
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1621an020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore! XP[®] F64xx Series Product Specification

Table 177.	UART Baud Rate High Byte Register (UxBRH)	258
Table 178.	UART Baud Rate Low Byte Register (UxBRL)	259
Table 179.	UART Transmit Data Register (UxTXD)	259
Table 180.	UART Receive Data Register (UxRXD)	259
Table 181.	UART Status 0 Register (UxSTAT0)	259
Table 182.	UART Control 0 Register (UxCTL0)	260
Table 183.	UART Control 1 Register (UxCTL1)	260
Table 184.	UART Status 1 Register (UxSTAT1)	260
Table 185.	UART Address Compare Register (UxADDR)	260
Table 186.	UART Baud Rate High Byte Register (UxBRH)	261
Table 187.	UART Baud Rate Low Byte Register (UxBRL)	261
Table 188.	I ² C Data Register (I2CDATA)	261
Table 189.	I ² C Status Register (I2CSTAT)	262
Table 190.	I ² C Control Register (I2CCTL)	262
Table 191.	I ² C Baud Rate High Byte Register (I2CBRH)	262
Table 192.	I ² C Baud Rate Low Byte Register (I2CBRL)	262
Table 193.	I ² C Diagnostic State Register (I2CDST)	263
Table 194.	I ² C Diagnostic Control Register (I2CDIAG)	263
Table 195.	SPI Data Register (SPIDATA)	263
Table 196.	SPI Control Register (SPICTL)	264
Table 197.	SPI Status Register (SPISTAT)	264
Table 198.	SPI Mode Register (SPIMODE)	264
Table 199.	SPI Diagnostic State Register (SPIDST)	265
Table 200.	SPI Baud Rate High Byte Register (SPIBRH)	265
Table 201.	SPI Baud Rate Low Byte Register (SPIBRL)	265
Table 202.	ADC Data High Byte Register (ADCD_H)	266
Table 203.	ADC Data Low Bits Register (ADCD_L)	266
Table 204.	DMAx Control Register (DMAxCTL)	267
Table 205.	DMAx I/O Address Register (DMAxIO)	267
Table 206.	DMAx Address High Nibble Register (DMAxH)	267
Table 207.	DMAx Start/Current Address Low Byte Register (DMAxSTART)	267
Table 208.	DMAx End Address Low Byte Register (DMAxEND)	268
Table 209.	DMAx Control Register (DMAxCTL)	268
	DMAx I/O Address Register (DMAxIO)	
	DMAx Address High Nibble Register (DMAxH)	
	DMAx Start/Current Address Low Byte Register (DMAxSTART)	
	· · · · · · · · · · · · · · · · · · ·	

Signal Mnemonic	I/O	Description
Oscillators		
X _{IN}	I	External Crystal Input. This is the input pin to the crystal oscillator. A crystal can be connected between it and the X_{OUT} pin to form the oscillator. This signal is usable with external RC networks and an external clock driver.
X _{OUT}	0	External Crystal Output. This pin is the output of the crystal oscillator. A crystal can be connected between it and the X_{IN} pin to form the oscillator. When the system clock is referred to in this manual, it refers to the frequency of the signal at this pin. This pin must be left unconnected when not using a crystal.
RC _{OUT}	0	RC Oscillator Output. This signal is the output of the RC oscillator. It is multi- plexed with a general-purpose I/O pin. This signal must be left unconnected when not using a crystal.
On-Chip Deb	ougger	
DBG	I/O	Debug. This pin is the control and data input and output to and from the On- Chip Debugger. This pin is open-drain.
		Caution: For operation of the On-Chip Debugger, all power pins (V_{DD} and AV_{DD}) must be supplied with power and all ground pins (V_{SS} and AV_{SS}) must be properly grounded. The DBG pin is open-drain and must have an external pull-up resistor to ensure proper operation.
Reset		
RESET	Ι	RESET. Generates a Reset when asserted (driven Low).
Power Supp	ly	
V _{DD}	I	Power Supply.
AV _{DD}	Ι	Analog Power Supply.
V _{SS}	Ι	Ground.
AV _{SS}	Ι	Analog Ground.

Table 3. Signal Descriptions (Continued)

Address Space

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral and general-purpose I/O port control registers
- The program memory contains addresses for all memory locations having executable code and/or data
- The Data Memory consists of the addresses for all memory locations that hold only data

These three address spaces are covered briefly in the following sections. For more information about the eZ8 CPU and its address space, refer to the <u>eZ8 CPU Core User Manual</u> (<u>UM0128</u>), which is available for download on <u>www.zilog.com</u>.

Register File

The Register File address space in the Z8 Encore! XP F64xx Series is 4KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers are read from when defined as sources and written to when defined as destinations. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256-byte control register section are reserved (unavailable). Reading from an reserved Register File addresses returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. The Z8 Encore! XP F64xx Series provide 2KB to 4KB of on-chip RAM depending upon the device. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect. To determine the amount of RAM available for the specific Z8 Encore! XP F64xx Series device, see the <u>Part Selection Guide</u> section on page 2.

Register File Address Map

Table 7 provides the address map for the Register File of the Z8 Encore! XP F64xx Series products. Not all devices and package styles in the Z8 Encore! XP F64xx Series support Timer 3 and all of the GPIO ports. Consider registers for unimplemented peripherals to be reserved.

Address (H	ex) Register Description	Mnemonic	Reset (Hex)	Page
General-Pu	rpose RAM			
000-EFF	General-Purpose Register File RAM		XX	
Timer 0				
F00	Timer 0 High Byte	T0H	00	<u>72</u>
F01	Timer 0 Low Byte	TOL	01	<u>72</u>
F02	Timer 0 Reload High Byte	TORH	FF	<u>74</u>
F03	Timer 0 Reload Low Byte	TORL	FF	<u>74</u>
F04	Timer 0 PWM High Byte	TOPWMH	00	<u>75</u>
F05	Timer 0 PWM Low Byte	TOPWML	00	<u>75</u>
F06	Timer 0 Control 0	TOCTLO	00	<u>76</u>
F07	Timer 0 Control 1	T0CTL1	00	<u>77</u>
Timer 1				
F08	Timer 1 High Byte	T1H	00	<u>72</u>
F09	Timer 1 Low Byte	T1L	01	<u>72</u>
F0A	Timer 1 Reload High Byte	T1RH	FF	<u>74</u>
F0B	Timer 1 Reload Low Byte	T1RL	FF	<u>74</u>
F0C	Timer 1 PWM High Byte	T1PWMH	00	<u>75</u>
F0D	Timer 1 PWM Low Byte	T1PWML	00	<u>75</u>
F0E	Timer 1 Control 0	T1CTL0	00	<u>76</u>
F0F	Timer 1 Control 1	T1CTL1	00	<u>77</u>
Timer 2				
F10	Timer 2 High Byte	T2H	00	<u>72</u>
F11	Timer 2 Low Byte	T2L	01	<u>72</u>
F12	Timer 2 Reload High Byte	T2RH	FF	<u>74</u>
F13	Timer 2 Reload Low Byte	T2RL	FF	<u>74</u>

Table 7. Z8 Encore! XP F64xx Series Register File Address Map

Note: XX = Undefined.

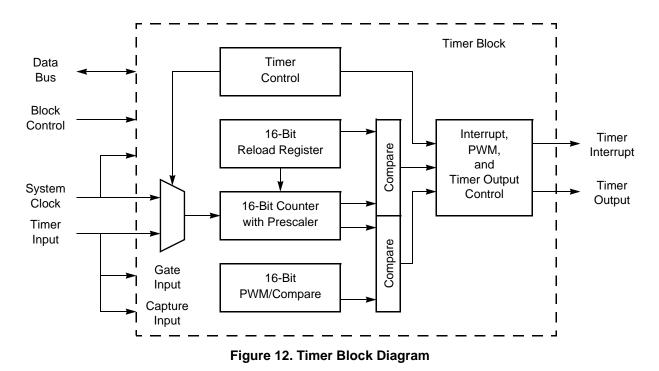
Address (He	ex) Register Description	Mnemonic	Reset (Hex)	Page
UART 1 (coi	ntinued)			
F4D	UART1 Address Compare Register	U1ADDR	00	<u>105</u>
F4E	UART1 Baud Rate High Byte	U1BRH	FF	<u>105</u>
F4F	UART1 Baud Rate Low Byte	U1BRL	FF	<u>105</u>
l ² C				
F50	I ² C Data	I2CDATA	00	<u>141</u>
F51	I ² C Status	I2CSTAT	80	<u>142</u>
F52	I ² C Control	I2CCTL	00	<u>144</u>
F53	I ² C Baud Rate High Byte	I2CBRH	FF	<u>145</u>
F54	I ² C Baud Rate Low Byte	I2CBRL	FF	<u>145</u>
F55	I ² C Diagnostic State	I2CDST	CO	<u>147</u>
F56	I ² C Diagnostic Control	I2CDIAG	00	<u>149</u>
F57–F5F	Reserved	_	XX	
Serial Perip	heral Interface (SPI)			
F60	SPI Data	SPIDATA	XX	<u>121</u>
F61	SPI Control	SPICTL	00	<u>122</u>
F62	SPI Status	SPISTAT	01	<u>123</u>
F63	SPI Mode	SPIMODE	00	<u>125</u>
F64	SPI Diagnostic State	SPIDST	00	<u>126</u>
F65	Reserved	_	XX	
F66	SPI Baud Rate High Byte	SPIBRH	FF	<u>126</u>
F67	SPI Baud Rate Low Byte	SPIBRL	FF	<u>126</u>
F68–F6F	Reserved		XX	
Analog-to-D	igital Converter			
F70	ADC Control	ADCCTL	20	<u>165</u>
F71	Reserved		XX	
F72	ADC Data High Byte	ADCD_H	XX	<u>167</u>
F73	ADC Data Low Bits	ADCD_L	XX	<u>168</u>
F74–FAF	Reserved		XX	
DMA 0				
FB0	DMA0 Control	DMA0CTL	00	<u>153</u>
FB1	DMA0 I/O Address	DMA0IO	XX	154

Table 7. Z8 Encore! XP F64xx Series Register File Address Map (Continued)

Note: XX = Undefined.

Interrupt Controller

The interrupt controller on the Z8 Encore! XP F64xx Series products prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of the interrupt controller include:


- 24 unique interrupt vectors:
 - 12 GPIO port pin interrupt sources
 - 12 on-chip peripheral interrupt sources
- Flexible GPIO interrupts
 - Eight selectable rising and falling edge GPIO interrupts
 - Four dual-edge interrupts
- Three levels of individually programmable interrupt priority
- Watchdog Timer can be configured to generate an interrupt

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt service routine is involved with the exchange of data, status information, or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the interrupt control has no effect on operation. For more information about interrupt servicing by the eZ8 CPU, refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>, which is available for download on <u>www.zilog.com</u>.

Interrupt Vector Listing

Table 23 lists all of the interrupts available in order of priority. The interrupt vector is stored with the most significant byte (MSB) at the even program memory address and the least significant byte (LSB) at the following odd program memory address.

Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer rolls over to 0000H and continues counting.

Timer Operating Modes

The timers can be configured to operate in the following modes:

ONE-SHOT Mode

In ONE-SHOT Mode, the timer counts up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. Then, the timer is automatically disabled and stops counting.

Also, if the timer output alternate function is enabled, the timer output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer reload. If

63

Timer 0–3 PWM High and Low Byte Registers

The Timer 0–3 PWM High and Low Byte (TxPWMH and TxPWML) registers, shown in Tables 43 and 44, are used for Pulse-Width Modulator (PWM) operations. These registers also store the capture values for the CAPTURE and CAPTURE/COMPARE modes.

Table 43. Timer 0–3 PWM High Byte Register (TxPWMH)

Bit	7	6	5	4	3	2	1	0
Field				PW	ΜH			
RESET		0						
R/W				R/	W			
Address			F	04H, F0CH,	F14H, F1C	Н		

Table 44. Timer 0–3 PWM Low Byte Register (TxPWML)

Bit	7	6	5	4	3	2	1	0
Field				PW	'ML			
RESET				()			
R/W				R/	W			
Address			F	05H, F0DH,	F15H, F1D	Η		

Bit	Description
[7:0]	Pulse-Width Modulator High and Low Bytes
PWMH, PWML	These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current 16-bit timer count. When a match occurs, the PWM output changes state. The PWM output value is set by the TPOL bit in the Timer Control 1 Register (TxCTL1) Register. The TxPWMH and TxPWML registers also store the 16-bit captured timer value when operating in CAPTURE or CAPTURE/COMPARE modes.

unlock the Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write access.

- 1. Write 55H to the Watchdog Timer Control Register (WDTCTL).
- 2. Write AAH to the Watchdog Timer Control Register (WDTCTL).
- 3. Write the Watchdog Timer Reload Upper Byte Register (WDTU).
- 4. Write the Watchdog Timer Reload High Byte Register (WDTH).
- 5. Write the Watchdog Timer Reload Low Byte Register (WDTL).

All steps of the Watchdog Timer reload unlock sequence must be written in the sequence described above; there must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur, unless the sequence is restarted. The value in the Watchdog Timer Reload registers is loaded into the counter when the Watchdog Timer is first enabled and every time a WDT instruction is executed.

Watchdog Timer Control Register Definitions

This section defines the features of the following Watchdog Timer Control registers.

Watchdog Timer Control Register: see page 83

Watchdog Timer Reload Upper, High and Low Byte Registers: see page 85

Watchdog Timer Control Register

The Watchdog Timer Control (WDTCTL) Register, shown in Table 48, is a read-only register that indicates the source of the most recent Reset event, indicates a Stop Mode Recovery event, and indicates a Watchdog Timer time-out. Reading this register resets the upper four bits to 0.

Writing the 55H, AAH unlock sequence to the Watchdog Timer Control (WDTCTL) Register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL Register address produce no effect on the bits in the WDTCTL Register. The locking mechanism prevents spurious writes to the Reload registers.

UART Interrupts

The UART features separate interrupts for the transmitter and the receiver. In addition, when the UART primary functionality is disabled, the Baud Rate Generator can also function as a basic timer with interrupt capability.

Transmitter Interrupts

The transmitter generates a single interrupt when the Transmit Data Register Empty bit (TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for transmission. The TDRE interrupt occurs after the Transmit Shift Register has shifted the first bit of data out. At this point, the Transmit Data Register can be written with the next character to send. This provides 7 bit-periods of latency to load the Transmit Data Register before the Transmit Shift Register completes shifting the current character. Writing to the UART Transmit Data Register clears the TDRE bit to 0.

Receiver Interrupts

The receiver generates an interrupt when any of the following events occurs:

• A data byte has been received and is available in the UART Receive Data Register. This interrupt can be disabled independent of the other receiver interrupt sources. The received data interrupt occurs once the receive character has been received and placed in the Receive Data Register. Software must respond to this received data available condition before the next character is completely received to avoid an overrun error.

Note: In MULTIPROCESSOR Mode (MPEN=1), the receive data interrupts are dependent on the multiprocessor configuration and the most recent address byte.

- A break is received
- An overrun is detected
- A data framing error is detected

UART Overrun Errors

When an overrun error condition occurs the UART prevents overwriting of the valid data currently in the Receive Data Register. The Break Detect and Overrun status bits are not displayed until after the valid data has been read.

After the valid data has been read, the UART Status 0 Register is updated to indicate the overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that the Receive Data Register contains a data byte. However, because the overrun error occurred, this byte may not contain valid data and should be ignored. The BRKD bit indicates if the overrun was caused by a break condition on the line. After reading the status

>

passed to the UART. Communication is half-duplex, which means simultaneous data transmission and reception is not allowed.

The baud rate is set by the UART's Baud Rate Generator and supports IrDA standard baud rates from 9600 baud to 115.2KBaud. Higher baud rates are possible, but do not meet IrDA specifications. The UART must be enabled to use the infrared endec. The infrared endec data rate is calculated using the following equation:

Infrared Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

Transmitting IrDA Data

The data to be transmitted using the infrared transceiver is first sent to the UART. The UART's transmit signal (TxD) and baud rate clock are used by the IrDA to generate the modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared data bit is 16-clock wide. If the data to be transmitted is 1, the **IR_TXD** signal remains low for the full 16-clock period. If the data to be transmitted is 0, a 3-clock high pulse is output following a 7-clock low period. After the 3-clock high pulse, a 6-clock low pulse is output to complete the full 16-clock data period. Figure 20 displays IrDA data transmission. When the infrared endec is enabled, the UART's TxD signal is internal to the Z8 Encore! XP F64xx Series products while the IR_TXD signal is output through the TxD pin.

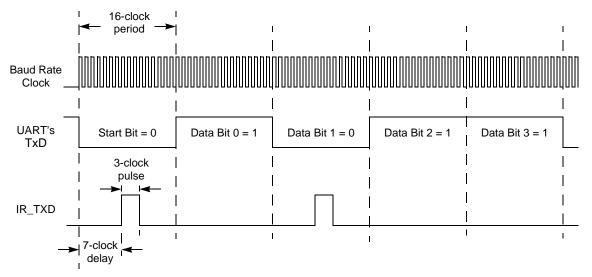


Figure 20. Infrared Data Transmission

Bit	Description (Continued)
[4]	Conversion
CONT	0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock cycles.
	1 = Continuous conversion. ADC data updated every 256 system clock cycles.
[3:0]	Analog Input Select
ANAIN[3:0]	These bits select the analog input for conversion. For information about the Port pins avail- able with each package style, see the <u>Signal and Pin Descriptions</u> chapter on page 7. Do not enable unavailable analog inputs. 0000 = ANA0. 0001 = ANA1. 0010 = ANA2. 0011 = ANA3. 0100 = ANA4. 0101 = ANA5. 0110 = ANA6. 0111 = ANA7. 1000 = ANA8. 1001 = ANA9. 1010 = ANA10. 1011 = ANA11. 11xx = Reserved.

166

Observe the following procedure to setup the Flash Sector Protect Register from user code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write 5EH to the Flash Control Register to select the Flash Sector Protect Register.
- 3. Read and/or write the Flash Sector Protect Register which is now at Register File address FF9H.
- 4. Write OOH to the Flash Control Register to return the Flash Controller to its reset state.

Flash Write Protection Option Bit

The Flash Write Protect option bit can be enabled to block all program and erase operations from user code. For more information, see the <u>Option Bits</u> chapter on page 180.

Byte Programming

When the Flash Controller is unlocked, writes to Flash memory from user code will program a byte into the Flash if the address is located in the unlocked page. An erased Flash byte contains all ones (FFH). The programming operation can only be used to change bits from one to zero. To change a Flash bit (or multiple bits) from zero to one requires a Page Erase or Mass Erase operation.

Byte programming can be accomplished using the eZ8 CPU's LDC or LDCI instructions. For a description of the LDC and LDCI instructions, refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>, which is available for download on <u>www.zilog.com</u>.

While the Flash Controller programs Flash memory, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. Interrupts that occur when a programming operation is in progress are serviced after the programming operation is complete. To exit programming mode and lock the Flash Controller, write 00H to the Flash Control Register.

User code cannot program Flash memory on a page that resides in a protected sector. When user code writes memory locations, only addresses located in the unlocked page are programmed. Memory writes outside of the unlocked page are ignored.

Caution: Each memory location must not be programmed more than twice before an erase occurs.

Observe the following procedure to program the Flash from user code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write the page of memory to be programmed to the Page Select Register.
- 3. Write the first unlock command 73H to the Flash Control Register.

The write-only Flash Control Register shares its Register File address with the read-only Flash Status Register.

Table 93.	Flash Con	trol Register	(FCTL)
14010 001			(·····/

Bit	7	6	5	4	3	2	1	0
Field				FC	MD			
RESET				()			
R/W				۷	V			
Address				FF	8H			

Bit	Description	
[7:0]	Flash Command*	
FCMD	73H = First unlock command.	
	8CH = Second unlock command.	
	95H = Page erase command.	
	63H = Mass erase command	
	5EH = Flash Sector Protect Register select.	

Flash Memory Address 0000H

Table 99. Flash Option Bits At Flash Memory Address 0000H

Bit	7	6	5	5 4		5 4 3 2		2	1	0
Field	WDT_RES	WDT_AO	OSC_SEL[1:0]		C_SEL[1:0] VBO_AO		OSC_SEL[1:0] VBO_AO RP Re		Reserved	FWP
RESET		U								
R/W	R/W									
Address	Program Memory 0000H									
Note: U = Unchanged by Reset; R/W = Read/Write.										

Bit	Description
[7] WDT_RES	 Watchdog Timer Reset 0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request. 1 = Watchdog Timer time-out causes a Short Reset. This setting is the default for unprogrammed (erased) Flash.
[6] WDT_AO	 Watchdog Timer Always On 0 = Watchdog Timer is automatically enabled upon application of system power. Watchdog Timer can not be disabled except during STOP Mode (if configured to power down during STOP Mode). 1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled, the Watchdog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is the default for unprogrammed (erased) Flash.
[5:4] OSC_SEL[1:0]	 Oscillator Mode Selection 00 = On-chip oscillator configured for use with external RC networks (<4MHz). 01 = Minimum power for use with very low frequency crystals (32kHz to 1.0MHz). 10 = Medium power for use with medium frequency crystals or ceramic resonators (0.5MHz to 10.0MHz). 11 = Maximum power for use with high frequency crystals (8.0MHz to 20.0MHz). This setting is the default for unprogrammed (erased) Flash.
[3] VBO_AO	 Voltage Brown-Out Protection Always On 0 = Voltage Brown-Out Protection is disabled in STOP Mode to reduce total power consumption. 1 = Voltage Brown-Out Protection is always enabled including during STOP Mode. This setting is the default for unprogrammed (erased) Flash.
[2] RP	 Read Protect 0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger. 1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.

On-Chip Debugger Control Register Definitions

This section describes the features of the On-Chip Debugger Control and Status registers.

OCD Control Register

The OCD Control Register, shown in Table 103, controls the state of the On-Chip Debugger. This register enters or exits DEBUG Mode and enables the BRK instruction.

A *reset and stop* function can be achieved by writing 81H to this register. A *reset and go* function can be achieved by writing 41H to this register. If the device is operating in DEBUG Mode, a *run* function can be implemented by writing 40H to this register.

Bit	7	6	5	4	3	2	1	0			
Field	DBGMODE	BRKEN	DBGACK	BRKLOOP		Reserved		RST			
RESET		0									
R/W		R/W R R									
Bit	Descriptio	on									
[7] DBGMODE	E Setting this eZ8 CPU s ning again are enable ting the de 0 = TheZ8	DEBUG Mode Setting this bit to 1 causes the device to enter DEBUG Mode. When in DEBUG Mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to start run ning again. This bit is automatically set when a BRK instruction is decoded and breakpoints are enabled. If the Read Protect option bit is enabled, this bit can only be cleared by resetting the device, it cannot be written to 0. 0 = TheZ8 Encore! XP F64xx Series device is operating in NORMAL Mode. 1 = The Z8 Encore! XP F64xx Series device is in DEBUG Mode.									
[6] BRKEN	Breakpoint Enable This bit controls the behavior of the BRK instruction (op code 00H). By default, breakpoints are disabled and the BRK instruction behaves like a NOP. If this bit is set to 1 and a BRK instruction is decoded, the OCD takes action dependent upon the BRKLOOP bit. 0 = BRK instruction is disabled. 1 = BRK instruction is enabled.							d a BRK			
[5] DBGACK	This bit en an Debug 0 = Debug	 Debug Acknowledge This bit enables the debug acknowledge feature. If this bit is set to 1, then the OCD sends an Debug Acknowledge character (FFH) to the host when a breakpoint occurs. 0 = Debug Acknowledge is disabled. 1 = Debug Acknowledge is enabled. 									

Table 103. OCD Control Register (OCDCTL)

Z8 Encore! XP[®] F64xx Series Product Specification

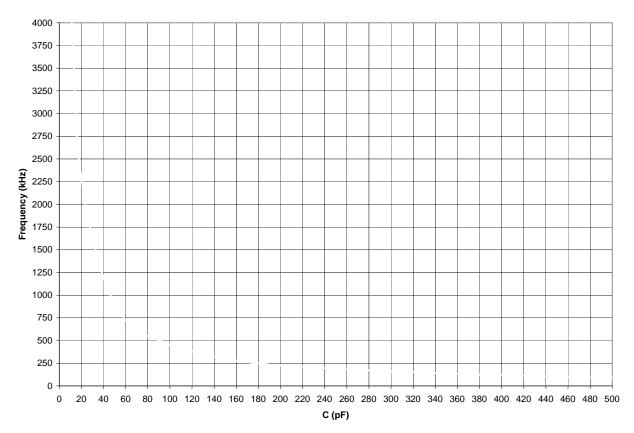


Figure 42. Typical RC Oscillator Frequency as a Function of the External Capacitance with a $45k\Omega$ Resistor

Caution: When using the external RC oscillator mode, the oscillator may stop oscillating if the power supply drops below 2.7 V, but before the power supply drops to the voltage brown-out threshold. The oscillator will resume oscillation as soon as the supply voltage exceeds 2.7 V.

199

Flash

For more information about these Flash Control registers, see the <u>Flash Control Register</u> <u>Definitions</u> section on page 175.

Hex Address: FF8

Table 265. Flash Control Register (FCTL)

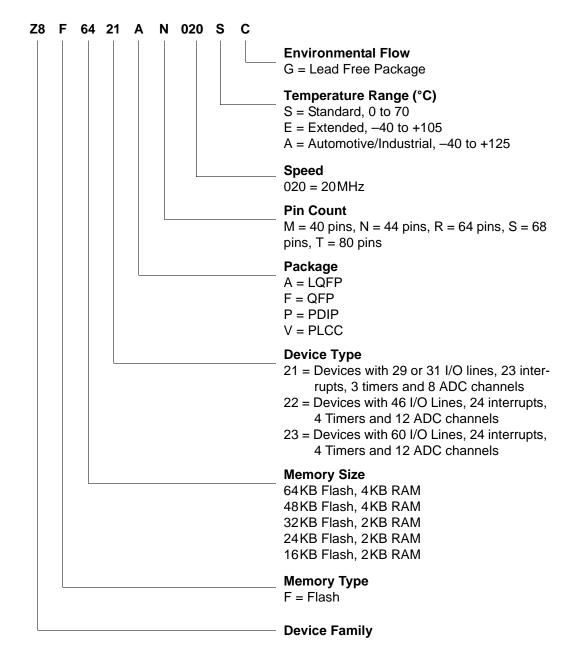
Bit	7	6	5	4	3	2	1	0	
Field		FCMD							
RESET	0								
R/W	W								
Address		FF8H							

Table 266. Flash Status Register (FSTAT)

Bit	7	6	5	4	1	0				
Field	Rese	erved	FSTAT							
RESET		0								
R/W		R								
Address		FF8H								

Hex Address: FF9

Table 267. Page Select Register (FPS)


Bit	7	6	5	4	2	1	0			
Field	INFO_EN		PAGE							
RESET		0								
R/W		R/W								
Address		FF9H								

					-					
Part Number	Flash	RAM	//O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	I ² C	SPI	UARTs with IrDA	Description
Z8F162x with 16KB Fla	sh, 10-Bit	Analog	-to-Di	igital	Со	nvert	er			
Standard Temperature:	0°C to 70	°C								
Z8F1621PM020SG	16KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F1621AN020SG	16KB	2KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F1621VN020SG	16KB	2KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F1622AR020SG	16KB	2KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F1622VS020SG	16KB	2KB	46	24	4	12	1	1	2	PLCC 68-pin package
Extended Temperature	: –40°C to	+105°C								
Z8F1621PM020EG	16KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F1621AN020EG	16KB	2KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F1621VN020EG	16KB	2KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F1622AR020EG	16KB	2KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F1622VS020EG	16KB	2KB	46	24	4	12	1	1	2	PLCC 68-pin package
Automotive/Industrial 1	Femperatu	re: –40°	C to	+125	5°C					
Z8F1621PM020AG	16KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F1621AN020AG	16KB	2KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F1621VN020AG	16KB	2KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F1622AR020AG	16KB	2KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F1622VS020AG	16KB	2KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F64200100KITG										Development Kit
ZUSBSC00100ZACG										USB Smart Cable Accessory Kit
ZUSBOPTSC01ZACG										Opto-Isolated USB Smart Cable Accessory Kit
ZENETSC0100ZACG										Ethernet Smart Cable Accessory Kit

Table 271. Z8 Encore! XP F64xx Series Ordering Matrix

Part Number Suffix Designations

Zilog part numbers consist of a number of component. In the following example, part number Z8F6421AN020SG is an 8-bit Flash MCU with 4KB of program memory in a 44-pin LQFP package, operating with a maximum 20MHz external clock frequency over a 0°C to +70°C temperature range and built using environmentally friendly (lead-free) solder.

