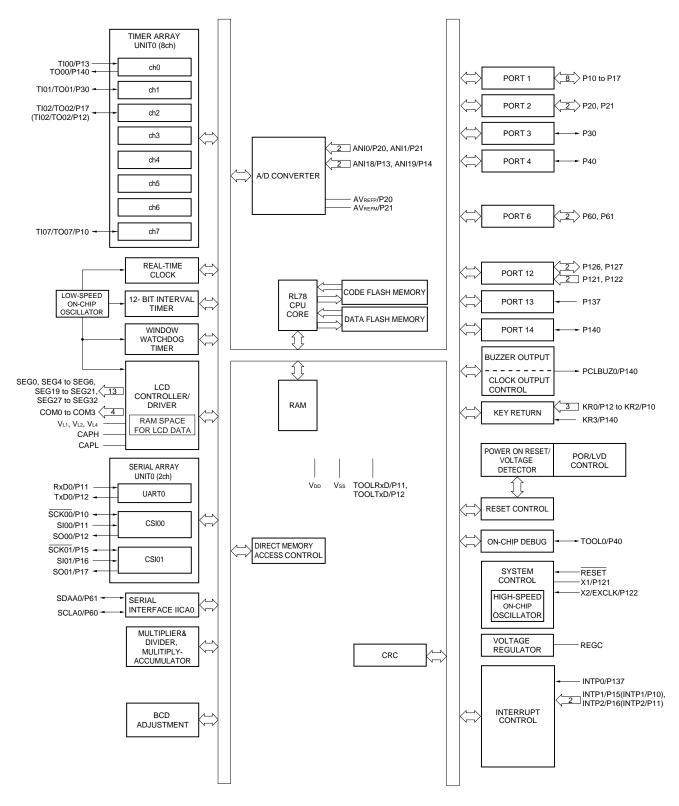
1.3.5 64-pin products

• 64-pin plastic WQFN (8 × 8)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

1.5 Block Diagram

1.5.1 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

	Item	32-pin	44-pin	48-pin	52-pin	64-pin		
		R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx		
Timer	16-bit timer	8 channels	8 channels	(with 1 channel r	emote control out	put function)		
-	Watchdog timer			1 channel				
-	Real-time clock (RTC)			1 channel				
-	12-bit interval timer (IT)			1 channel				
	Timer output	4 channels (PWM outputs: 3 ^{Note 1})	5 channels (PWM outputs: 4 ^{Note 1})	6 channels (PWM outputs: 5 ^{Note 1})	8 channels (PWM	1 outputs: 7 ^{Note 1}		
	RTC output	-	1 • 1 Hz (subsys	tem clock: fsub =	32.768 kHz or)			
Clock output/b	ouzzer output	1			2			
		(Main system • 256 Hz, 512 32.768 kHz	n clock: f _{MAIN} = 20 Hz, 1.024 kHz, 2	MHz operation)	/Hz, 5 MHz, 10 M kHz, 8.192 kHz, 1 1)			
8/10-bit resolu	ution A/D converter	4 channels	7 channels	9 channels	10 channels	10 channels		
Serial interfac		CSI: 2 chann	el/UART (LIN-bu	s supported): 1 c	hannel			
I ² C bus	-	1 channel	1 channel	1 channel	1 channel	1 channel		
Multiplier and accumulator	divider/multiply-	• 32 bits ÷ 32 bi	its = 32 bits (Uns	igned or signed) igned) bits (Unsigned o	r signed)			
DMA controlle	er	2 channels	Γ		1			
Vectored inter	rrupt Internal	23	23	23	23	23		
sources	External	4	6	7	7	9		
Key interrupt				4				
Reset		 Internal reset Internal reset Internal reset Internal reset 	by watchdog tim by power-on-res by voltage detect	set ctor ction execution [№] rror	te 2			
Power-on-res	et circuit	Power-on-rese		V				
	tor	Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)						
Voltage detec					-			
On-chip debu	g function	Provided						
	0	Provided V _{DD} = 1.6 to 5.5	V					

Notes 1. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

 The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/5)

	· · , ·		,	,		-		(110
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	•	P10 to P17, P30 to P32, P40 t P120, P125 to P127, P130, I				-10.0 Note 2	mA
		Total of P10) to P14, P40 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-40.0	mA
		P130, P140		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA
		(when duty	= 70% ^{Note 3})	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-2.0	mA
		Total of P15	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-60.0	mA
		· · · · · · · · · · · · · · · · · · ·	P70 to P74, P125 to P127	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
		(when duty	= 70% ^{Note 3})	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-4.0	mA
		Total of all p (When duty					-100.0	mA
	Іон2	P20, P21	Per pin				-0.1	mA
			Total of all pins	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and $I_{OH} = -40.0$ mA

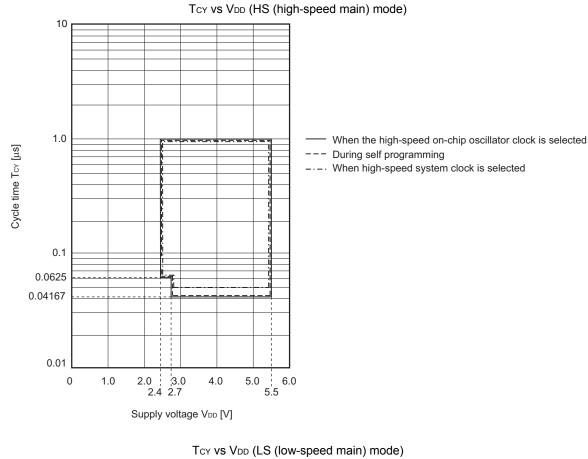
Total output current of pins = $(-40.0 \times 0.7)/(80 \times 0.01) \approx -35.0$ mA

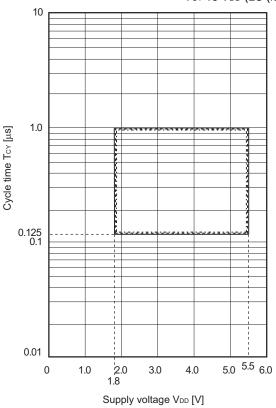
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = –40 to +	85°C, 1.6	$V \leq EV_{DD} = V_{DD}$	≤ 5.5 V, Vss =	EVss = 0 V)				(3/3)
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Low-speed on- chip oscillator operating current	IFIL Note 1							μA
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped				0.08		μA
12-bit interval timer current	IIT Notes 1, 2, 4					0.08		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊩ = 15 kHz				0.24		μA
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed		$V_{REFP} = V_{DD} = 5.0 V$ de, AV_{REFP} = V_{DD} = 3.0 V		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	ADREF Note 1					75.0		μA
Temperature sensor operating current	ITMPS Note 1					75.0		μΑ
LVD operating current	ILVD Notes 1, 7					0.08		μA
Self- programming operating current	IFSP Notes 1, 9					2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8					2.00	12.20	mA
LCD operating current	ILCD1 Notes 11, 12	External resistance	division method	$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.20	μA
	ILCD2 Note 11	Internal voltage boo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.70	μA
				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.20	μA
	ILCD3 Note 11	Capacitor split meth	nod	$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.50	μA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	0.60	mA
operating current			The A/D conversic performed, Low vo = 3.0 V	on operations are oltage mode, AV _{REFP} = V _{DD}		1.20	1.44	mA
		CSI/UART operatio	n			0.70	0.84	mA


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$


(3/3)

(Notes and Remarks are listed on the next page.)

Minimum Instruction Execution Time during Main System Clock Operation

----- When the high-speed on-chip oscillator clock is selected

--- During self programming

---- When high-speed system clock is selected

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	(Conditions	• •	h-speed Mode		v-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$			500 Note 1		1000 Note 1		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					1000 Note 1		ns
SCKp high-/low-level width	tкн1, tк∟1	4.0 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 12		tксү1/2 - 50		tксү1/2 - 50		ns
		2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 - 50		tксү1/2 - 50		ns
		2.4 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 - 50		ns
		1.8 V ≤ E\	$V_{\text{DD}} \leq 5.5 \text{ V}$			tксү1/2 – 50		tксү1/2 - 50		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					tксү1/2 - 100		ns
SIp setup time (to SCKp↑) Note 2	tsik1	2.7 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	44		110		110		ns
Note 2		2.4 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ EV	$I_{DD} \leq 5.5 \text{ V}$			110		110		ns
		1.6 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$					220		ns
SIp hold time (from SCKp [↑])	t KSI1	$2.4 \text{ V} \le \text{EV}$	$I_{\text{DD}} \leq 5.5 \text{ V}$	19		19		19		ns
NOLE J		1.8 V ≤ EV	$I_{\text{DD}} \leq 5.5 \text{ V}$			19		19		
		1.6 V ≤ EV	$V_{DD} \leq 5.5 \text{ V}$					19		
Delay time from SCKp↓ to	t KSO1		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		25		25		25	ns
SOp output Note 4		Note 5	$1.8~V \le EV_{\text{DD}} \le 5.5~V$				25		25	
			$1.6~V \le EV_{\text{DD}} \le 5.5~V$						25	

Notes 1. For CSI00, set a cycle of 2/fмск or longer. For CSI01, set a cycle of 4/fмск or longer.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Con	ditions		h-speed Mode	-	w-speed) Mode	-	v-voltage) Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n		$EV_{DD} \le 5.5 \text{ V},$ $V_b \le 4.0 \text{ V}$		Note 1		Note 1		Note 1	bps
				$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \\ V_b = 2.7 \ V \end{array}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
				EVdd < 4.0 V, ∕⊳≤2.7 V		Note 3		Note 3		Note 3	bps
				$\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_{b} = 50 \mbox{ pF}, \mbox{ R}_{b} = 2.7 \mbox{ k}\Omega \\ \mbox{V}_{b} = 2.3 \mbox{ V} \end{array}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
				EVdd < 3.3 V, /₅≤2.0 V		Note 6		Note 6		Note 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V_b = 1.6 V		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps
				EVdd < 3.3 V, /b ≤ 2.0 V				Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V				0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

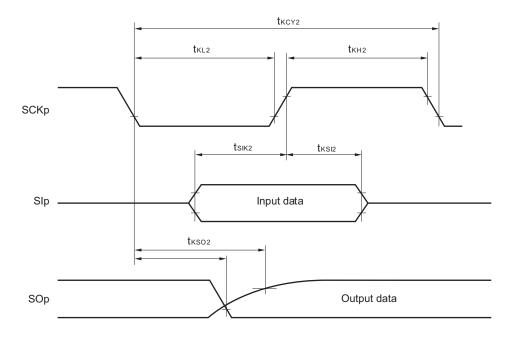
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$ [bps]

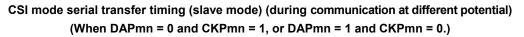
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

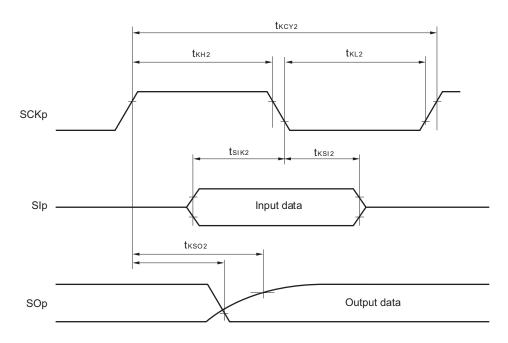
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $EV_{DD} \ge V_b$.
- **6.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$


* This value is the theoretical value of the relative difference between the transmission and reception sides.


- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{ss}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

2.6.2 Temperature sensor/internal reference voltage characteristics

		···) / · · ·) / · · · · · · · · · · ·		,,		
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = $+25^{\circ}C$		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (HS (high-speed main) mode)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD} – 0.7			V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	EV _{DD} – 0.6			V
			$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -1.5 \text{ mA}$	EV _{DD} – 0.5			V
Voh2	P20, P21	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	V _{DD} - 0.5			V	
Output voltage, low	Vol1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.7	V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	>
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	V
	Vol2	P20, P21	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL2}} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60, P61	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 15.0 \text{ mA}$			2.0	V
		$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \label{eq:DD}$			0.4	V	
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 3.0 \ \text{mA} \end{array} \end{array}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array} \label{eq:DD}$			0.4	V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol		Conditio	ns	HS (high-spe	ed main) Mode	Unit
					MIN.	MAX.	
Transfer rate						fмск/12 ^{Note 1}	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$			fмск/12 Note 1	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 2}		2.0	Mbps
			$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$			f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 2}		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode:24 MHz (2.7 V \leq VDD \leq 5.5 V)16 MHz (2.4 V \leq VDD \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(2) I²C fast mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Co	nditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	kHz
		$f_{\text{CLK}} \geq 3.5 \; MHz$	$2.4~V \le EV_{\text{DD}} \le 5.5~V$	0	400	
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	0.6		
Hold time Note 1	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	0.6		
Hold time when SCLA0 = "L"	tLOW	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	ν	1.3		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	1.3		
Hold time when SCLA0 = "H"	t HIGH	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	100		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	100		
Data hold time (transmission)Note 2	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	ν	0	0.9	μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	0	0.9	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	0.6		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	V	0.6		
Bus-free time	teur	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	V	1.3		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	ν.	1.3		1

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

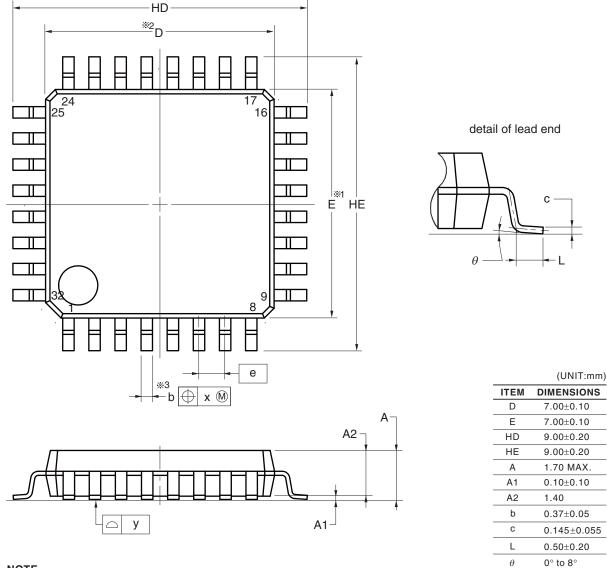
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.



4. PACKAGE DRAWINGS

4.1 32-pin Products

R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

Page 125 of 131

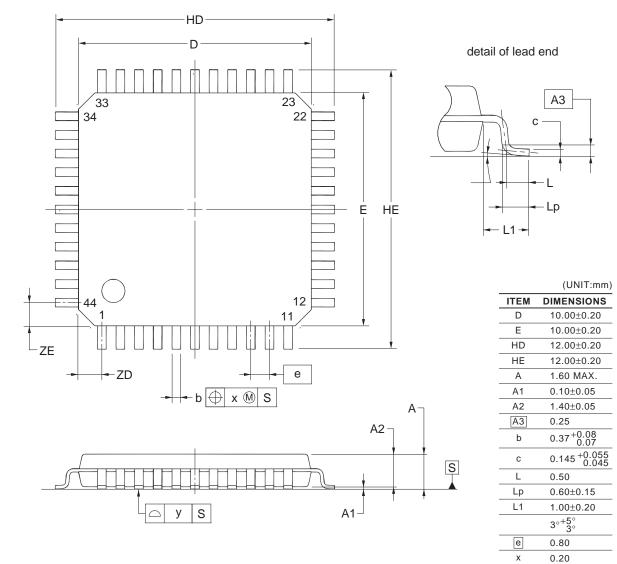
е

х

у

0.80

0.20


0.10

4.2 44-pin Products

R5F10RF8AFP, R5F10RFAAFP, R5F10RFCAFP R5F10RF8GFP, R5F10RFAGFP, R5F10RFCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

NOTE

Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

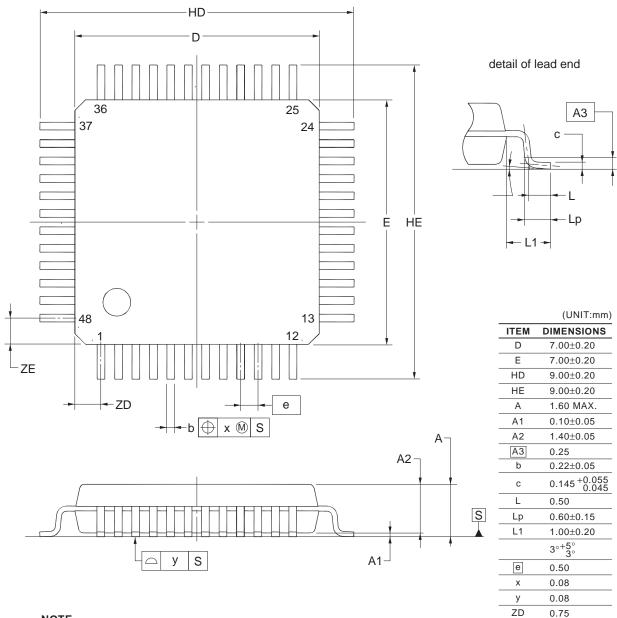
у

ZD

ZE

0.10

1.00


1.00

4.3 48-pin Products

R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ΖE

0.75

The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.