

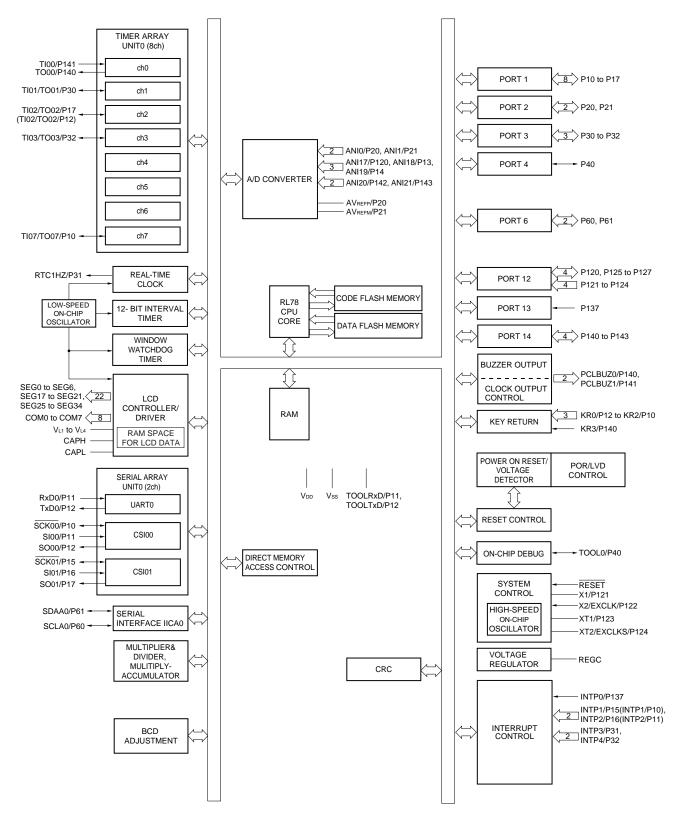
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Ξ·ΧΕΙ

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	47
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10rlcgfb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5.2 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

RENESAS

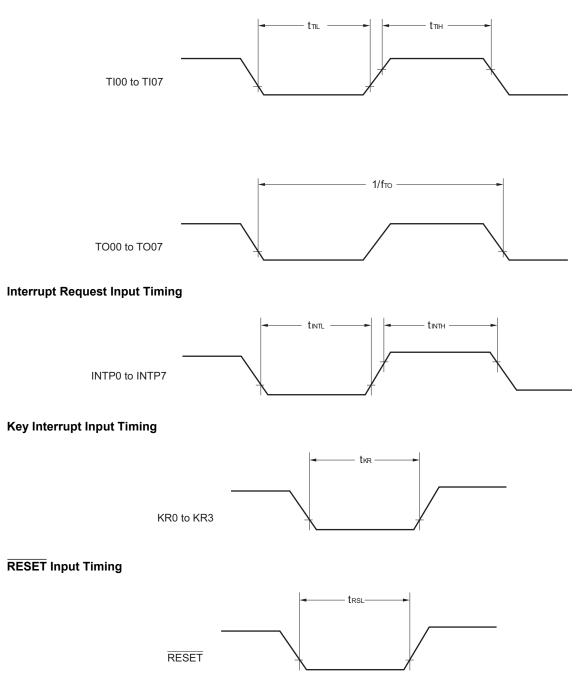
2. ELECTRICAL SPECIFICATIONS (A, G: $T_A = -40$ to $+85^{\circ}$ C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)" and "G: Industrial applications (with $T_A = -40$ to $+85^{\circ}$ C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD, or EVSS pin, replace EVDD with VDD, or replace EVSS with VSS.

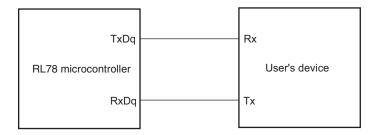
2.4 AC Characteristics

2.4.1 Basic operation

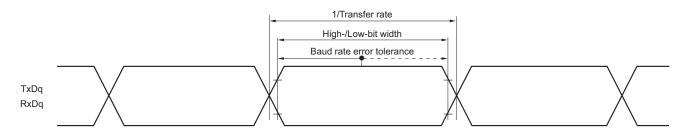

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

	Symbol		Conditi	ons	••••	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main			$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.04167		1	μs
instruction execution time)		system clock (fmain)	main) mode	e	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
		operation	LV (low volt main) mode		$1.6 V \le V_{DD} \le 5.5 V$	0.25		1	μs
			LS (low-spe main) mode		$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μs
		Subsystem operation	clock (fsuв)		$1.8 V \le V_{DD} \le 5.5 V$	28.5	30.5	31.3	μs
		In the self	HS (high-sp		$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.04167		1	μs
		programmin g mode	main) mode		$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
			LV (low volt main) mode		$1.8 V \le V_{DD} \le 5.5 V$	0.25		1	μs
			LS (low-spe main) mode		$1.8 V \leq V_{DD} \leq 5.5 V$	0.125		1	μs
External main system clock	fex	$2.7~V \leq V_{\text{DD}}$	≤ 5.5 V			1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}}$	< 2.7 V			1.0		16.0	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$				1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}}$		1.0		4.0	MHz		
	fexs					32		35	kHz
External main system clock input	texh, texl	$2.7~V \leq V_{\text{DD}}$	≤ 5.5 V			24			ns
high-level width, low-level width		$2.4~V \leq V_{\text{DD}}$	< 2.7 V			30			ns
		$1.8 \ V \leq V_{\text{DD}}$	< 2.4 V			60			ns
		$1.6 \ V \leq V_{\text{DD}}$	< 1.8 V			120			ns
	t _{EXHS} , t _{EXLS}					13.7			μs
TI00 to TI07 input high-level width, low-level width	tт⊪, tт⊫					1/fмск+10			ns
TO00 to TO07 output frequency	fтo	HS (high-sp		0 V ≤	$EV_{DD} \le 5.5 V$			16	MHz
		main) mode	2.7	7 V ≤	EV _{DD} < 4.0 V			8	MHz
			2.4	4 V ≤	EVDD < 2.7 V			4	MHz
		LS (low-spe main) mode		$1.8 \text{ V} \le EV_{\text{DD}} \le 5.5 \text{ V}$				4	MHz
		LV (low volt main) mode		6 V ≤	$EV_{DD} \leq 5.5 V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-sp			$EV_{DD} \le 5.5 V$			16	MHz
frequency		main) mode	2.7	7 V ≤	EV _{DD} < 4.0 V			8	MHz
					EVDD < 2.7 V			4	MHz
		LS (low-spe main) mode		8 V ≤	$EV_{DD} \le 5.5 V$			4	MHz
		LV (low-volt	-		$EV_{DD} \leq 5.5 V$			4	MHz
		main) mode	1.0		EVDD < 1.8 V			2	MHz
Interrupt input high-level width, low-level width	tinth,	INTP0			$V_{\text{DD}} \leq 5.5 \text{ V}$	1			μs
	t intl	INTP1 to IN			$EV_{DD} \leq 5.5 V$	1			μs
Key interrupt input low-level width	t kr	KR0 to KR3			$EV_{DD} \leq 5.5 V$	250			ns
			1.6	6 V ≤	EVDD < 1.8 V	1			μs
RESET low-level width	trsl					10			μs

Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

TI/TO Timing



UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) ($T_A = -40$ to $+85^{\circ}C$, 1.6 V $\leq EV_{DD} = V_{DD} \leq 5.5$ V, Vss = EVss = 0 V)

Parameter	Symbol	Cc	HS (high- speed main) Mode	LS (low- speed main) Mode	LV (low- voltage main) Mode	Unit	Para meter	Symbol	Conditions	
Delay time from SCKp↓ to SOp output ^{Note 3}	Юр	C = 30 pF ^{Note 4}	$4.0~V \leq EV_{DD} \leq 5.5~V$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 2.4 \text{ V}$				2/fмск + 110		2/fмск + 110	ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD}} < 1.8 \text{ V}$						2/fмск + 220	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

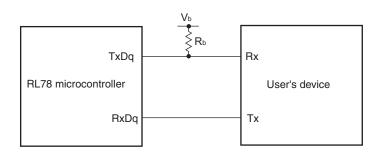
(1/2)

Parameter	Symbol		Conditions		HS (high main) l	•	LS (low main)		LV (low- main)	-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception		″dd ≤ 5.5 V, ≤ 4.0 V		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
		2.7 V≤EVD	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps	
			$\begin{array}{l} 2.7 \ V \leq E V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
		$2.4 V \le EV_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps	
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			1.8 V ≤ EV 1.6 V ≤ V _b	′ _{DD} < 3.3 V, ≤ 2.0 V				fмск/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$				1.3		0.6	Mbps		

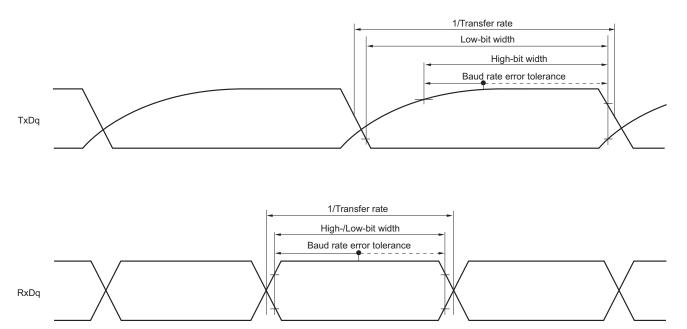
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD} \ge V_b$.
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

 HS (high-speed main) mode:
 24 MHz $(2.7 V \le V_{DD} \le 5.5 V)$


 16 MHz $(2.4 V \le V_{DD} \le 5.5 V)$

 LS (low-speed main) mode:
 8 MHz $(1.8 V \le V_{DD} \le 5.5 V)$


 LV (low-voltage main) mode:
 4 MHz $(1.6 V \le V_{DD} \le 5.5 V)$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

 Remarks 1. R_b[Ω]:Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 2. q: UART number (q = 0, 1), g: PIM and POM number (g = 1)

> fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

- Notes 1. For CSI00, set a cycle of 2/fmck or longer. For CSI01, set a cycle of 4/fmck or longer.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 3. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

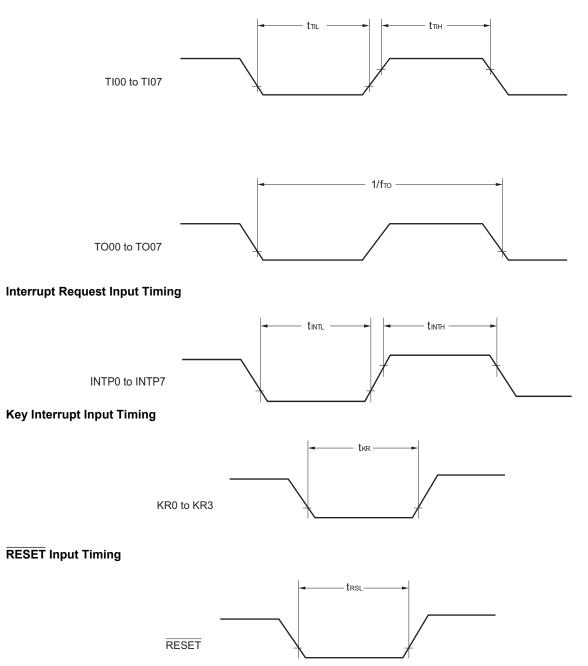
		Reference Voltage	
Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM
ANIO, ANI1	-	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI23	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage

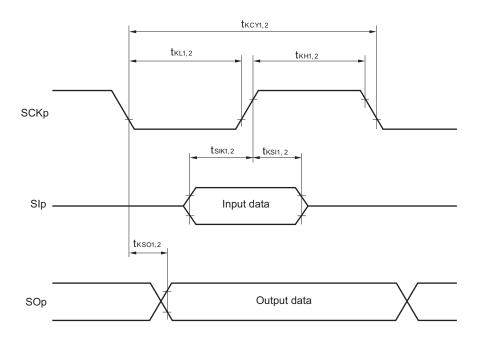
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	E _{zs}	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Full-scale error ^{Notes 1, 2}	E _{FS}	No and the solution AV _{REFP} = V _{DD} Note 3	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
			$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Integral linearity	ILE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±2.5	LSB
error ^{Note 1}		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 4}}$			±5.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±1.5	LSB
error ^{Note 1}		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	Internal reference voltage			VBGR Note 5		V
		$(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{HS} (high-$					
	VBGR	Temperature sensor output vol (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-		VTMPS25 Note 5		V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

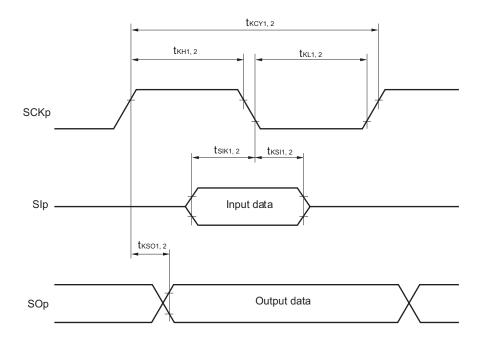

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} < V_{DD}, the MAX. values are as follows.
 - Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

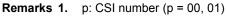
Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

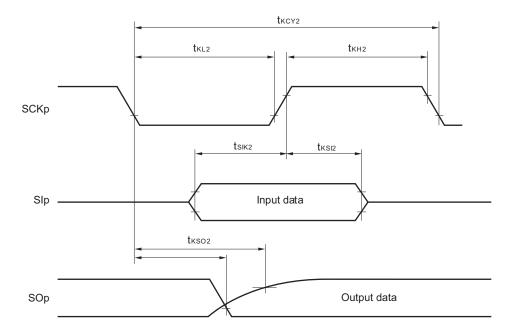

Integral linearity error/Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- 4. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

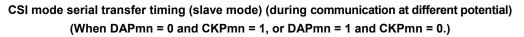
TI/TO Timing

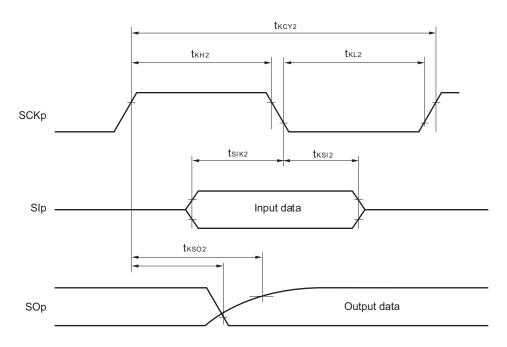





CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)





2. m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

3.5.2 Serial interface IICA

(1) I^2C standard mode

(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Co	onditions	HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.]
SCLA0 clock frequency	fsc∟	Standard mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
		fclκ ≥ 1 MHz	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7 V \leq EV_{DD} \leq 5.$.5 V	4.7		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.1 \text{ C}$.5 V	4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$.5 V	4.0		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$.5 V	4.7		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.$.5 V	4.7		μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		4.0		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.1 \text{ C}$.5 V	4.0		μs
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$		250		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.$.5 V	250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$.5 V	0	3.45	μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.$.5 V	0	3.45	μs
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.$.5 V	4.0		μs
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.$.5 V	4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$.5 V	4.7		μs
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.$	5 V	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI23

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time			$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		$AV_{REFP} = EV_{DD} = V_{DD}^{Note 3}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \le AV_{REFP} \le 5.5~V$			±3.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI23		0		AVREFP and EVDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} < EV_{DD} = V_{DD}, the MAX. values are as follows.

Overall error: Add \pm 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

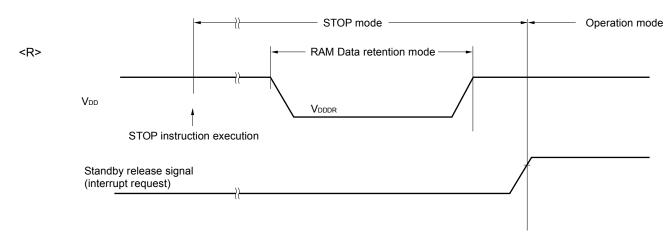
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Cond	Conditions			MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
- **4.** When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.



<R> 3.8 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}$)
---	---

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclĸ	$1.8~V \leq V_{DD} \leq 5.5~V$	1		24	MHz
<r></r>	Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	1,000			Times
<r></r>	Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C^{Note 4}$		1,000,000		
<r></r>			Retained for 5 years $T_A = 85^{\circ}C^{Note 4}$	100,000			
<r></r>			Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

4. This temperature is the average value at which data are retained.

3.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

<R>

Revision History

RL78/L12 Datasheet

			Description		
Rev.	Date	Page	Summary		
0.01	Feb 20, 2012	-	First Edition issued		
0.02 Sep 26, 2012	7, 8	Modification of caution 2 in 1.3.5 64-pin products			
		15	Modification of I/O port in 1.6 Outline of Functions		
	-	Modification of 2. ELECTRICAL SPECIFICATIONS (TARGET)			
		-	Update of package drawings in 3. PACKAGE DRAWINGS		
1.00	Jan 31, 2013	11 to 15	Modification of 1.5 Block Diagram		
		16	Modification of Note 2 in 1.6 Outline of Functions		
		17	Modification of 1.6 Outline of Functions		
	-	Deletion of target in 2. ELECTRICAL SPECIFICATIONS			
		18	Addition of caution 2 to 2. ELECTRICAL SPECIFICATIONS		
		19	Addition of description, note 3, and remark 2 to 2.1 Absolute Maximum Ratings		
		20	Modification of description and addition of note to 2.1 Absolute Maximum Ratings		
		22, 23	Modification of 2.2 Oscillator Characteristics		
		30	Modification of notes 1 to 4 in 2.3.2 Supply current characteristics		
		32	Modification of notes 1, 3 to 6, 8 in 2.3.2 Supply current characteristics		
		34	Modification of notes 7, 9, 11, and addition of notes 8, 12 to 2.3.2 Supply current		
		characteristics			
		36	Addition of description to 2.4 AC Characteristics		
	38, 40 to	Modification of 2.5.1 Serial array unit			
		42, 44 to			
		46, 48 to			
		52, 54, 55			
		57, 58	Modification of 2.5.2 Serial interface IICA		
		62	Modification of 2.6.2 Temperature sensor/internal reference voltage characteristics		
	64	Addition of note and caution in 2.6.5 Supply voltage rise time			
	69	Modification of 2.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics			
		69	Modification of conditions in 2.9 Timing Specs for Switching Flash Memory Programming Modes		
		70	Modification of 2.10 Timing Specifications for Switching Flash Memory		
			Programming Modes		
2.00	Jan 10, 2014	1	Modification of 1.1 Features		
		3	Modification of Figure 1-1		
		4	Modification of part number, note, and caution		
		5 to 10	Deletion of COMEXP pin in 1.3.1 to 1.3.5.		
		11	Modification of description in 1.4 Pin Identification		
		12 to 16	Deletion of COMEXP pin in 1.5.1 to 1.5.5		
		17	Modification of table and note 2 in 1.6 Outline of Functions		
	20	Modification of description in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/3)			
	21	Modification of description and note 2 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (2/3)			
	23	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics			
		23	Modification of table in 2.2.2 On-chip oscillator characteristics		
		24	Modification of table, notes 2 and 3 in 2.3.1 Pin characteristics (1/5)		
		25	Modification of notes 1 and 3 in 2.3.1 Pin characteristics (2/5)		
		30	Modification of notes 1 and 4 in 2.3.2 Supply current characteristics (1/3)		
		31, 32	Modification of table, notes 1, 5, and 6 in 2.3.2 Supply current characteristics (2/3)		
		33, 34	Modification of table, notes 1, 3, 4, and 5 to 10 in 2.3.2 Supply current characteristics (3/3)		

The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-sease Lectronics nong round Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +55-631-30200, Fax: +65-6213-0300 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141