

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

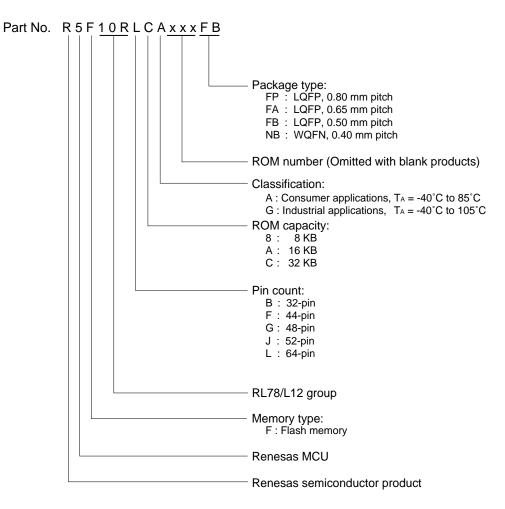
Details

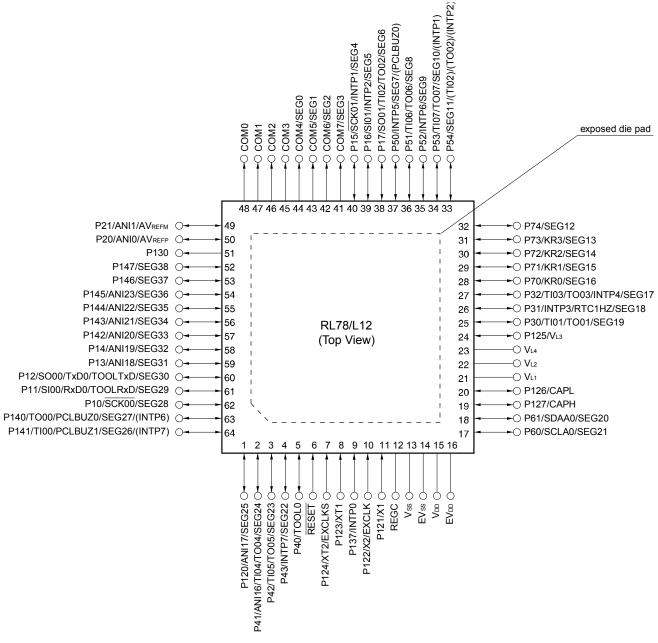
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	47
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFQFN Exposed Pad
Supplier Device Package	64-HWQFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rlcanb-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers




Figure 1-1 Part Number, Memory Size, and Package of RL78/L12

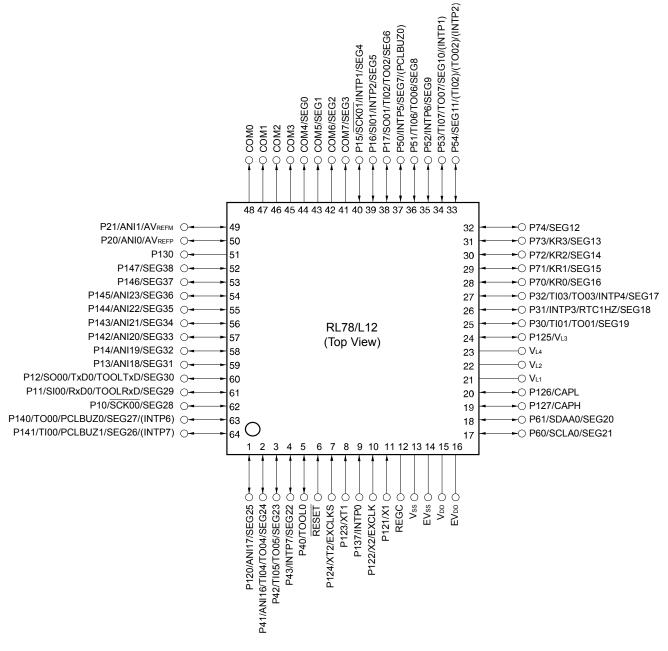
1.3.5 64-pin products

• 64-pin plastic WQFN (8 × 8)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

- 64-pin plastic LQFP (fine pitch) (10×10)
- 64-pin plastic LQFP (12 × 12)

<R>

Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1		P10 to P17, P30 to P32, F 4, P70 to P74, P120, P125 147				20.0 Note 2	mA
		Per pin for	P60, P61				15.0 Note 2	mA
		Total of P1	0 to P14, P40 to P43,	$4.0~V \le EV_{\text{DD}} \le 5.5~V$			70.0	mA
			0, P140 to P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		(When duty = $70\%^{\text{Note 3}}$)		$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			80.0	mA
			4, P60, P61, P70 to P74,	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
		P125 to P1 (When dut	y = 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		(,,	$1.6~V \leq EV_{\text{DD}} < 1.8~V$			10.0	mA
			Total of all pins (When duty = 70% ^{Note 3})				150.0	mA
	IOL2	P20, P21	Per pin				0.4	mA
			Total of all pins	$1.6~V \le V_{\text{DD}} \le 5.5~V$			0.8	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 70.0 mA

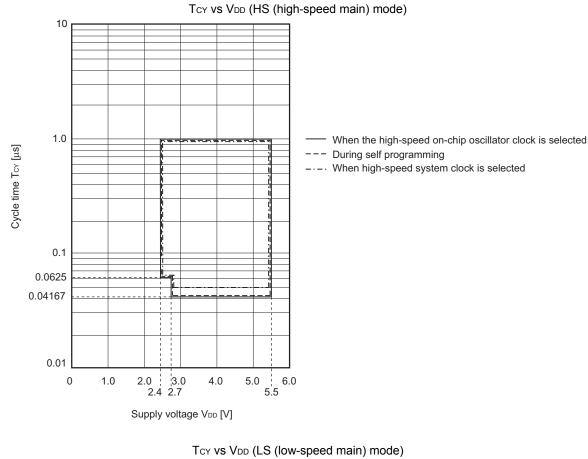
Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

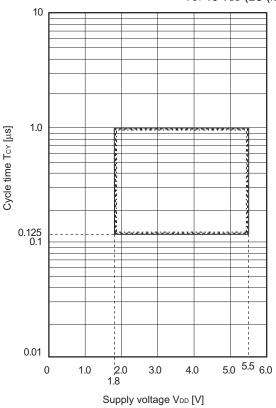
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

•	,	,	,				•
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EVDD		EVdd	V
	VIH2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$	2.2		EVDD	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	2.0		EVDD	V
		TTL input buffer 1.6 V \leq EV _{DD} $<$ 3.3 V	1.50		EVDD	V	
	Vінз	P20, P21		0.7V _{DD}		VDD	V
	VIH4	P60, P61		0.7EVDD		EVDD	V
	VIH5	P121 to P124, P137, EXCLK, EXCLK	0.8V _{DD}		VDD	V	
Input voltage, low	VIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	0		0.2EV _{DD}	V	
	VIL2	P10, P11, P15, P16	TTL input buffer 4.0 V \leq EV _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V \leq EV _{DD} $<$ 3.3 V	0		0.32	V
	VIL3	P20, P21	0		0.3Vdd	V	
	VIL4	P60, P61		0		0.3EVDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0		0.2VDD	V

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$




Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Minimum Instruction Execution Time during Main System Clock Operation

----- When the high-speed on-chip oscillator clock is selected

--- During self programming

---- When high-speed system clock is selected

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(T_A = -40 to +85°C, 1.8 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	= 0.47 <i>μ</i> F	2 V∟1 – 0.1	2 VL1	2 V _{L1}	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	= 0.47 <i>μ</i> F	3 V∟1 – 0.15	3 V _{L1}	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	= 0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between V_{L4} and GND

 $C1 = C2 = C3 = C4 = 0.47 \ \mu F \pm 30\%$

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- **3.** This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3. ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.
 - For derating with T_A = +85 to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

Absolute Maximum Ratings (T_A = 25°C)

(3/3)

		-)			(••••)
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	lol1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			–65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

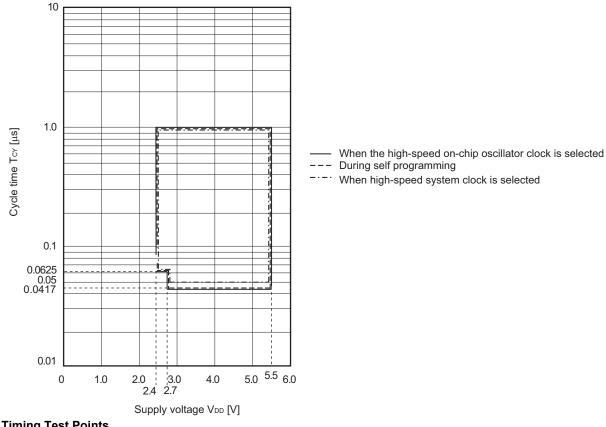
3.4 AC Characteristics

3.4.1 Basic operation

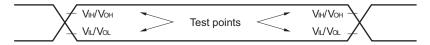
(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main		$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.04167		1	μs
instruction execution time)		system clock (f _{MAIN}) operation	main) mode	$2.4 V \le V_{DD} \le 2.7 V$	0.0625		1	μs
		Subsystem of	Subsystem clock (fsub) $2.4 V \le V_{DD} \le 5.5 V_{DD}$		28.5	30.5	31.3	μs
		operation						
		In the self HS (h programming main) mode	HS (high-speed	$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.04167		1	μs
			main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
External system clock frequency	f _{EX}	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≦ 5.5 V		1.0		20.0	MHz
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high- level width, low-level width	texh, texl	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≦ 5.5 V		24			ns
		$2.4 V \le V_{DD}$	< 2.7 V		30			ns
	texhs, texls				13.7			μs
TI00 to TI07 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns
TO00 to TO07 output frequency	fто	HS (high-spe	ed 4.0 V :	$\leq EV_{DD} \leq 5.5 V$			16	MHz
		main) mode	2.7 V :	≤ EV _{DD} < 4.0 V			8	MHz
			2.4 V :	≤ EV _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	ed 4.0 V :	$\leq EV_{DD} \leq 5.5 V$			16	MHz
frequency		main) mode	2.7 V :	≤ EV _{DD} < 4.0 V			8	MHz
			2.4 V :	≤ EV _{DD} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V :	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μs
low-level width	t intl	INTP1 to INT	P7 2.4 V :	$\leq EV_{DD} \leq 5.5 V$	1			μs
Key interrupt input low-level width	t kr	KR0 to KR3	2.4 V :	$\leq EV_{DD} \leq 5.5 V$	250			ns
RESET low-level width	trsl				10			μs

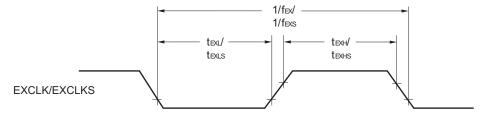
Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n).

n: Channel number (n = 0 to 7))



Minimum Instruction Execution Time during Main System Clock Operation


TCY VS VDD (HS (high-speed main) mode)

AC Timing Test Points

External System Clock Timing

Parameter	Symbol	Cond	litions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkCY1	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		334 ^{Note 1}		ns
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		500 ^{Note 1}		ns
SCKp high-/low-level width	t кн1,	$4.0 \ V \leq EV_{DD} \leq 5.5 \ V$		tксү1/2 – 24		ns
	t ĸ∟1	t_{KL1} 2.7 V \leq EV _{DD} \leq 5.5 V				ns
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 – 76		ns
SIp setup time (to SCKp↑) ^{Note 2}	tsik1	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		66		ns
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		113		ns
SIp hold time (from SCKp↑) Note 3	tksi1	$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		38		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	C = 30 pF ^{Note 5}	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		50	ns

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Notes 1. Set a cycle of 4/fмcκ or longer.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

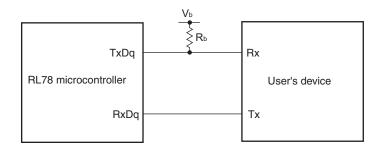
Parameter	Symbol		Conditio	ns	HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.		
Transfer rate		Reception	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$			fмск/12 ^{Note 1}	bps
			$2.7 V \le V_b \le 4.0 V$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			m			fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 2}		2.0	Mbps
			$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$			f _{MCK} /12 Note 1	bps
		Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} ^{Note 2}		2.0	Mbps		

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

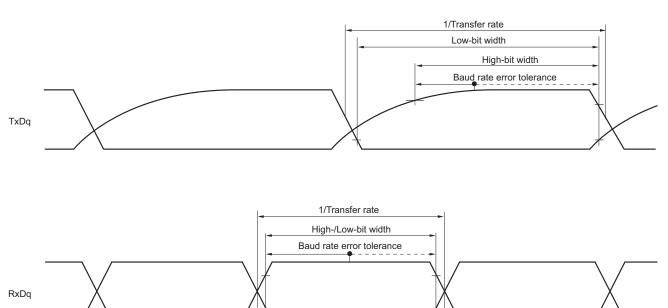
- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode:24 MHz (2.7 V \leq VDD \leq 5.5 V)16 MHz (2.4 V \leq VDD \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

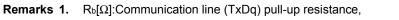
Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$


* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

 $Cb[F]: \ Communication \ line \ (TxDq) \ load \ capacitance, \ Vb[V]: \ Communication \ line \ voltage$

- **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 1)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

3.6.4 LVD circuit characteristics

(TA = -40 to +105°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

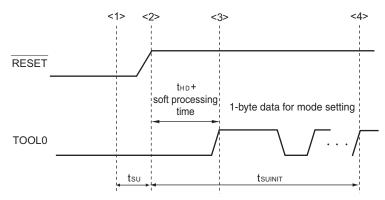
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pu	Ilse width	t∟w		300			μs
Detection d	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{PDR} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.64	2.75	2.86	V
mode	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

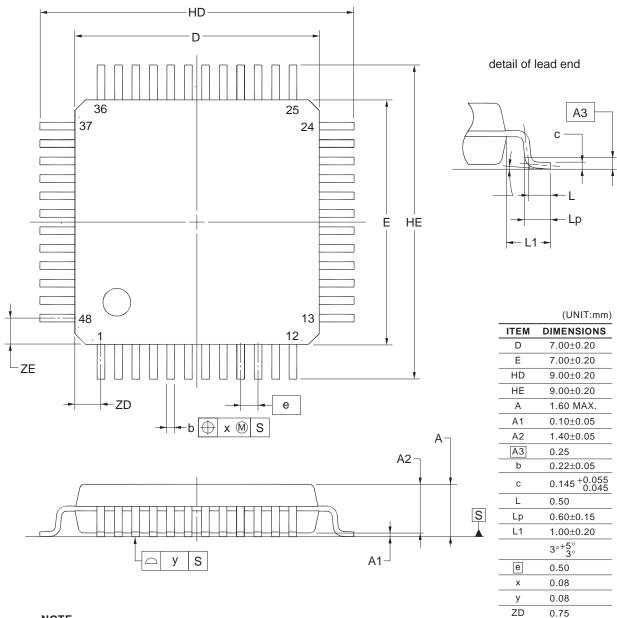

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 31.4 AC Characteristics.

3.11 Timing Specifications for Switching Flash Memory Programming Modes ($T_A = -40$ to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms


- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.3 48-pin Products

R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB

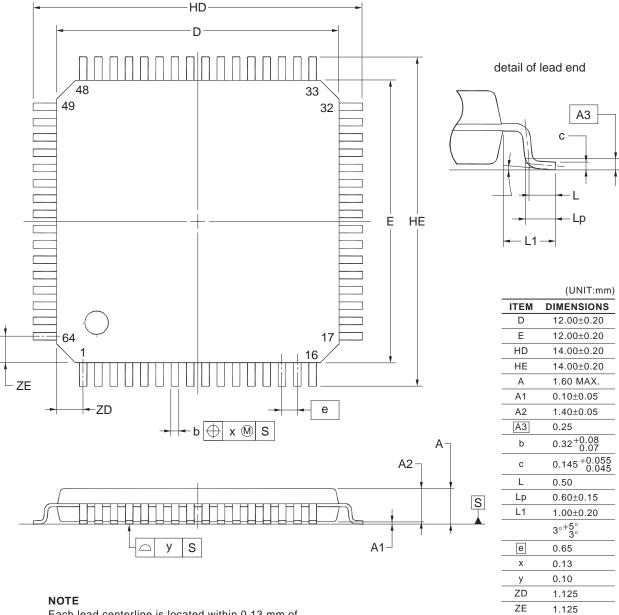
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ΖE


0.75

4.5 64-pin Products

R5F10RLAAFA, R5F10RLCAFA R5F10RLAGFA, R5F10RLCGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/L12 Datasheet

			Description		
Rev.	Date	Page	Summary		
0.01	Feb 20, 2012	-	First Edition issued		
0.02 Sep 26, 201	Sep 26, 2012	7, 8	Modification of caution 2 in 1.3.5 64-pin products		
		15	Modification of I/O port in 1.6 Outline of Functions		
		-	Modification of 2. ELECTRICAL SPECIFICATIONS (TARGET)		
		-	Update of package drawings in 3. PACKAGE DRAWINGS		
1.00	Jan 31, 2013	11 to 15	Modification of 1.5 Block Diagram		
		16	Modification of Note 2 in 1.6 Outline of Functions		
		17	Modification of 1.6 Outline of Functions		
		-	Deletion of target in 2. ELECTRICAL SPECIFICATIONS		
		18	Addition of caution 2 to 2. ELECTRICAL SPECIFICATIONS		
		19	Addition of description, note 3, and remark 2 to 2.1 Absolute Maximum Ratings		
		20	Modification of description and addition of note to 2.1 Absolute Maximum Ratings		
		22, 23	Modification of 2.2 Oscillator Characteristics		
		30	Modification of notes 1 to 4 in 2.3.2 Supply current characteristics		
		32	Modification of notes 1, 3 to 6, 8 in 2.3.2 Supply current characteristics		
		34	Modification of notes 7, 9, 11, and addition of notes 8, 12 to 2.3.2 Supply current		
			characteristics		
		36	Addition of description to 2.4 AC Characteristics		
		38, 40 to	Modification of 2.5.1 Serial array unit		
		42, 44 to			
		46, 48 to			
		52, 54, 55			
		57, 58	Modification of 2.5.2 Serial interface IICA		
		62	Modification of 2.6.2 Temperature sensor/internal reference voltage characteristics		
		64	Addition of note and caution in 2.6.5 Supply voltage rise time		
		69	Modification of 2.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics		
		69	Modification of conditions in 2.9 Timing Specs for Switching Flash Memory Programming Modes		
		70	Modification of 2.10 Timing Specifications for Switching Flash Memory		
			Programming Modes		
2.00	Jan 10, 2014	1	Modification of 1.1 Features		
		3	Modification of Figure 1-1		
		4	Modification of part number, note, and caution		
		5 to 10	Deletion of COMEXP pin in 1.3.1 to 1.3.5.		
		11	Modification of description in 1.4 Pin Identification		
		12 to 16	Deletion of COMEXP pin in 1.5.1 to 1.5.5		
		17	Modification of table and note 2 in 1.6 Outline of Functions		
		20	Modification of description in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/3)		
		21	Modification of description and note 2 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (2/3)		
		23	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics		
		23	Modification of table in 2.2.2 On-chip oscillator characteristics		
		24	Modification of table, notes 2 and 3 in 2.3.1 Pin characteristics (1/5)		
		25	Modification of notes 1 and 3 in 2.3.1 Pin characteristics (2/5)		
		30	Modification of notes 1 and 4 in 2.3.2 Supply current characteristics (1/3)		
	31, 32		Modification of table, notes 1, 5, and 6 in 2.3.2 Supply current characteristics (2/3)		
		33, 34	Modification of table, notes 1, 3, 4, and 5 to 10 in 2.3.2 Supply current characteristics (3/3)		