

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

Ξ·ΧΕΙ

| Product Status             | Obsolete                                                                        |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LCD, LVD, POR, PWM, WDT                                                    |
| Number of I/O              | 47                                                                              |
| Program Memory Size        | 32KB (32K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 2K x 8                                                                          |
| RAM Size                   | 1.5K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 10x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 64-LQFP                                                                         |
| Supplier Device Package    | 64-LFQFP (10x10)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rlcgfb-v0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 64-pin plastic LQFP (fine pitch)  $(10 \times 10)$
- 64-pin plastic LQFP (12 × 12)

<R>



Cautions 1. Make EVss pin the same potential as Vss pin.

- 2. Make VDD pin the same potential as EVDD pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
  - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V<sub>DD</sub> and EV<sub>DD</sub> pins and connect the V<sub>SS</sub> and EV<sub>SS</sub> pins to separate ground lines.
  - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

(1/3)

## 2.1 Absolute Maximum Ratings

| <b>Absolute Maximum</b> | Ratings | $(T_{A} = 25^{\circ}C)$ |
|-------------------------|---------|-------------------------|
|-------------------------|---------|-------------------------|

| Parameter              | Symbols         | Conditions                                                                                                         | Ratings                                                                                 | Unit |
|------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------|
| Supply voltage         | Vdd             | V <sub>DD</sub> = EV <sub>DD</sub>                                                                                 | -0.5 to +6.5                                                                            | V    |
|                        | EVDD            | V <sub>DD</sub> = EV <sub>DD</sub>                                                                                 | -0.5 to +6.5                                                                            | V    |
|                        | EVss            |                                                                                                                    | -0.5 to +0.3                                                                            | V    |
| REGC pin input voltage | Viregc          | REGC                                                                                                               | $-0.3$ to +2.8 and $-0.3$ to V_DD + $0.3^{\text{Note 1}}$                               | V    |
| Input voltage          | VI1             | P10 to P17, P30 to P32, P40 to P43, P50 to P54,<br>P70 to P74, P120, P125 to P127,P140 to P147                     | -0.3 to EV_DD +0.3 and -0.3 to V_DD + 0.3 $^{\text{Note 2}}$                            | V    |
|                        | Vı2             | P60, P61 (N-ch open-drain)                                                                                         | -0.3 to EV_DD +0.3 and -0.3 to V_DD + 0.3 $^{\text{Note 2}}$                            | V    |
|                        | Vı3             | P20, P21, P121 to P124, P137, EXCLK,<br>EXCLKS, RESET                                                              | -0.3 to V <sub>DD</sub> + 0.3 <sup>Note 2</sup>                                         | V    |
| Output voltage         | V <sub>01</sub> | P10 to P17, P30 to P32, P40 to P43,<br>P50 to P54, P60, P61, P70 to P74, P120,<br>P125 to P127, P130, P140 to P147 | $-0.3$ to EV_{DD} + 0.3 and $-0.3$ to V_{DD} + 0.3 $^{\text{Note 2}}$                   | V    |
|                        | V <sub>02</sub> | P20, P21                                                                                                           | -0.3 to V <sub>DD</sub> + 0.3 <sup>Note 2</sup>                                         | V    |
| Analog input voltage   | Vali            | ANI16 to ANI23                                                                                                     | -0.3 to EV <sub>DD</sub> + 0.3 and<br>-0.3 to AV <sub>REF</sub> (+) + 0.3<br>Notes 2, 3 | V    |
|                        | Vai2            | ANIO, ANI1                                                                                                         | -0.3 to V <sub>DD</sub> + 0.3 and<br>-0.3 to AV <sub>REF</sub> (+) + 0.3<br>Notes 2, 3  | V    |

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
  - **2.** Must be 6.5 V or lower.
  - 3. Do not exceed  $AV_{REF(+)}$  + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
  - **2.** AV<sub>REF(+)</sub>: + side reference voltage of the A/D converter.
  - 3. Vss : Reference voltage



| Items                                    | Symbol    |                                         | Conditions                                                                                                           |                                        | MIN. | TYP. | MAX.           | Unit |
|------------------------------------------|-----------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|------|----------------|------|
| Output current,<br>Iow <sup>Note 1</sup> | Io∟1      | Per pin for<br>P50 to P54<br>P140 to P1 | Per pin for P10 to P17, P30 to P32, P40 to P43,<br>P50 to P54, P70 to P74, P120, P125 to P127, P130,<br>P140 to P147 |                                        |      |      | 20.0<br>Note 2 | mA   |
|                                          |           | Per pin for                             | P60, P61                                                                                                             |                                        |      |      | 15.0 Note 2    | mA   |
|                                          |           | Total of P1                             | 0 to P14, P40 to P43,                                                                                                | $4.0~V \leq EV_{\text{DD}} \leq 5.5~V$ |      |      | 70.0           | mA   |
|                                          | P120, P13 | 0, P140 to P147                         | $2.7~V \leq EV_{\text{DD}} < 4.0~V$                                                                                  |                                        |      | 15.0 | mA             |      |
|                                          |           | (when dut                               | y = 70% )                                                                                                            | $1.8~V \leq EV_{\text{DD}} < 2.7~V$    |      |      | 9.0            | mA   |
|                                          |           |                                         |                                                                                                                      | $1.6~V \leq EV_{\text{DD}} < 1.8~V$    |      |      | 4.5            | mA   |
|                                          |           | Total of P1                             | 5 to P17, P30 to P32,                                                                                                | $4.0~V \leq EV_{\text{DD}} \leq 5.5~V$ |      |      | 80.0           | mA   |
|                                          |           | P50 to P54                              | I, P60, P61, P70 to P74,                                                                                             | $2.7~V \leq EV_{\text{DD}} < 4.0~V$    |      |      | 35.0           | mA   |
|                                          |           | (When dut                               | $v = 70\%^{\text{Note 3}}$                                                                                           | $1.8~V \leq EV_{\text{DD}} < 2.7~V$    |      |      | 20.0           | mA   |
|                                          |           |                                         | ,                                                                                                                    | $1.6~V \leq EV_{\text{DD}} < 1.8~V$    |      |      | 10.0           | mA   |
|                                          |           | Total of all (When dut                  | Total of all pins<br>(When duty = 70% <sup>Note 3</sup> )                                                            |                                        |      |      | 150.0          | mA   |
|                                          | Iol2      | P20, P21                                | Per pin                                                                                                              |                                        |      |      | 0.4            | mA   |
|                                          |           |                                         | Total of all pins                                                                                                    | $1.6~V \leq V_{\text{DD}} \leq 5.5~V$  |      |      | 0.8            | mA   |

### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$



- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V<sub>DD</sub> and EV<sub>DD</sub> pins to an output pin.
  - 2. Do not exceed the total current value.
  - **3.** Specification under conditions where the duty factor  $\leq$  70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins =  $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins =  $(70.0 \times 0.7)/(80 \times 0.01) \cong 61.25$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



- **Notes 1.** Total current flowing into V<sub>DD</sub> and EV<sub>DD</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub>, EV<sub>DD</sub> or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 3. When high-speed system clock and subsystem clock are stopped.
  - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
  - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode:  $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz

 $2.4~V \le V_{DD} \le 5.5~V @1~MHz~to~16~MHz$  LS (low-speed main) mode:  $1.8~V \le V_{DD} \le 5.5~V @1~MHz~to~8~MHz$ 

- LV (low-voltage main) mode:  $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\odot} 1 \text{ MHz}$  to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation, temperature condition of the TYP. value is  $T_A = 25^{\circ}C$



### Minimum Instruction Execution Time during Main System Clock Operation





----- When the high-speed on-chip oscillator clock is selected

--- During self programming

---- When high-speed system clock is selected



### (3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) ( $T_A = -40$ to $+85^{\circ}C$ , 1.6 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

| Parameter                       | Symbol                  | Conditions                  |                                                            | HS<br>(high-<br>speed<br>main)<br>Mode | LS (low-<br>speed<br>main)<br>Mode | LV (low-<br>voltage<br>main)<br>Mode | Unit                        | Para<br>meter | Symbol          | Conditions |
|---------------------------------|-------------------------|-----------------------------|------------------------------------------------------------|----------------------------------------|------------------------------------|--------------------------------------|-----------------------------|---------------|-----------------|------------|
| Delay time from<br>SCKp↓ to SOp | tkso2                   | C = 30 pF <sup>Note 4</sup> | $4.0~V \leq EV_{DD} \leq 5.5~V$                            |                                        | 2/fмск<br>+ 44                     |                                      | 2/f <sub>мск</sub><br>+ 110 |               | 2/fмск<br>+ 110 | ns         |
| output <sup>Note 3</sup>        | utput <sup>Note 3</sup> |                             | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$ |                                        | 2/fмск<br>+ 44                     |                                      | 2/fмск<br>+ 110             |               | 2/fмск<br>+ 110 | ns         |
|                                 |                         |                             | $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$  |                                        | 2/fмск<br>+ 75                     |                                      | 2/fмск<br>+ 110             |               | 2/fмск<br>+ 110 | ns         |
|                                 |                         |                             | $1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.4 \text{ V}$  |                                        |                                    |                                      | 2/fмск<br>+ 110             |               | 2/fмск<br>+ 110 | ns         |
|                                 |                         |                             | $1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$  |                                        |                                    |                                      |                             |               | 2/fмск<br>+ 220 | ns         |

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SCKp and SOp output lines.
  - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

# Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))



| $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}) $ (1/2) |               |                                                                                                                              |                                                             |                  |                       |                  |                 |                                   |      |      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|-----------------------|------------------|-----------------|-----------------------------------|------|------|--|
| Parameter                                                                                                                                                                                             | Symbol        | Con                                                                                                                          | ditions                                                     | HS (<br>speed    | high-<br>main)<br>ode | LS (low<br>main) | /-speed<br>mode | LV (low-<br>voltage main)<br>mode |      | Unit |  |
|                                                                                                                                                                                                       |               |                                                                                                                              |                                                             | MIN.             | MAX.                  | MIN.             | MAX.            | MIN.                              | MAX. |      |  |
| SCKp cycle time Note 1                                                                                                                                                                                | tkCY2         | $4.0 V \leq EV_{DD} \leq 5.5 V.$                                                                                             | 20 MHz < fмск ≤ 24 MHz                                      | 12/fмск          |                       |                  |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               | $2.7 V \le V_b \le 4.0 V$                                                                                                    | 8 MHz < fмск ≤ 20 MHz                                       | 10/fмск          |                       |                  |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               |                                                                                                                              | 4 MHz < fмcк ≤ 8 MHz                                        | 8/fмск           |                       | 16/fмск          |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               |                                                                                                                              | fмск≤4 MHz                                                  | 6/fмск           |                       | 10/fмск          |                 | 10/ <b>f</b> мск                  |      | ns   |  |
|                                                                                                                                                                                                       |               | $2.7 V \le EV_{DD} < 4.0 V$ ,                                                                                                | 20 MHz < fмск ≤ 24 MHz                                      | 16/fмск          |                       |                  |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               | $2.3V{\leq}V_b{\leq}2.7V$                                                                                                    | 16 MHz < fмск ≤ 20 MHz                                      | 14/ <b>f</b> мск |                       |                  |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               |                                                                                                                              | 8 MHz < fмск ≤ 16 MHz                                       | 12/fмск          |                       |                  |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               |                                                                                                                              | 4 MHz < fмск ≤ 8 MHz                                        | <b>8/f</b> мск   |                       | 16/fмск          |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               |                                                                                                                              | fмск ≤4 MHz                                                 | 6/ <b>f</b> мск  |                       | 10/fмск          |                 | 10/fмск                           |      | ns   |  |
|                                                                                                                                                                                                       |               | $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$                                                                   | 20 MHz < fмск ≤ 24 MHz                                      | <b>36/f</b> мск  |                       |                  |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               | $1.6  V {\leq} V_b {\leq} 2.0  V$                                                                                            | $16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$               | 32/fмск          |                       |                  |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               |                                                                                                                              | 8 MHz < fмск ≤ 16 MHz                                       | 26/fмск          |                       |                  |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               |                                                                                                                              | 4 MHz < fмск ≤ 8 MHz                                        | 16/fмск          |                       | 16/fмск          |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               |                                                                                                                              | fмск≤4 MHz                                                  | 10/fмск          |                       | 10/fмск          |                 | 10/fмск                           |      | ns   |  |
|                                                                                                                                                                                                       |               | $1.8 V \le EV_{DD} < 3.3 V$ ,                                                                                                | 4 MHz < fмск ≤ 8 MHz                                        |                  |                       | 16/fмск          |                 |                                   |      | ns   |  |
|                                                                                                                                                                                                       |               | $1.6 \ V \! \le \! V_b \! \le \! 2.0 \ V^{\text{Note 2}}$                                                                    | fмск≤4 MHz                                                  |                  |                       | 10/fмск          |                 | 10/fмск                           |      | ns   |  |
| SCKp high-/low-level width                                                                                                                                                                            | tкн2,<br>tкL2 | $4.0~V \leq EV_{\text{DD}} \leq 5.5~V$                                                                                       | $V, 2.7 \text{ V} \le V_b \le 4.0 \text{ V}$                | tксү2/2<br>– 12  |                       | tксү2/2<br>- 50  |                 | tксү2/2<br>- 50                   |      | ns   |  |
|                                                                                                                                                                                                       |               | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$                                                                    | $V, 2.3 V \le V_b \le 2.7 V$                                | tксү2/2<br>– 18  |                       | tксү2/2<br>- 50  |                 | tксү2/2<br>– 50                   |      | ns   |  |
|                                                                                                                                                                                                       |               | $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$                                                                    | $V_{\rm t}, 1.6 \ V \le V_{\rm b} \le 2.0 \ V_{\rm b}$      | tkcy2/2          |                       | tксү2/2<br>- 50  |                 | tkcy2/2<br>- 50                   |      | ns   |  |
|                                                                                                                                                                                                       |               | $1.8 V \le EV_{DD} < 3.3 V$<br>$1.6 V \le V_b \le 2.0 V^{Not}$                                                               | /,<br>te 2                                                  |                  |                       | tксү2/2<br>- 50  |                 | tkcy2/2                           |      | ns   |  |
| Slp setup time                                                                                                                                                                                        | tsik2         | $4.0 V \le EV_{DD} \le 5.5 V$                                                                                                | $V_{\rm h} = 2.7  \text{V} \le V_{\rm h} \le 4.0  \text{V}$ | 1/fмск +         |                       | 1/fмск +         |                 | 1/fмск +                          |      | ns   |  |
| (to SCKp↑) Note 3                                                                                                                                                                                     |               |                                                                                                                              | ,                                                           | 20               |                       | 30               |                 | 30                                |      |      |  |
|                                                                                                                                                                                                       |               | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$                                                                    | $V, 2.3 V \le V_b \le 2.7 V$                                | 1/fмск +<br>20   |                       | 1/fмск +<br>30   |                 | 1/fмск +<br>30                    |      | ns   |  |
|                                                                                                                                                                                                       |               | $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$                                                                    | $V$ , 1.6 V $\leq$ V <sub>b</sub> $\leq$ 2.0 V              | 1/fмск +<br>30   |                       | 1/fмск +<br>30   |                 | 1/fмск +<br>30                    |      | ns   |  |
|                                                                                                                                                                                                       |               | $1.8 V \le EV_{DD} < 3.3 V$<br>$1.6 V \le V_b \le 2.0 V^{Not}$                                                               | /,<br>te 2                                                  |                  |                       | 1/fмск +<br>30   |                 | 1/fмск +<br>30                    |      | ns   |  |
| SIp hold time<br>(from SCKp↑) <sup>Note 4</sup>                                                                                                                                                       | tksi2         | $4.0 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}$                                                                    | $V, 2.7 \text{ V} \le V_b \le 4.0 \text{ V}$                | 1/fмск+<br>31    |                       | 1/fмск +<br>31   |                 | 1/fмск +<br>31                    |      | ns   |  |
|                                                                                                                                                                                                       |               | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$                                                                    | $V_{\rm y}, 2.3 \text{ V} \le V_{\rm b} \le 2.7 \text{ V}$  | 1/fмск+<br>31    |                       | 1/fмск +<br>31   |                 | 1/fмск +<br>31                    |      | ns   |  |
|                                                                                                                                                                                                       |               | $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$                                                                    | $V_{\rm t}, 1.6 \ V \le V_b \le 2.0 \ V_b$                  | 1/fмск +<br>31   |                       | 1/fмск+<br>31    |                 | 1/fмск +<br>31                    |      | ns   |  |
|                                                                                                                                                                                                       |               | $1.8 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}$<br>$1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$ | /,<br>te 2                                                  |                  |                       | 1/fмск +<br>31   |                 | 1/fмск +<br>31                    |      | ns   |  |

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(Notes, Caution and Remarks are listed on the next page.)

## (3) $I^2C$ fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$ 

| Parameter                                          | Symbol  | Conditions                                                    | HS (hig<br>main) | h-speed<br>Mode | LS (low<br>main) | /-speed<br>Mode | LV (low-voltage main) Mode |      | Unit |
|----------------------------------------------------|---------|---------------------------------------------------------------|------------------|-----------------|------------------|-----------------|----------------------------|------|------|
|                                                    |         |                                                               | MIN.             | MAX.            | MIN.             | MAX.            | MIN.                       | MAX. |      |
| SCLA0 clock frequency                              | fsc∟    | Fast mode plus: $2.7 V \le EV_{DD} \le 5.5 V$ fclk \ge 10 MHz | 0                | 1000            | _                | -               | _                          | _    | kHz  |
| Setup time of restart condition                    | tsu:sta | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ | 0.26             |                 | _                | -               | _                          | _    | μs   |
| Hold time <sup>Note 1</sup>                        | thd:sta | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ | 0.26             |                 |                  | -               | _                          | _    | μs   |
| Hold time when SCLA0 =<br>"L"                      | t∟ow    | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ | 0.5              |                 | _                | -               | -                          | _    | μs   |
| Hold time when SCLA0 =<br>"H"                      | tнigн   | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ | 0.26             |                 | _                | -               | -                          | _    | μs   |
| Data setup time<br>(reception)                     | tsu:dat | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ | 50               |                 | _                | _               | -                          | _    | μs   |
| Data hold time<br>(transmission) <sup>Note 2</sup> | thd:dat | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ | 0                | 0.45            | _                | -               | -                          | _    | μs   |
| Setup time of stop condition                       | tsu:sto | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ | 0.26             |                 |                  | _               |                            | _    | μs   |
| Bus-free time                                      | tBUF    | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ | 0.5              |                 |                  | _               | _                          | _    | μs   |

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
  - 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus:  $C_b$  = 120 pF,  $R_b$  = 1.1 k $\Omega$ 

### IICA serial transfer timing





## 2.6.3 POR circuit characteristics

### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

| Parameter                           | Symbol | Conditions             | MIN. | TYP. | MAX. | Unit |
|-------------------------------------|--------|------------------------|------|------|------|------|
| Detection voltage                   | VPOR   | Power supply rise time | 1.47 | 1.51 | 1.55 | V    |
|                                     | VPDR   | Power supply fall time | 1.46 | 1.50 | 1.54 | V    |
| Minimum pulse width <sup>Note</sup> | TPW    |                        | 300  |      |      | μs   |

**Note** Minimum time required for a POR reset when V<sub>DD</sub> exceeds below V<sub>PDR</sub>. This is also the minimum time required for a POR reset from when V<sub>DD</sub> exceeds below 0.7 V to when V<sub>DD</sub> exceeds V<sub>POR</sub> while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).





| Items                   | Symbol                                                                                                      | Conditions                                                           |                                                                                                                                           | MIN.                      | TYP. | MAX. | Unit |
|-------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|------|------|
| Output voltage,<br>high | Vон1                                                                                                        | P10 to P17, P30 to P32, P40 to P43,<br>P50 to P54, P70 to P74, P120, | $\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$                             | EV <sub>DD</sub> –<br>0.7 |      |      | V    |
|                         |                                                                                                             | P125 to P127, P130, P140 to P147                                     | 2.7 V ≤ EV <sub>DD</sub> ≤ 5.5 V,<br>Іон1 = −2.0 mA                                                                                       | EV <sub>DD</sub> –<br>0.6 |      |      | V    |
|                         |                                                                                                             |                                                                      | 2.4 V $\leq$ EV <sub>DD</sub> $\leq$ 5.5 V,<br>Іон1 = -1.5 mA                                                                             | EV <sub>DD</sub> –<br>0.5 |      |      | V    |
|                         | Voh2                                                                                                        | P20, P21                                                             | 2.4 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V,<br>I <sub>OH2</sub> = -100 $\mu$ A                                                             | Vdd - 0.5                 |      |      | V    |
| Output voltage,<br>low  | Vol1 P10 to P17, P30 to P32, P40 to P4<br>P50 to P54, P70 to P74, P120,<br>P125 to P127, P130, P140 to P147 | P10 to P17, P30 to P32, P40 to P43,<br>P50 to P54, P70 to P74, P120, | $\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$ |                           |      | 0.7  | V    |
|                         |                                                                                                             | P125 to P127, P130, P140 to P147                                     | $\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$   |                           |      | 0.6  | V    |
|                         |                                                                                                             |                                                                      | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$<br>lol1 = 1.5 mA                                                           |                           |      | 0.4  | V    |
|                         |                                                                                                             |                                                                      | $2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 0.6 \text{ mA}$                                          |                           |      | 0.4  | V    |
|                         | Vol2                                                                                                        | P20, P21                                                             | $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$<br>Iol2 = 400 $\mu$ A                                                         |                           |      | 0.4  | V    |
|                         | Vol3                                                                                                        | P60, P61                                                             | $4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 15.0 \text{ mA}$                                         |                           |      | 2.0  | V    |
|                         |                                                                                                             |                                                                      | $4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 5.0 \text{ mA}$                                          |                           |      | 0.4  | V    |
|                         |                                                                                                             |                                                                      | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 3.0 \text{ mA}$                                          |                           |      | 0.4  | V    |
|                         |                                                                                                             |                                                                      | $2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$<br>IOL3 = 2.0 mA                                                           |                           |      | 0.4  | V    |

### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$



## Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



## 3.3.2 Supply current characteristics

### (TA = -40 to +105°C, 2.4 V $\leq$ EVDD = VDD $\leq$ 5.5 V, Vss = EVss = 0 V)

(1/3)

| Parameter | Symbol |           |                                              | Conditions                                                     |                   |                         | MIN. | TYP. | MAX. | Unit |
|-----------|--------|-----------|----------------------------------------------|----------------------------------------------------------------|-------------------|-------------------------|------|------|------|------|
| Supply    | DD1    | Operating | HS (high-                                    | f <sub>IH</sub> = 24 MHz <sup>Note 3</sup>                     | Basic             | V <sub>DD</sub> = 5.0 V |      | 1.5  |      | mA   |
| current   |        | mode      | speed main)                                  |                                                                | operation         | V <sub>DD</sub> = 3.0 V |      | 1.5  |      | mA   |
| NOTE 1    |        |           | mode                                         |                                                                | Normal            | V <sub>DD</sub> = 5.0 V |      | 3.3  | 5.3  | mA   |
|           |        |           |                                              |                                                                | operation         | V <sub>DD</sub> = 3.0 V |      | 3.3  | 5.3  | mA   |
|           |        |           |                                              | f⊪ = 16 MHz <sup>Note 3</sup>                                  | Normal            | V <sub>DD</sub> = 5.0 V |      | 2.5  | 3.9  | mA   |
|           |        |           |                                              |                                                                | operation         | V <sub>DD</sub> = 3.0 V |      | 2.5  | 3.9  | mA   |
|           |        |           | HS (high-                                    | f <sub>MX</sub> = 20 MHz <sup>Note 2</sup> ,                   | Normal            | Square wave input       |      | 2.8  | 4.7  | mA   |
|           |        |           | speed main)                                  | V <sub>DD</sub> = 5.0 V                                        | operation         | Resonator connection    |      | 3.0  | 4.8  | mA   |
|           |        |           | indue .                                      | f <sub>MX</sub> = 20 MHz <sup>Note 2</sup> ,                   | Normal            | Square wave input       |      | 2.8  | 4.7  | mA   |
|           |        |           |                                              | V <sub>DD</sub> = 3.0 V                                        | operation         | Resonator connection    |      | 3.0  | 4.8  | mA   |
|           |        |           |                                              | f <sub>MX</sub> = 10 MHz <sup>Note 2</sup> ,                   | Normal            | Square wave input       |      | 1.8  | 2.8  | mA   |
|           |        |           |                                              | V <sub>DD</sub> = 5.0 V                                        | operation         | Resonator connection    |      | 1.8  | 2.8  | mA   |
|           |        |           | f <sub>MX</sub> = 10 MHz <sup>Note 2</sup> , | Normal                                                         | Square wave input |                         | 1.8  | 2.8  | mA   |      |
|           |        |           | Subsystem<br>clock<br>operation              | V <sub>DD</sub> = 3.0 V                                        | operation         | Resonator connection    |      | 1.8  | 2.8  | mA   |
|           |        |           |                                              | fsuв = 32.768 kHz                                              | Normal            | Square wave input       |      | 3.5  | 4.9  | μA   |
|           |        |           |                                              | Note 4                                                         | operation         | Resonator connection    |      | 3.6  | 5.0  | μA   |
|           |        |           |                                              | T <sub>A</sub> = -40°C<br>f <sub>SUB</sub> = 32.768 kHz Normal |                   |                         |      |      |      |      |
|           |        |           |                                              |                                                                | Normal            | Square wave input       |      | 3.6  | 4.9  | μA   |
|           |        |           |                                              | T <sub>A</sub> = +25°C                                         | operation         | Resonator connection    |      | 3.7  | 5.0  | μA   |
|           |        |           |                                              | fsuв = 32.768 kHz                                              | Normal            | Square wave input       |      | 3.7  | 5.5  | μA   |
|           |        |           |                                              | Note 4                                                         | operation         | Resonator connection    |      | 3.8  | 5.6  | μA   |
|           |        |           |                                              | T <sub>A</sub> = +50°C                                         |                   |                         |      |      |      |      |
|           |        |           |                                              | fsub = 32.768 kHz                                              | Normal            | Square wave input       |      | 3.8  | 6.3  | μA   |
|           |        |           |                                              | T <sub>A</sub> = +70°C                                         | operation         | Resonator connection    |      | 3.9  | 6.4  | μA   |
|           |        |           |                                              | fsuв = 32.768 kHz                                              | Normal            | Square wave input       |      | 4.1  | 7.7  | μA   |
|           |        |           |                                              | Note 4                                                         | operation         | Resonator connection    |      | 4.2  | 7.8  | μA   |
|           |        |           |                                              | T <sub>A</sub> = +85°C                                         |                   |                         |      |      |      |      |
|           |        |           |                                              | fsue = 32.768 kHz                                              | Normal            | Square wave input       |      | 6.4  | 19.7 | μA   |
|           |        |           |                                              | T <sub>A</sub> = +105°C                                        | operation         | Resonator connection    |      | 6.5  | 19.8 | μA   |

(Notes and Remarks are listed on the next page.)



- **Notes 1.** Total current flowing into V<sub>DD</sub> and EV<sub>DD</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub>, EV<sub>DD</sub> or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 3. When high-speed system clock and subsystem clock are stopped.
  - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
  - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode:  $2.7 V \le V_{DD} \le 5.5 V@1 MHz$  to 24 MHz  $2.4 V \le V_{DD} \le 5.5 V@1 MHz$  to 16 MHz
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fil: High-speed on-chip oscillator clock frequency
  - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - **4.** Except subsystem clock operation, temperature condition of the TYP. value is  $T_A = 25^{\circ}C$



2/fмск+66

2/fмск+66

2/fмск + 113

ns

ns

Ns

Delay time from SCKp↓

to SOp output Note 3

| (1A40 10 + 10)                                  | J C, 2.4 V    |                                                             | V, VSS - EVSS - U V | 7                |                           |    |  |
|-------------------------------------------------|---------------|-------------------------------------------------------------|---------------------|------------------|---------------------------|----|--|
| Parameter                                       | Symbol        | Con                                                         | ditions             | HS (high-speed   | HS (high-speed main) Mode |    |  |
|                                                 |               |                                                             |                     | MIN.             | MAX.                      |    |  |
| SCKp cycle time Note 5                          | tkCY2         | $4.0~V \leq EV_{\text{DD}} \leq 5.5~V$                      | 20 MHz < fмск       | 16/fмск          |                           | ns |  |
|                                                 |               |                                                             | fмск ≤ 20 MHz       | <b>12/f</b> мск  |                           | ns |  |
|                                                 |               | $2.7~V \leq EV_{DD} < 4.0~V$                                | 16 MHz < fмск       | <b>16/f</b> мск  |                           | ns |  |
|                                                 |               |                                                             | fмск ≤ 16 MHz       | 12/fмск          |                           | ns |  |
|                                                 |               | $2.4~V \leq EV_{\text{DD}} \leq 5.5~V$                      |                     | 12/fмск and 1000 |                           | ns |  |
| SCKp high-/low-level                            | <b>t</b> кн2, | $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$ |                     | tксү2/2 – 14     |                           | ns |  |
| width                                           | tĸ∟2          | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$   | ,                   | tксү2/2 – 16     |                           | ns |  |
|                                                 |               | $2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 2.7 \text{ V}$ | ,                   | tксү2/2 – 36     |                           | ns |  |
| SIp setup time                                  | tsik2         | $2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$ | ,                   | 1/fмск + 40      |                           | ns |  |
| (to SCKp↑) <sup>Note 1</sup>                    |               | $2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 2.7 \text{ V}$ |                     | 1/fмск + 60      |                           | ns |  |
| SIp hold time<br>(from SCKp↑) <sup>Note 2</sup> | tksi2         | $2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$ | 1                   | 1/fмск + 62      |                           | ns |  |

## (3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

**Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

 $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$ 

 $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$ 

 $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$ 

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SOp output lines.
- 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

C = 30 pF Note 4

# Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
  - g: PIM number (g = 1)

tkso2

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

### CSI mode connection diagram (during communication at same potential)





### (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T<sub>A</sub> = -40 to +105°C, 2.4 V $\leq$ EV<sub>DD</sub> = V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = EV<sub>SS</sub> = 0 V)

| Parameter     | Symbol                                                    |                                                                                                       | Conditions                                                                                                      |                                                                             |                           | ed main) Mode                  | Unit |
|---------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|--------------------------------|------|
|               |                                                           |                                                                                                       |                                                                                                                 |                                                                             | MIN.                      | MAX.                           |      |
| Transfer rate |                                                           | $\label{eq:Reception} \mbox{Reception}  4.0 \mbox{ V} \leq \mbox{EV}_{\mbox{DD}} \leq 5.5 \mbox{ V},$ |                                                                                                                 |                                                                             |                           | fмск/12 <sup>Note 1</sup>      | bps  |
|               |                                                           | $2.7 V \le V_b \le 4.0 V$                                                                             | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$                                     |                                                                             | 2.0                       | Mbps                           |      |
|               | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$ | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V},$                                           |                                                                                                                 |                                                                             | fмск/12 <sup>Note 1</sup> | bps                            |      |
|               |                                                           |                                                                                                       | $2.3~V \leq V_b \leq 2.7~V$                                                                                     | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$ |                           | 2.0                            | Mbps |
|               |                                                           |                                                                                                       | $\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$ |                                                                             |                           | f <sub>MCK</sub> /12<br>Note 1 | bps  |
|               |                                                           |                                                                                                       |                                                                                                                 | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$ |                           | 2.0                            | Mbps |

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:<br/>HS (high-speed main) mode:24 MHz (2.7 V  $\leq$  VDD  $\leq$  5.5 V)16 MHz (2.4 V  $\leq$  VDD  $\leq$  5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V<sub>b</sub>[V]: Communication line voltage
  - **2.** q: UART number (q = 0), g: PIM and POM number (g = 1)
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)



## (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(2/2)

(T₄ = –40 to +105°C, 2.4 V ≤ EV<sub>DD</sub> = V<sub>DD</sub> ≤ 5.5 V, Vss = EVss = 0 V)

| Parameter     | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conditions                                                                                                           |                                                            |                                                                                                                                    | HS (high-speed main) Mode |                | Unit |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|------|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |                                                            |                                                                                                                                    | MIN.                      | MAX.           |      |
| Transfer rate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Transmission                                                                                                         | $4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$                    |                                                                                                                                    |                           | Note 1         | bps  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      | $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$ T         | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 1.4 k $\Omega$ , $V_b$ = 2.7 V                               |                           | 2.0 Note 2     | Mbps |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$ |                                                                                                                                    |                           | Note 3         | bps  |
|               | $\begin{array}{c} 2.3 \ V \leq V_b \leq 2.7 \ V \\ maximum \ trans \\ C_b = 50 \ pF, \ R_b = 2 \\ \hline 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ \hline Theoretical \ value \\ maximum \ trans \\ C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ pF, \ R_b = 5 \\ \hline C_b = 50 \ $ | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$ |                                                            | 1.2 <sup>Note 4</sup>                                                                                                              | Mbps                      |                |      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                    | $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$ |                                                                                                                                    |                           | Note 5         | bps  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      | $1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}$                | Theoretical value of the maximum transfer rate<br>C <sub>b</sub> = 50 pF, R <sub>b</sub> = 5.5 k $\Omega$ , V <sub>b</sub> = 1.6 V |                           | 0.43<br>Note 6 | Mbps |

**Notes 1.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  EV\_{DD}  $\leq$  5.5 V and 2.7 V  $\leq$  V\_b  $\leq$  4.0 V

Maximum transfer rate =  $\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$  [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [\%]}$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V  $\leq$  EV\_{DD} < 4.0 V and 2.3 V  $\leq$  V\_b  $\leq$  2.7 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides.
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.



## (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

| ( | $T_{A} = -40$ to +105°C. | $2.4 V < EV_{DD} =$ | $V_{DD} < 5.5 V.$ | $V_{SS} = EV_{SS} = 0 V$ | ۱ |
|---|--------------------------|---------------------|-------------------|--------------------------|---|
|   | 17 4010 100 0            |                     | •••••••••         |                          | , |

(1/2)

| Parameter             | Symbol                                                                                                                | Conditions                                                                              |                                                                                                                                                                  | HS (high-spee | d main) Mode | Unit |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|------|
|                       |                                                                                                                       |                                                                                         |                                                                                                                                                                  |               | MAX.         |      |
| SCKp cycle time       | tkcy1                                                                                                                 | tксү1 ≥ 4/fc∟к                                                                          | $t_{\text{KCY1}} \geq 4/f_{\text{CLK}}  4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V},$ |               |              | ns   |
|                       |                                                                                                                       |                                                                                         | $C_b$ = 30 pF, $R_b$ = 1.4 k $\Omega$                                                                                                                            |               |              |      |
|                       |                                                                                                                       |                                                                                         | $2.7 \ V \le EV_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \le V_{\text{b}} \le 2.7 \ V,$                                                                                  | 600           |              | ns   |
|                       |                                                                                                                       |                                                                                         | $C_b$ = 30 pF, $R_b$ = 2.7 k $\Omega$                                                                                                                            |               |              |      |
|                       |                                                                                                                       |                                                                                         | $2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$                                         | 2300          |              | ns   |
|                       |                                                                                                                       |                                                                                         | $C_b$ = 30 pF, $R_b$ = 5.5 k $\Omega$                                                                                                                            |               |              |      |
| SCKp high-level width | tкн1                                                                                                                  | $4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$             |                                                                                                                                                                  | tксү1/2 – 150 |              | ns   |
|                       |                                                                                                                       | $C_b$ = 30 pF, $R_b$ = 1.4 k $\Omega$                                                   |                                                                                                                                                                  |               |              |      |
|                       |                                                                                                                       | $2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$                      |                                                                                                                                                                  | tксү1/2 – 340 |              | ns   |
|                       |                                                                                                                       | $C_b$ = 30 pF, $R_b$ = 2.7 k $\Omega$                                                   |                                                                                                                                                                  |               |              |      |
|                       |                                                                                                                       | $2.4 \text{ V} \le EV_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_b \le 2.0 \text{ V},$ |                                                                                                                                                                  | tксү1/2 – 916 |              | ns   |
|                       |                                                                                                                       | $C_b$ = 30 pF, $R_b$ = 5.5 k $\Omega$                                                   |                                                                                                                                                                  |               |              |      |
| SCKp low-level width  | <b>t</b> ĸ∟1                                                                                                          | $4.0 \text{ V} \leq \text{EV}_{\text{DD}}$                                              | $\leq 5.5$ V, 2.7 V $\leq V_b \leq 4.0$ V,                                                                                                                       | tксү1/2 – 24  |              | ns   |
|                       |                                                                                                                       | $C_b$ = 30 pF, $R_b$ = 1.4 k $\Omega$                                                   |                                                                                                                                                                  |               |              |      |
|                       |                                                                                                                       | $2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$                      |                                                                                                                                                                  | tксү1/2 – 36  |              | ns   |
|                       |                                                                                                                       | $C_b$ = 30 pF, $R_b$ = 2.7 k $\Omega$                                                   |                                                                                                                                                                  |               |              |      |
|                       | $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ |                                                                                         | tксү1/2 – 100                                                                                                                                                    |               | ns           |      |
|                       |                                                                                                                       | C <sub>b</sub> = 30 pF, F                                                               | $R_b$ = 5.5 k $\Omega$                                                                                                                                           |               |              |      |

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin

products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC

characteristics with TTL input buffer selected.



# (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

| Parameter                                                  | Symbol                                                                                         | Conditions                                                                                                                                      |                                                                                                                  | HS (high-spee   | ሪ (high-speed main) Mode |    |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|----|--|
|                                                            |                                                                                                |                                                                                                                                                 |                                                                                                                  | MIN.            | MAX.                     |    |  |
| SCKp cycle time Note 1                                     | <b>t</b> ксү2                                                                                  | $4.0 V \le EV_{DD} \le 5.5 V$ ,                                                                                                                 | $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},  20 \text{ MHz} < f_{\text{MCK}} \le 24 \text{ MHz}$ |                 |                          | ns |  |
|                                                            |                                                                                                | $2.7V\!\le\!V_b\!\le\!4.0V$                                                                                                                     | 8 MHz < fмск ≤ 20 MHz                                                                                            | <b>20/f</b> мск |                          | ns |  |
|                                                            |                                                                                                |                                                                                                                                                 | 4 MHz < fмск ≤ 8 MHz                                                                                             | <b>16/f</b> мск |                          | ns |  |
|                                                            |                                                                                                |                                                                                                                                                 | fмск ≤4 MHz                                                                                                      | <b>12/f</b> мск |                          | ns |  |
|                                                            |                                                                                                | $2.7 V \le EV_{DD} < 4.0 V$ ,                                                                                                                   | 20 MHz < fмск ≤ 24 MHz                                                                                           | <b>32/f</b> мск |                          | ns |  |
|                                                            |                                                                                                | $2.3V \!\leq\! V_b \!\leq\! 2.7V$                                                                                                               | 16 MHz < fмск ≤ 20 MHz                                                                                           | <b>28/f</b> мск |                          | ns |  |
|                                                            |                                                                                                |                                                                                                                                                 | $8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$                                                              | <b>24/f</b> мск |                          | ns |  |
|                                                            |                                                                                                |                                                                                                                                                 | $4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$                                                               | <b>16/f</b> мск |                          | ns |  |
|                                                            |                                                                                                |                                                                                                                                                 | fмск ≤ 4 MHz                                                                                                     | <b>12/f</b> мск |                          | ns |  |
|                                                            |                                                                                                | $2.4 V \le EV_{DD} < 3.3 V$ ,                                                                                                                   | 20 MHz < fмск ≤ 24 MHz                                                                                           | <b>72/f</b> мск |                          | ns |  |
|                                                            |                                                                                                | $1.6V \!\leq\! V_b \!\leq\! 2.0V$                                                                                                               | 16 MHz < fмск ≤ 20 MHz                                                                                           | <b>64/f</b> мск |                          | ns |  |
|                                                            |                                                                                                |                                                                                                                                                 | $8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$                                                                     | <b>52/f</b> мск |                          | ns |  |
|                                                            |                                                                                                |                                                                                                                                                 | 4 MHz < fмск ≤ 8 MHz                                                                                             | <b>32/f</b> мск |                          | ns |  |
|                                                            |                                                                                                |                                                                                                                                                 | fмск ≤4 MHz                                                                                                      | <b>20/f</b> мск |                          | ns |  |
| SCKp high-/low-level width                                 | $ \begin{array}{ll} \label{eq:constraint} \begin{tabular}{lllllllllllllllllllllllllllllllllll$ |                                                                                                                                                 | V,                                                                                                               | tkcy2/2 - 24    |                          | ns |  |
|                                                            |                                                                                                | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$                         |                                                                                                                  | tkcy2/2 - 36    |                          | ns |  |
|                                                            |                                                                                                | $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$<br>$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$                         |                                                                                                                  | tkcy2/2 - 100   |                          | ns |  |
| SIp setup time<br>(to SCKp <sup>↑</sup> ) <sup>Note2</sup> | tsık2                                                                                          | $4.0 V \le EV_{DD} < 5.5$<br>$2.7 V \le V_b \le 4.0 V$                                                                                          | V,                                                                                                               | 1/fмск + 40     |                          | ns |  |
|                                                            |                                                                                                | $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$                         |                                                                                                                  | 1/fмск + 40     |                          | ns |  |
|                                                            |                                                                                                | $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$<br>$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$                         |                                                                                                                  | 1/fмск + 60     |                          | ns |  |
| SIp hold time<br>(from SCKp↑) <sup>Note 3</sup>            | tksi2                                                                                          | $4.0 V \le EV_{DD} < 5.5 V,$<br>$2.7 V \le V_b \le 4.0 V$                                                                                       |                                                                                                                  | 1/fмск + 62     |                          | ns |  |
|                                                            |                                                                                                | $\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$                                                 |                                                                                                                  | 1/fмск + 62     |                          | ns |  |
|                                                            |                                                                                                | $\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$                                                 |                                                                                                                  | 1/fмск + 62     |                          | ns |  |
| Delay time from SCKp↓ to<br>SOp output <sup>Note 4</sup>   | tkso2                                                                                          |                                                                                                                                                 |                                                                                                                  |                 | 2/fмск + 240             | ns |  |
|                                                            |                                                                                                | $\begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$ |                                                                                                                  |                 | 2/fмск + 428             | ns |  |
|                                                            |                                                                                                | 2.4 V $\leq$ EV <sub>DD</sub> < 3.3 V, 1.6 V $\leq$ V <sub>b</sub> $\leq$ 2.0 V<br>C <sub>b</sub> = 30 pF, R <sub>b</sub> = 5.5 kΩ              |                                                                                                                  |                 | 2/fмск + 1146            | ns |  |

(Notes, Caution and Remarks are listed on the page after the next page.)



## 3.5.2 Serial interface IICA

## (1) $I^2C$ standard mode

### (TA = -40 to +105°C, 2.4 V $\leq$ EV<sub>DD</sub> = V<sub>DD</sub> $\leq$ 5.5 V, Vss = EVss = 0 V)

| Parameter                                       | Symbol                                                                                        | Conditions                                                    |                                        | HS (high-spee | Unit |     |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|---------------|------|-----|
|                                                 |                                                                                               |                                                               |                                        | MIN.          | MAX. |     |
| SCLA0 clock frequency                           | fsc∟                                                                                          | Standard mode:                                                | $2.7~V \leq EV_{\text{DD}} \leq 5.5~V$ | 0             | 100  | kHz |
|                                                 |                                                                                               | $f_{CLK} \ge 1 MHz$                                           | $2.4~V \leq EV_{\text{DD}} \leq 5.5~V$ | 0             | 100  | kHz |
| Setup time of restart condition                 | tsu:sta                                                                                       | $2.7~V \leq EV_{\text{DD}} \leq 5.$                           | 5 V                                    | 4.7           |      | μs  |
|                                                 |                                                                                               | $2.4 V \le EV_{DD} \le 5.$                                    | 5 V                                    | 4.7           |      | μs  |
| Hold time <sup>Note 1</sup>                     | thd:sta                                                                                       | $2.7~V \leq EV_{\text{DD}} \leq 5.$                           | 5 V                                    | 4.0           |      | μs  |
|                                                 |                                                                                               | $2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ |                                        | 4.0           |      | μs  |
| Hold time when SCLA0 = "L"                      | <b>t</b> LOW                                                                                  | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ |                                        | 4.7           |      | μs  |
|                                                 |                                                                                               | $2.4~V \leq EV_{\text{DD}} \leq 5.5~V$                        |                                        | 4.7           |      | μs  |
| Hold time when SCLA0 = "H" thigh 2.             |                                                                                               | $2.7~V \leq EV_{\text{DD}} \leq 5.5~V$                        |                                        | 4.0           |      | μs  |
|                                                 |                                                                                               | $2.4~V \leq EV_{\text{DD}} \leq 5.5~V$                        |                                        | 4.0           |      | μs  |
| Data setup time (reception)                     | tsu:dat                                                                                       | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ |                                        | 250           |      | ns  |
|                                                 |                                                                                               | $2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ |                                        | 250           |      | ns  |
| Data hold time (transmission) <sup>Note 2</sup> | thd:dat                                                                                       | $2.7~V \leq EV_{\text{DD}} \leq 5.$                           | 5 V                                    | 0             | 3.45 | μs  |
|                                                 |                                                                                               | $2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$   |                                        | 0             | 3.45 | μs  |
| Setup time of stop condition                    | up time of stop condition tsu:sto $2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$ |                                                               | 4.0                                    |               | μs   |     |
|                                                 |                                                                                               | $2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$   |                                        | 4.0           |      | μs  |
| Bus-free time                                   | <b>t</b> BUF                                                                                  | $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$ |                                        | 4.7           |      | μs  |
|                                                 |                                                                                               | $2.4~V \le EV_{\text{DD}} \le 5.$                             | 5 V                                    | 4.7           |      | μs  |

**Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

**Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode:  $C_b$  = 400 pF,  $R_b$  = 2.7 k $\Omega$ 



## 3.6 Analog Characteristics

## 3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

|                                                                    |                                | Reference Voltage           |                                          |  |  |  |  |  |
|--------------------------------------------------------------------|--------------------------------|-----------------------------|------------------------------------------|--|--|--|--|--|
|                                                                    | Reference voltage (+) = AVREFP | Reference voltage (+) = VDD | Reference voltage (+) = V <sub>BGR</sub> |  |  |  |  |  |
| Input channel                                                      | Reference voltage (-) = AVREFM | Reference voltage (-) = Vss | Reference voltage (-) = AVREFM           |  |  |  |  |  |
| ANIO, ANI1                                                         | -                              | Refer to 3.6.1 (3).         | Refer to 3.6.1 (4).                      |  |  |  |  |  |
| ANI16 to ANI23                                                     | Refer to 3.6.1 (2).            |                             |                                          |  |  |  |  |  |
| Internal reference voltage<br>Temperature sensor output<br>voltage | Refer to <b>3.6.1 (1)</b> .    |                             | _                                        |  |  |  |  |  |

## (1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage

| Parameter                              | Symbol                                                                                           | Conditions                                                                                                                              |                                                               |                | TYP.        | MAX.  | Unit |
|----------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|-------------|-------|------|
| Resolution                             | RES                                                                                              |                                                                                                                                         |                                                               |                |             | 10    | bit  |
| Overall error <sup>Note 1</sup>        | AINL                                                                                             | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note 3</sup>                                                             | $2.4 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$      |                | 1.2         | ±3.5  | LSB  |
| Conversion time                        | <b>t</b> CONV                                                                                    | 10-bit resolution<br>Target pin: Internal reference<br>voltage, and temperature<br>sensor output voltage (HS<br>(high-speed main) mode) | $3.6~V \leq V_{\text{DD}} \leq 5.5~V$                         | 2.375          |             | 39    | μs   |
|                                        |                                                                                                  |                                                                                                                                         | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                         | 3.5625         |             | 39    | μs   |
|                                        |                                                                                                  |                                                                                                                                         | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$                         | 17             |             | 39    | μs   |
| Zero-scale error <sup>Notes 1, 2</sup> | Ezs                                                                                              | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note 3</sup>                                                             | $1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ |                |             | ±0.25 | %FSR |
| Full-scale error <sup>Notes 1, 2</sup> | Efs                                                                                              | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note 3</sup>                                                             | $1.8 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$      |                |             | ±0.25 | %FSR |
| Integral linearity error               | ILE                                                                                              | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note 3</sup>                                                             | $1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ |                |             | ±2.5  | LSB  |
| Differential linearity error           | DLE                                                                                              | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note 3</sup>                                                             | $1.8 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$      |                |             | ±1.5  | LSB  |
| Analog input voltage                   | V <sub>AIN</sub> Internal reference voltage (2.4 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V, HS (high | Internal reference voltage (2.4 V $\leq$ VDD $\leq$ 5.5 V, HS (high-                                                                    | speed main) mode)                                             |                | VBGR Note 4 |       | V    |
|                                        | Temperature sensor output voltage (2.4 V $\leq$ VDD $\leq$ 5.5 V, HS (high-speed main) m         |                                                                                                                                         | tage<br>speed main) mode)                                     | VTMPS25 Note 4 |             | V     |      |

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$ 

#### **Notes 1.** Excludes quantization error ( $\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV<sub>REFP</sub> < V<sub>DD</sub>, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
- 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

### R5F10RLAAFB, R5F10RLCAFB R5F10RLAGFB, R5F10RLCGFB



Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

