

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	R32C/100
Core Size	16/32-Bit
Speed	50MHz
Connectivity	EBI/EMI, I ² C, IEBus, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	84
Program Memory Size	640KB (640K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f64167dfb-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Unit	Function	Explanation
Timer	Timer A	 16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse-width modulation (PWM) mode Two-phase pulse signal processing in event counter mode (two-phase encoder input) × 3
	Timer B	 16-bit timer × 6 Timer mode, event counter mode, pulse frequency measurement mode, pulse-width measurement mode
	Three-phase motor control timer	Three-phase motor control timer × 1 (timers A1, A2, A4, and B2 used) 8-bit programmable dead time timer
Serial Interface	UART0 to UART8	Asynchronous/synchronous serial interface × 9 channels • I ² C-bus (UART0 to UART6) • Special mode 2 (UART0 to UART6) • IEBus (optional ⁽¹⁾) (UART0 to UART6)
A/D Converter		10-bit resolution × 26 channels Sample and hold functionality integrated
D/A Converter		8-bit resolution × 2
CRC Calculator	r	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1)
X-Y Converter		16 bits × 16 bits
Intelligent I/O		Time measurement (input capture): 16 bits × 16 Waveform generation (output compare): 16 bits × 19 Serial interface: Variable-length synchronous serial I/O mode, IEBus mode (optional ⁽¹⁾)
Multi-master I ²	C-bus Interface	1 channel
Flash Memory		Programming and erasure supply voltage: VCC = 3.0 to 5.5 V Minimum endurance: 1,000 program/erase cycles Security protection: ROM code protect, ID code protect Debugging: On-chip debug, on-board flash programming
Operating Frequency/Supply Voltage		64 MHz (high speed version)/VCC = 3.0 to 5.5 V 50 MHz (normal speed version)/VCC = 3.0 to 5.5 V
Operating Temperature		-20°C to 85°C (N version) -40°C to 85°C (D version) -40°C to 85°C (P version)
Current Consumption		45 mA (VCC = 5.0 V, f(CPU) = 64 MHz) 35 mA (VCC = 5.0 V, f(CPU) = 50 MHz) 8 μA (VCC = 3.3 V, f(XCIN) = 32.768 kHz, in wait mode)
Package		100-pin plastic molded LQFP (PLQP0100KB-A)

Table 1.4 Performance Overview for the 100-pin Package (2/2)

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
1		P9_6			TXD4/SDA4/SRXD4		ANEX1	
2		P9_5			CLK4		ANEX0	
3		P9_4		TB4IN	CTS4/RTS4/SS4		DA1	
4		P9_3		TB3IN	CTS3/RTS3/SS3		DA0	
5		P9_2		TB2IN	TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		
6		P9_1		TB1IN	RXD3/SCL3/STXD3	ISRXD2/IEIN		
7		P9_0		TB0IN	CLK3			
8		P14_6	INT8					
9		P14_5	INT7					
10		P14_4	INT6					
11		P14_3						
12	VDC0							
13		P14_1						
14	VDC1							
15	NSD							
16	CNVSS							
17	XCIN	P8_7						
18	XCOUT	P8_6						
19	RESET							
20	XOUT							
21	VSS							
22	XIN							
23	VCC							
24		P8_5	NMI					
25		P8_4	INT2					
26		P8_3	INT1					
27		P8_2	INT0					
28		P8_1		TA4IN/U	CTS5/RTS5/SS5	IIO1_5/UD0B/UD1B		
29		P8_0		TA4OUT/U	RXD5/SCL5/STXD5	UD0A/UD1A		
30		P7_7		TA3IN	CLK5	IIO1_4/UD0B/UD1B		
31		P7_6		TA3OUT	TXD5/SDA5/SRXD5/ CTS8/RTS8	IIO1_3/UD0A/UD1A		
32		P7_5		TA2IN/W	RXD8	IIO1_2		
33		P7_4		TA2OUT/W	CLK8	IIO1_1		
34		P7_3		TA1IN/V	CTS2/RTS2/SS2/TXD8	IIO1_0		
35		P7_2		TA1OUT/V	CLK2			
36		P7_1		TA0IN/ TB5IN	RXD2/SCL2/STXD2/ MSCL	IIO1_7/OUTC2_2/ ISRXD2/IEIN		

Table 1.7	Pin Characteristics f	or the	144-pin	Package	(1/4)
-----------	-----------------------	--------	---------	---------	-------

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
115		P11_3			CTS8/RTS8	IIO1_3		CS3/WR2
116		P11_2			RXD8	IIO1_2		CS2
117		P11_1			CLK8	IIO1_1		CS1
118		P11_0			TXD8	IIO1_0		CS0
119		P0_3					AN0_3	D3
120		P0_2					AN0_2	D2
121		P0_1					AN0_1	D1
122		P0_0					AN0_0	D0
123		P15_7			CTS6/RTS6/SS6	IIO0_7	AN15_7	
124		P15_6			CLK6	IIO0_6	AN15_6	
125		P15_5			RXD6/SCL6/STXD6	IIO0_5	AN15_5	
126		P15_4			TXD6/SDA6/SRXD6	IIO0_4	AN15_4	
127		P15_3			CTS7/RTS7	IIO0_3	AN15_3	
128		P15_2			RXD7	IIO0_2	AN15_2	
129		P15_1			CLK7	IIO0_1	AN15_1	
130	VSS							
131		P15_0			TXD7	IIO0_0	AN15_0	
132	VCC							
133		P10_7	KI3				AN_7	
134		P10_6	KI2				AN_6	
135		P10_5	KI1				AN_5	
136		P10_4	KI0				AN_4	
137		P10_3					AN_3	
138		P10_2					AN_2	
139		P10_1					AN_1	
140	AVSS							
141		P10_0					AN_0	
142	VREF							
143	AVCC							
144		P9_7			RXD4/SCL4/STXD4		ADTRG	

 Table 1.10
 Pin Characteristics for the 144-pin Package (4/4)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
76		P1_2				1100_2/1101_2		D10
77		P1_1				IIO0_1/IIO1_1		D9
78		P1_0				IIO0_0/IIO1_0		D8
79		P0_7					AN0_7	D7
80		P0_6					AN0_6	D6
81		P0_5					AN0_5	D5
82		P0_4					AN0_4	D4
83		P0_3					AN0_3	D3
84		P0_2					AN0_2	D2
85		P0_1					AN0_1	D1
86		P0_0					AN0_0	D0
87		P10_7	KI3				AN_7	
88		P10_6	KI2				AN_6	
89		P10_5	KI1				AN_5	
90		P10_4	KI0				AN_4	
91		P10_3					AN_3	
92		P10_2					AN_2	
93		P10_1					AN_1	
94	AVSS							
95		P10_0					AN_0	
96	VREF							
97	AVCC							
98		P9_7			RXD4/SCL4/STXD4		ADTRG	
99		P9_6			TXD4/SDA4/SRXD4		ANEX1	
100		P9_5			CLK4		ANEX0	

 Table 1.13
 Pin Characteristics for the 100-pin Package (3/3)

Function	Symbol	I/O	Description
I/O port (1, 2)	P0_0 to P0_7,		I/O ports in CMOS. Each port can be programmed to input
	P1_0 to P1_7,		or output under the control of the direction register.
	P2_0 to P2_7,		Some ports are 5 V tolerant inputs.
	P3_0 to P3_7,		Pull-up resistors and N-channel open drain setting can be
	P4_0 to P4_7,		enabled on some ports. Refer to Table 1.18 "Pin
	P5_0 to P5_7,		Specifications" for details
	P6_0 to P6_7,		
	P7_0 to P7_7,		
	P8_0 to P8_4,	I/O	
	P8_6, P8_7,		
	$P9_0$ to $P9_7$,		
	$P10_0$ to $P10_7$,		
	$P11_0$ to $P11_4$, $P12_0$ to $P12_7$		
	$P12_0 l0 P12_7,$ $P13_0 to P13_7$		
	$P13_0 \ 10 \ P13_7,$		
	$P14_0 to P15_7$		
Input part (2)	P9_1 (for 100_pin		Input port in CMOS
input port (=)	nackage)		Pull-un resistor is selectable
	P14 1 (for 144-	I	Refer to Table 1 18 "Pin Specifications" for details
	pin package)		
Timer A	TADOUT to		Timers A0 to A4 input/output
	TA4OUT	I/O	
	TA0IN to TA4IN	I	Timers A0 to A4 input
Timer B	TB0IN to TB5IN	I	Timers B0 to B5 input
Three-phase	U, <u>U</u> , V, <u>V</u> , W, <u>W</u>		Three-phase motor control timer output
motor control		0	
timer output			
Serial interface	CTS0 to CTS8	l	Handshake input
	RTS0 to RTS8	0	Handshake output
	CLK0 to CLK8	I/O	Transmit/receive clock input/output
	RXD0 to RXD8	I	Serial data input
	TXD0 to TXD8	0	Serial data output
l ² C-bus	SDA0 to SDA6	I/O	Serial data input/output
(simplified)	SCL0 to SCL6	I/O	Transmit/receive clock input/output
Serial interface	STXD0 to	0	Serial data output in slave mode
special functions	STXD6)	
	SRXD0 to SRXD6	Ι	Serial data input in slave mode
	SS0 to SS6	I	Input to control serial interface special functions

Table 1.16 Pin Definitions and Functions (3/4)

Notes:

1. Port P9_1 in the 100-pin package is an input-only port.

2. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only.

2. Central Processing Unit (CPU)

The CPU contains the registers shown below. There are two register banks each consisting of registers R2R0, R3R1, R6R4, R7R5, A0 to A3, SB, and FB.

Figure 2.1 CPU Registers

2.1.8.5 Register Bank Select Flag (B flag)

This flag selects a register bank. It indicates 0 when register bank 0 is selected, and 1 when register bank 1 is selected.

2.1.8.6 Overflow Flag (O flag)

This flag becomes 1 when the result of an operation overflows; otherwise it is 0.

2.1.8.7 Interrupt Enable Flag (I flag)

This flag enables maskable interrupts. To disable maskable interrupts, set this flag to 0. To enable them, set this flag to 1. When an interrupt is accepted, the flag becomes 0.

2.1.8.8 Stack Pointer Select Flag (U flag)

To select the interrupt stack pointer (ISP), set this flag to 0. To select the user stack pointer (USP), set this flag to 1.

It becomes 0 when a hardware interrupt is accepted or when an INT instruction designated by a software interrupt number from 0 to 127 is executed.

2.1.8.9 Floating-point Underflow Flag (FU flag)

This flag becomes 1 when an underflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.10 Floating-point Overflow Flag (FO flag)

This flag becomes 1 when an overflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.11 Processor Interrupt Priority Level (IPL)

The processor interrupt priority level (IPL), consisting of 3 bits, selects a processor interrupt priority level from level 0 to 7. An interrupt is enabled when the interrupt request level is higher than the selected IPL.

When the processor interrupt priority level (IPL) is set to 111b (level 7), all interrupts are disabled.

2.1.8.12 Fixed-point Radix Point Designation Bit (DP bit)

This bit designates the radix point. It also specifies which portion of the fixed-point multiplication result to extract. It is used for the MULX instruction.

2.1.8.13 Floating-point Rounding Mode (RND)

The 2-bit floating-point rounding mode selects a rounding mode for floating-point calculation results.

2.1.8.14 Reserved

Only set this bit to 0. The read value is undefined.

Table 4.13	SFR List (13)
------------	---------------

Address	Register	Symbol	Reset Value
000320h			
000321h			
000322h			
000323h			
000324h	UART3 Special Mode Register 4	U3SMR4	00h
000325h	UART3 Special Mode Register 3	U3SMR3	00h
000326h	UART3 Special Mode Register 2	U3SMR2	00h
000327h	UART3 Special Mode Register	U3SMR	00h
000328h	UART3 Transmit/Receive Mode Register	U3MR	00h
000329h	UART3 Bit Rate Register	U3BRG	XXh
00032Ah	UART3 Transmit Buffer Register	U3TB	XXXXh
00032Bh			
00032Ch	UART3 Transmit/Receive Control Register 0	U3C0	0000 1000b
00032Dh	UART3 Transmit/Receive Control Register 1	U3C1	0000 0010b
00032Eh	UART3 Receive Buffer Register	U3RB	XXXXh
00032Fh			
000330h			
000331h			
000332h			
000333h			
000334h	UART2 Special Mode Register 4	U2SMR4	00h
000335h	UART2 Special Mode Register 3	U2SMR3	00h
000336h	UART2 Special Mode Register 2	U2SMR2	00h
000337h	UART2 Special Mode Register	U2SMR	00h
000338h	UART2 Transmit/Receive Mode Register	U2MR	00h
000339h	UART2 Bit Rate Register	U2BRG	XXh
00033Ah	UART2 Transmit Buffer Register	U2TB	XXXXh
00033Bh			
00033Ch	UART2 Transmit/Receive Control Register 0	U2C0	0000 1000b
00033Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000 0010b
00033Eh	UART2 Receive Buffer Register	U2RB	XXXXh
00033Fh			
000340h	Count Start Register	TABSR	0000 0000b
000341h	Clock Prescaler Reset Register	CPSRF	0XXX XXXXb
000342h	One-shot Start Register	ONSF	0000 0000b
000343h	Trigger Select Register	TRGSR	0000 0000b
000344h	Increment/Decrement Select Register	UDF	0000 0000b
000345h			
000346h	Timer A0 Register	TAO	XXXXh
000347h			
000348h	limer A1 Register	ľA1	XXXXh
000349h			
00034Ah	limer A2 Register	TA2	XXXXh
00034Bh			
00034Ch	limer A3 Register	TA3	XXXXh
00034Dh			
00034Eh	limer A4 Register	TA4	XXXXh
00034Fh			

X: Undefined

Blanks are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0003E0h			
0003E1h			
0003E2h			
0003E3h			
0003E4h			
0003E5h			
0003E6h			
0003E7h			
0003E8h			
0003E9h			
0003EAh			
0003EBh			
0003ECh			
0003EDh			
0003EEh			
0003EFh			
0003F0h	Pull-up Control Register 0	PUR0	0000 0000b
0003F1h	Pull-up Control Register 1	PUR1	XXXX X0XXb
0003F2h	Pull-up Control Register 2	PUR2	000X XXXXb
0003F3h	Pull-up Control Register 3	PUR3	0000 0000b
0003F4h	Pull-up Control Register 4	PUR4	XXXX 0000b
0003F5h			
0003F6h			
0003F7h			
0003F8h			
0003F9h			
0003FAh			
0003FBh			
0003FCh			
0003FDh			
0003FEh			
0003FFh	Port Control Register	PCR	0XXX XXX0b

Table 4.17 SFR List (17)

X: Undefined

Blanks are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
040000h	Flash Memory Control Register 0	FMR0	0X01 XX00b
040001h	Flash Memory Status Register 0	FMSR0	1000 0000b
040002h			
040003h			
040004h			
040005h			
040006h			
040007h			
040008h	Flash Register Protection Unlock Register 0	FPR0	00h
040009h	Flash Memory Control Register 1	FMR1	0000 0010b
04000Ah	Block Protect Bit Monitor Register 0	FBPM0	??X? ????h (1)
04000Bh	Block Protect Bit Monitor Register 1	FBPM1	XXX2 2222h (1)
04000Ch			
04000Dh			
04000Eh			
04000Eh			
040010h			
040010h	Block Protect Bit Monitor Register 2	FRPM2	2222 2222h (1)
040012h			
04001211			
0400131			
04001411			
0400150			
0400160			
0400171			
0400160			
0400191			
04001AN			
04001BH			
04001Ch			
04001DH			
04001EN			
04001FI1	DLL Control Pogistor 0		0000 0001b
04002011	PLL Control Register 0		0000 000 10
04002 m		FLOI	
04002211			
0400231			
040024I1			
040025h			
040020H			
04002711			
0400201			
04002911			
04002AN			
0400280			
0400201			
04002FN		1	1

Table 4.18SFR List (18)

X: Undefined

Blanks are reserved. No access is allowed.

Note:

1. The reset value reflects the value of the protect bit for each block in the flash memory.

Table 4.20	SFR List (20)
	•••••••••••••••••••••••••••••••••••••••

Address	Register	Symbol	Reset Value
040094h			
040095h			
040096h			
040097h	Three-phase Output Buffer Control Register	IOBC	0XXX XXXXb
040098h	Input Function Select Register 0	IFS0	X000 0000b
040099h			
04009Ah	Input Function Select Register 2	IFS2	0000 00X0b
04009Bh	Input Function Select Register 3	IFS3	XXXX XX00b
04009Ch			
04009Dh			
04009Eh			
04009Fh			
0400A0h	Port P0_0 Function Select Register	P0_0S	0XXX X000b
0400A1h	Port P1_0 Function Select Register	P1_0S	XXXX X000b
0400A2h	Port P0_1 Function Select Register	P0_1S	0XXX X000b
0400A3h	Port P1_1 Function Select Register	P1_1S	XXXX X000b
0400A4h	Port P0_2 Function Select Register	P0_2S	0XXX X000b
0400A5h	Port P1_2 Function Select Register	P1_2S	XXXX X000b
0400A6h	Port P0_3 Function Select Register	P0_3S	0XXX X000b
0400A7h	Port P1_3 Function Select Register	P1_3S	XXXX X000b
0400A8h	Port P0_4 Function Select Register	P0_4S	0XXX X000b
0400A9h	Port P1_4 Function Select Register	P1_4S	XXXX X000b
0400AAh	Port P0_5 Function Select Register	P0_5S	0XXX X000b
0400ABh	Port P1_5 Function Select Register	P1_5S	XXXX X000b
0400ACh	Port P0_6 Function Select Register	P0_6S	0XXX X000b
0400ADh	Port P1_6 Function Select Register	P1_6S	XXXX X000b
0400AEh	Port P0_7 Function Select Register	P0_7S	0XXX X000b
0400AFh	Port P1_7 Function Select Register	P1_7S	XXXX X000b
0400B0h	Port P2_0 Function Select Register	P2_0S	0XXX X000b
0400B1h	Port P3_0 Function Select Register	P3_0S	XXXX X000b
0400B2h	Port P2_1 Function Select Register	P2_1S	0XXX X000b
0400B3h	Port P3_1 Function Select Register	P3_1S	XXXX X000b
0400B4h	Port P2_2 Function Select Register	P2_2S	0XXX X000b
0400B5h	Port P3_2 Function Select Register	P3_2S	XXXX X000b
0400B6h	Port P2_3 Function Select Register	P2_3S	0XXX X000b
0400B7h	Port P3_3 Function Select Register	P3_3S	XXXX X000b
0400B8h	Port P2_4 Function Select Register	P2_4S	0XXX X000b
0400B9h	Port P3_4 Function Select Register	P3_4S	XXXX X000b
0400BAh	Port P2_5 Function Select Register	P2_5S	0XXX X000b
0400BBh	Port P3_5 Function Select Register	P3_5S	XXXX X000b
0400BCh	Port P2_6 Function Select Register	P2_6S	0XXX X000b
0400BDh	Port P3_6 Function Select Register	P3_6S	XXXX X000b
0400BEh	Port P2_7 Function Select Register	P2_7S	0XXX X000b
0400BFh	Port P3_7 Function Select Register	P3_7S	XXXX X000b

X: Undefined

Blanks are reserved. No access is allowed.

Symbol	Characteristic		Value			Unit	
Symbol	Characteristic			Min.	Тур.	Max.	Onit
V _{CC}	Digital supply	Digital supply voltage			5.0	5.5	V
AV _{CC}	Analog suppl	Analog supply voltage			V _{CC}		V
V _{REF}	Reference vo	oltage		3.0		V _{CC}	V
V _{SS}	Digital groun	d voltage			0		V
AV _{SS}	Analog grour	nd voltage			0		V
dV _{CC} /dt	V _{CC} ramp up	rate (V _{CC} < 2.0 V)	0.05			V/ms
V _{IH}	High level input voltage	XIN, RESET, CNV P3_0 to P3_7, P5 P9_0 to P9_7, P1 P11_0 to P11_4, P15_0 to P15_7 (/SS, NSD, P2_0 to P2_7, 5_0 to P5_3, P8_4 to P8_7 ⁽²⁾ , 0_0 to P10_7, P14_1, P14_3 to P14_6, 3)	0.8 × V _{CC}		V _{CC}	V
		P4_0 to P4_7, P5 P7_0 to P7_7, P8	5_4 to P5_7, P6_0 to P6_7, 5_0 to P8_3	$0.8 \times V_{CC}$		6.0	V
	P	P0_0 to P0_7, P1_0 to P1_7,	in single-chip mode	$0.8 \times V_{CC}$		V _{CC}	V
		P12_0 to P12_7, P13_0 to P13_7 (3)	in memory expansion mode or microprocessor mode	0.5 × V _{CC}		V _{CC}	V
VIL	Low level input voltage	XIN, RESET, CNV P3_0 to P3_7, P4 P6_0 to P6_7, P7 P9_0 to P9_7, P1 P11_0 to P11_4, P15_0 to P15_7 (VSS, NSD, P2_0 to P2_7, -0 to P4_7, P5_0 to P5_7, 7_0 to P7_7, P8_0 to P8_7 ⁽²⁾ , 0_0 to P10_7, P14_1, P14_3 to P14_6, 3)	0		0.2 × V _{CC}	V
		P0_0 to P0_7,	in single-chip mode	0		$0.2 \times V_{CC}$	V
	P1_0 to P12_0 to P13_0 to (3)	P1_0 to P1_7, P12_0 to P12_7, P13_0 to P13_7 (3)	in memory expansion mode or microprocessor mode	0		0.16 × V _{CC}	V
T _{opr}	Operating	N version		-20		85	°C
-	temperature	D version		-40		85	°C
	range	P version		-40		85	°C

Table 5.2 Operating Conditions (1/5) ⁽¹⁾

Notes:

- 1. The device is operationally guaranteed under these operating conditions.
- 2. V_{IH} and V_{IL} for P8_7 are specified for P8_7 as a programmable port. These values are not applicable for P8_7 as XCIN.
- 3. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.

Table 5.5Operating Conditions (4/5) $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ and } \text{T}_{a} = \text{T}_{opr}, \text{ unless otherwise noted})$ ⁽¹⁾

Cumphel	Characteristic			ا ا ا		
Symbol	Characterisi	Min.	Тур.	Max.	Unit	
f _(XIN)	Main clock oscillator frequency		4		16	MHz
f _(XRef)	Reference clock frequency		2		4	MHz
f _(PLL)	PLL clock oscillator frequency		96		128	MHz
f _(Base)	Base clock frequency	High speed version			64	MHz
		Normal speed version			50	MHz
t _{c(Base)}	Base clock cycle time	High speed version	15.625			ns
		Normal speed version	20			ns
f _(CPU)	CPU operating frequency	High speed version			64	MHz
		Normal speed version			50	MHz
t _{c(CPU)}	CPU clock cycle time	High speed version	15.625			ns
. ,		Normal speed version	20			ns
f _(BCLK)	Peripheral bus clock operating frequency	High speed version			32	MHz
		Normal speed version			25	MHz
t _{c(BCLK)}	Peripheral bus clock cycle time	High speed version	31.25			ns
		Normal speed version	40			ns
f _(PER)	Peripheral clock source frequency				32	MHz
f _(XCIN)	Sub clock oscillator frequency			32.768	62.5	kHz

Note:

1. The device is operationally guaranteed under these operating conditions.

Timing Requirements (V_{CC} = 3.0 to 5.5 V, V_{SS} = 0 V, and Ta = T_{opr}, unless otherwise noted)

Symbol	Characteristics		Value	
Symbol			Max.	Onit
t _{cR}	Read cycle time	200		ns
t _{su(S-R)}	Chip-select setup time before read	200		ns
t _{h(R-S)}	Chip-select hold time after read	0		ns
t _{su(A-R)}	Address setup time before read	200		ns
t _{h(R-A)}	Address hold time after read	0		ns
t _{w(R)}	Read pulse width	100		ns
t _{cW}	Write cycle time	200		ns
t _{su(S-W)}	Chip-select setup time before write	0		ns
t _{h(W-S)}	Chip-select hold time after write	30		ns
t _{su(A-W)}	Address setup time before write	0		ns
t _{h(W-A)}	Address hold time after write	30		ns
t _{w(W)}	Write pulse width 50			ns

Figure 5.5 Flash Memory CPU Rewrite Mode Timing

$V_{CC} = 5 V$

Switching Characteristics (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Symbol	Characteristic	Measurement	Value		
Symbol	Characteristic	Condition	Min.	Max.	Unit
t _{su(S-ALE)}	Chip-select setup time before ALE		(1)		ns
t _{h(R-S)}	Chip-select hold time after read		1.5 × t _{c(Base)} - 15		ns
t _{su(A-ALE)}	Address setup time before ALE		(1)		ns
t _{h(ALE-A)}	Address hold time after ALE		0.5 × t _{c(Base)} - 5		ns
t _{h(R-A)}	Address hold time after read		1.5 × t _{c(Base)} - 15		ns
t _{d(ALE-R)}	ALE-read delay time		0.5 × t _{c(Base)} - 5	$0.5 \times t_{c(Base)} + 10$	ns
t _{w(ALE)}	ALE pulse width	Refer to	(1)		ns
t _{dis(R-A)}	Address disable time after read	Figure 5.6		8	ns
t _{w(R)}	Read pulse width		(1)		ns
t _{h(W-S)}	Chip-select hold time after write		1.5 × t _{c(Base)} - 15		ns
t _{h(W-A)}	Address hold time after write		1.5 × t _{c(Base)} - 15		ns
t _{d(ALE-W)}	ALE-write delay time		0.5 × t _{c(Base)} - 5	$0.5 \times t_{c(Base)} + 10$	ns
t _{w(W)}	Write pulse width		(1)		ns
t _{su(D-W)}	Data setup time before write		(1)		ns
t _{h(W-D)}	Data hold time after write		$0.5 \times t_{c(Base)}$		ns

Table 5.36 External Bus Timing (multiplexed bus)

Note:

 The value is calculated using the formulas below based on the base clock cycles (t_{c(Base)}) and respective cycles of Tsu(A-R), Tw(R), Tsu(A-W), and Tw(W) set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to the User's manual.

$$\begin{split} t_{su(S-ALE)} &= t_{su(A-ALE)} = t_{w(ALE)} = (Tsu(A-R) - 0.5) \times t_{c(Base)} -15 \text{ [ns]} \\ t_{w(R)} &= Tw(R) \times t_{c(Base)} -10 \text{ [ns]} \\ t_{w(W)} &= t_{su(D-W)} = Tw(W) \times t_{c(Base)} -10 \text{ [ns]} \end{split}$$

V_{CC} = 3.3 V

Table 5.44	A/D Conversion Characteristics ($V_{CC} = AV_{CC} = V_{REF} = 3.0$ to 3.6 V, $V_{SS} = AV_{SS} = 0$ V,
	T _a = T _{opr} , and f _(BCLK) = 32 MHz, unless otherwise noted)

Symbol	Characteristic	Measurement Condition		Value			Unit
Gynnoor			Min.	Тур.	Max.	Unit	
	Resolution	$V_{REF} = V_{CC}$				10	Bits
_	Absolute error	V _{REF} = V _{CC} = 3.3 V	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, ANEX1 ⁽¹⁾			±5	LSB
			External op-amp connection mode			±7	LSB
INL	Integral non-linearity error	V _{REF} = V _{CC} = 3.3 V	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, ANEX1 ⁽¹⁾			±5	LSB
			External op-amp connection mode			±7	LSB
DNL	Differential non- linearity error	$V_{\text{REF}} = V_{\text{CC}} = 3.3 \text{ V}$				±1	LSB
—	Offset error					±3	LSB
—	Gain error					±3	LSB
R _{LADDER}	Resistor ladder	V _{REF} = V _{CC}		4		20	kΩ
t _{CONV}	Conversion time (10 bits)	ϕ_{AD} = 10 MHz, with sample and hold function		3.3			μs
t _{CONV}	Conversion time (8 bits)	ϕ_{AD} = 10 MHz, with sample and hold function		2.8			μs
t _{SAMP}	Sampling time	φ _{AD} = 10 MHz		0.3			μs
V _{IA}	Analog input voltage			0		V_{REF}	V
фаd	Operating clock	Without sample and	hold function	0.25		10	MHz
	frequency	With sample and hold function		1		10	MHz

Note:

1. Pins AN15_0 to AN15_7 are available in the 144-pin package only.

Figure 5.8 External Bus Timing for Separate Bus

Revision History

R32C/116 Group Datasheet

Dav	Dete	Description		
Rev.	Date	Page	Summary	
1.00	Nov 19, 2009	_	Initial release	
1.10	Jun 23, 2010	_	Second edition released	
			This manual in general	
		_	 Applied new Renesas templates and formats to the manual 	
			Changed company name to "Renesas Electronics Corporation" and	
			changed related descriptions due to business merger of Renesas	
			Technology Corporation and NEC Electronics Corporation (under	
			Chapters 1 and 5)	
			Added specifications of 64 MHz version	
			Chapter 1. Overview	
		3, 5	Deleted Note 1 from Tables 1.2 and 1.4	
		9	Deleted Note 4 from Figure 1.2	
		19	 Modified expression "fC" in Table 1.14 to "low speed clocks" 	
			Chapter 4. SFRs	
		34, 37	Changed register name "Group i Timer Measurement Prescaler	
			Register" in Tables 4.6 and 4.9 to "Group i Time Measurement	
		00	Prescaler Register"	
		39	• Modified expression "XY Control Register" in Table 4.11 to "X-Y	
		11	Control Register	
		41	• Changed register hame "OART2 transmission/Receive Mode Register" in Table 4 13 to "LIART2 Transmit/Receive Mode Register":	
			Changed hevadecimal format of reset values for registers TABSR	
			ONSE and TRGSR to binary	
		52	Changed register name "External Interrupt Source Select Register i" in	
		02	Table 4.24 to "External Interrupt Request Source Select Register i"	
			Chapter 5. Electrical Characteristics	
		63	• Changed expressions "CSO" and "A23 to A0, BC3 to BCO" in Figure	
			5.5 to "Chip select" and "Address", respectively	
			Appendix 1. Package Dimensions	
		95	Added a seating plane to the drawing of package dimension	
1.20	Feb 6, 2013		Third edition released	
			This manual in general	
			Changed document number "REJ03B0253-0110" to	
			"R01DS0063EJ0120"	
			• Modified expressions "version N", "version D", and "version P" to "N	
			version", "D version", and "P version", respectively (under Chapters 1	
			and 5) Chanter 1. Overview	
		_	Modified wording and enhanced description in this chapter	
		2 1	Modified expressions "Main clock oscillator stop/re-oscillation	
		∠, т	detection", "calculation transfer" "chained transfer" and "inputs/	
			outputs" in Tables 1.1 and 1.3 to "Main clock oscillator stop/restart	
			detection", "calculation result transfer", "chain transfer", and "I/O ports".	
			respectively	
		7	• Completed "under development" phase of versions D and P products	
			in Table 1.6	

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infingement of patents, copyrights, or other intellectual property rights of third patries by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

*Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please valuate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-8000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milload Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-116503-1327 Renesas Electronics (Shanghal) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-21-6577-1818, Fax: +86-21-08235-7679 Renesas Electronics (Shanghal) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazul Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-27-577-1818, Fax: +86-22-0887-7858 Renesas Electronics Thong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-2-817-5890, Fax: +865-2886-9022/9044 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-621 Hyliux Innovation Centre Singapore 339949 Tel: +66-21-759-9300, Fax: +665-2613-0300 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-621 Hyliux Innovation Centre Singapore 339949 Tel: +65-213-0200, Fax: +665-2613-0300 Renesas Electronics Kingayai Sch.Bhd. Unit 90, Block B, Menara Armcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petalling Jaya, Selangor Darul Ehsan, Malaysia Tel: +69-275-9390, Fax: +685-2950, Fax: +160-375-9390, Fax: +685-2950, Fax: +160-375-9390, Fax: +685-29510