

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	46
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1622ar020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Priority	Program Memory Vector Address	Interrupt Source				
Highest	0002H	Reset (not an interrupt)				
	0004H	Watchdog Timer (see the Watchdog Timer chapter on page 80)				
	0006H	Illegal Instruction Trap (not an interrupt)				
	0008H	Timer 2				
	000AH	Timer 1				
	000CH	Timer 0				
	000EH	UART 0 receiver				
	0010H	UART 0 transmitter				
	0012H	l ² C				
	0014H	SPI				
	0016H	ADC				
	0018H	Port A7 or Port D7, rising or falling input edge				
	001AH	Port A6 or Port D6, rising or falling input edge				
	001CH	Port A5 or Port D5, rising or falling input edge				
	001EH	Port A4 or Port D4, rising or falling input edge				
	0020H	Port A3 or Port D3, rising or falling input edge				
	0022H	Port A2 or Port D2, rising or falling input edge				
	0024H	Port A1 or Port D1, rising or falling input edge				
	0026H	Port A0 or Port D0, rising or falling input edge				
	0028H	Timer 3 (not available in the 44-pin package)				
	002AH	UART 1 receiver				
	002CH	UART 1 transmitter				
	002EH	DMA				
	0030H	Port C3, both input edges				
	0032H	Port C2, both input edges				
	0034H	Port C1, both input edges				
Lowest	0036H	Port C0, both input edges				

Table 23. Interrupt Vectors in Order of Priority

59

Table 35. IRQ2 Enable Low Bit Register (IRQ2ENL)

Bit	7	6	5	4	3	2	1	0
Field	T3ENL	U1RENL	U1TENL	DMAENL	C3ENL	C2ENL	C1ENL	C0ENL
RESET				()			
R/W				R/	W			
Address				FC	8H			
Bit	Descriptio	n						
[7] T3ENL	Timer 3 Int	imer 3 Interrupt Request Enable Low Bit						
[6] U1RENL	UART 1 Re	UART 1 Receive Interrupt Request Enable Low Bit						
[5] U1TENL	UART 1 Tra	ansmit Inte	rrupt Reque	est Enable I	_ow Bit			
[4] DMAENL	DMA Interr	DMA Interrupt Request Enable Low Bit						
[3] C3ENL	Port C3 Int	errupt Req	uest Enable	E Low Bit				
[2] C2ENL	Port C2 Int	Port C2 Interrupt Request Enable Low Bit						
[1] C1ENL	Port C1 Int	errupt Req	uest Enable	e Low Bit				
[0] C0ENL	Port C0 Int	errupt Req	uest Enable	E Low Bit				

- Disable the timer
- Configure the timer for CONTINUOUS Mode
- Set the prescale value
- If using the timer output alternate function, set the initial output level (High or Low)
- 2. Write to the Timer High and Low Byte registers to set the starting count value (usually 0001H), affecting only the first pass in CONTINUOUS Mode. After the first timer reload in CONTINUOUS Mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the timer output function, configure the associated GPIO port pin for the timer output alternate function.
- 6. Write to the Timer Control 1 Register to enable the timer and initiate counting.

In CONTINUOUS Mode, the system clock always provides the timer input. The timer period is calculated using the following equation:

CONTINUOUS Mode Time-Out Period (s) = $\frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT Mode equation must be used to determine the first time-out period.

COUNTER Mode

In COUNTER Mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO port pin timer input alternate function. The TPOL bit in the Timer Control 1 Register selects whether the count occurs on the rising edge or the falling edge of the timer input signal. In COUNTER Mode, the prescaler is disabled.

Caution: The input frequency of the timer input signal must not exceed one-fourth the system clock frequency.

Upon reaching the reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the timer output alternate function is

Table 48. Watchdog Timer Control Register (WDTCTL)

Bit	7	6	5	4	3	2	1	0	
Field	POR	STOP	WDT	EXT		Reserved			
RESET	S	See Table 49).			0			
R/W		R							
Address		FF0H							
Bit	Doscriptio	Description							
[7] POR	Power-On If this bit is	Description Power-On Reset Indicator If this bit is set to 1, a Power-On Reset event occurred. This bit is reset to 0 if a WDT time-out If Stop Mode Recovery occurs. This bit is also reset to 0 when the register is read.							
[6] STOP	Stop Mode Recovery Indicator If this bit is set to 1, a Stop Mode Recovery occurred. If the stop and WDT bits are both set to 1, the Stop Mode Recovery occurred due to a WDT time-out. If the stop bit is 1 and the WDT bit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This bit is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP Mode. Reading this register also resets this bit.								
[5] WDT	If this bit is	Watchdog Timer Time-Out Indicator If this bit is set to 1, a WDT time-out occurred. A Power-On Reset resets this pin. A Stop Mode Recovery from a change in an input pin also resets this bit. Reading this register resets this bit.							
[4] EXT	If this bit is or a Stop M	External Reset Indicator If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register resets this bit.							
[3:1]	Reserved These bits a	Reserved These bits are reserved and must be programmed to 000.							
[0] SM	0 = Watchd	STOP Mode Configuration Indicator 0 = Watchdog Timer and its internal RC oscillator will continue to operate in STOP Mode. 1 = Watchdog Timer and its internal RC oscillator will be disabled in STOP Mode.							

89

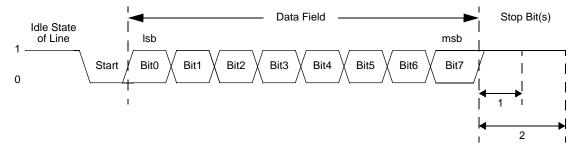


Figure 14. UART Asynchronous Data Format without Parity

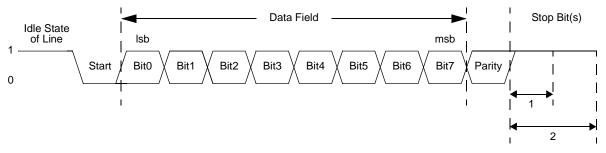


Figure 15. UART Asynchronous Data Format with Parity

Transmitting Data using the Polled Method

Observe the following procedure to transmit data using the polled method of operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. If MULTIPROCESSOR Mode is appropriate, write to the UART Control 1 Register to enable MULTIPROCESSOR (9-Bit) Mode functions.
 - Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCES-SOR Mode
- 4. Write to the UART Control 0 Register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - If parity is appropriate and MULTIPROCESSOR Mode is not enabled, set the parity enable bit (PEN) and select either Even or Odd parity (PSEL)

In MULTIPROCESSOR (9-Bit) Mode, the parity bit location (9th bit) becomes the MUL-TIPROCESSOR control bit. The UART Control 1 and Status 1 registers provide MULTI-PROCESSOR (9-Bit) Mode control and status information. If an automatic address matching scheme is enabled, the UART Address Compare Register holds the network address of the device.

MULTIPROCESSOR (9-bit) Mode Receive Interrupts

When MULTIPROCESSOR Mode is enabled, the UART only processes frames addressed to it. The determination of whether a frame of data is addressed to the UART can be made in hardware, software or some combination of the two, depending on the multiprocessor configuration bits. In general, the address compare feature reduces the load on the CPU, since it does not need to access the UART when it receives data directed to other devices on the multinode network. The following three MULTIPROCESSOR modes are available in hardware:

- Interrupt on all address bytes
- Interrupt on matched address bytes and correctly framed data bytes
- Interrupt only on correctly framed data bytes

These modes are selected with MPMD[1:0] in the UART Control 1 Register. For all MULTIPROCESSOR modes, bit MPEN of the UART Control 1 Register must be set to 1.

The first scheme is enabled by writing 01b to MPMD[1:0]. In this mode, all incoming address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt service routine must manually check the address byte that caused triggered the interrupt. If it matches the UART address, the software clears MPMD[0]. At this point, each new incoming byte interrupts the CPU. The software is then responsible for determining the end of the frame. It checks for end-of-frame by reading the MPRX bit of the UART Status 1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame is different from the UART's address, then set MPMD[0] to 1 causing the UART interrupts to go inactive until the next address byte. If the new frame's address matches the UART's, the data in the new frame is processed as well.

The second scheme is enabled by setting MPMD[1:0] to 10b and writing the UART's address into the UART Address Compare Register. This mode introduces more hardware control, interrupting only on frames that match the UART's address. When an incoming address byte does not match the UART's address, it is ignored. All successive data bytes in this frame are also ignored. When a matching address byte occurs, an interrupt is issued and further interrupts now occur on each successive data byte. The first data byte in the frame contains the NEWFRM=1 in the UART Status 1 Register. When the next address byte occurs, the hardware compares it to the UART's address. If there is a match, the interrupts continue sand the NEWFRM bit is set for the first byte of the new frame. If there is no match, then the UART ignores all incoming bytes until the next address match.

UART Address Compare Register

The UART Address Compare Register, shown in Table 59, stores the multinode network address of the UART. When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare Register. Receive interrupts and RDA assertions only occur in the event of a match.

Bit	7	6	5	4	3	2	1	0			
Field		COMP_ADDR									
RESET		0									
R/W		R/W									
Address		F45H and F4DH									
Bit	Desc	Description									
[7:0]	Com	Compare Address									

UART Baud Rate High and Low Byte Registers

COMP ADDR This 8-bit value is compared to the incoming address bytes.

The UART Baud Rate High and Low Byte registers, shown in Tables 60 and 61, combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. To configure the Baud Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 Register to 0.
- 2. Load the appropriate 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BRGCTL bit in the UART Control 1 Register to 1.

When configured as a general-purpose timer, the UART BRG interrupt interval is calculated using the following equation:

UART BRG Interrupt Interval(s) = System Clock Period (s) \times BRG[15:0]

Table 60. UART Baud Rate High Byte Register (UxBRH)

Bit	7	6	5	4	3	2	1	0	
Field		BRH							
RESET	1								
R/W		R/W							
Address				F46H ar	nd F4EH				

Table 61. UART Baud Rate Low Byte Register (UxBRL)

Bit7	7	6	5	4	3	2	1	0
Field		BRL						
RESET	1							
R/W	R/W							
Address				F47H ar	nd F4FH			

For a given UART data rate, the integer baud rate divisor value is calculated using the following equation:

UART Baud Rate Divisor Value (BRG) = Round $\left(\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Data Rate (bits/s)}}\right)$

The baud rate error relative to the appropriate baud rate is calculated using the following equation:

UART Baud Rate Error (%) =
$$100 \times \left(\frac{\text{Actual Data Rate} - \text{Desired Data Rate}}{\text{Desired Data Rate}}\right)$$

For reliable communication, the UART baud rate error must never exceed 5 percent. Table 62 lists data rate errors for popular baud rates and commonly used crystal oscillator frequencies.

I²C Diagnostic Control Register

The I²C Diagnostic Register, shown in Table 77, provides control over diagnostic modes. This register is a read/write register that is used for I²C diagnostics purposes.

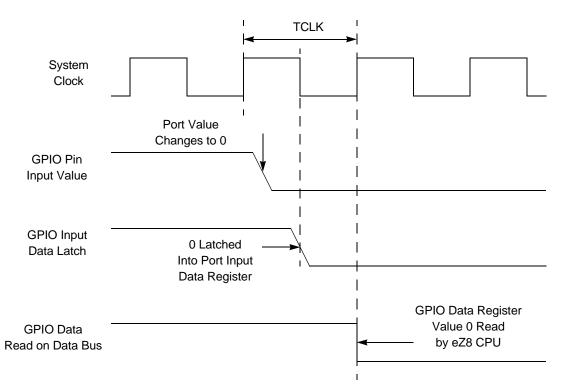
Table 77. I²C Diagnostic Control Register (I2CDIAG)

7	6	5	4	3	2	1	0
Reserved							DIAG
0							
R							R/W
F56H							
-	7	7 6	7 6 5	Reserved Reserved	Reserved Reserved R	Reserved 0 R	Reserved 0 R

Bit	Description
[7:1]	Reserved These bits are reserved and must be programmed to 0000000.
[0] DIAG	 Diagnostic Control Bit Selects read back value of the Baud Rate Reload registers. 0 = NORMAL Mode. Reading the Baud Rate High and Low Byte registers returns the baud rate reload value. 1 = DIAGNOSTIC Mode. Reading the Baud Rate High and Low Byte registers returns the baud rate rate counter value.

DMA_ADC Address Register

The DMA_ADC Address Register, shown in Table 84, points to a block of the Register File to store the ADC conversion values displayed in Table 83. This register contains the seven most significant bits of the 12-bit Register File addresses. The five least significant bits are calculated from the ADC analog input number (5-bit base address is equal to twice the ADC analog input number). The 10-bit ADC conversion data is stored as two bytes with the most significant byte of the ADC data stored at the even-numbered Register File address.


Table 83 provides an example of the Register File addresses if the DMA_ADC Address Register contains the value 72H.

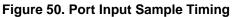

ADC Analog Input	Register File Address (Hex)*
0	720H–721H
1	722H–723H
2	724H–725H
3	726H–727H
4	728H–729H
5	72AH–72BH
6	72CH–72DH
7	72EH–72FH
8	730H–731H
9	732H–733H
10	734H–735H
11	736H–737H
Note: *DMAA_ADDR is	set to 72H.

Table 83. DMA_ADC Register File Address Example

General-Purpose I/O Port Input Data Sample Timing

Figure 50 displays timing of the GPIO Port input sampling. Table 115 lists the GPIO port input timing.

Table 115. GPIO Port Input Timing

		Delay (ns)		
Parameter	Abbreviation	Min	Max	
T _{S_PORT}	Port Input Transition to X _{IN} Fall Setup Time (not pictured)	5	_	
T _{H_PORT}	X _{IN} Fall to Port Input Transition Hold Time (not pictured)	6	_	
T _{SMR}	GPIO Port Pin Pulse Width to Insure Stop Mode Recovery (for GPIO Port pins enabled as SMR sources)	1 μs		

SPI Master Mode Timing

Figure 53 and Table 118 provide timing information for SPI Master Mode pins. Timing is shown with SCK rising edge used to source MOSI output data, SCK falling edge used to sample MISO input data. Timing on the SS output pin(s) is controlled by software.

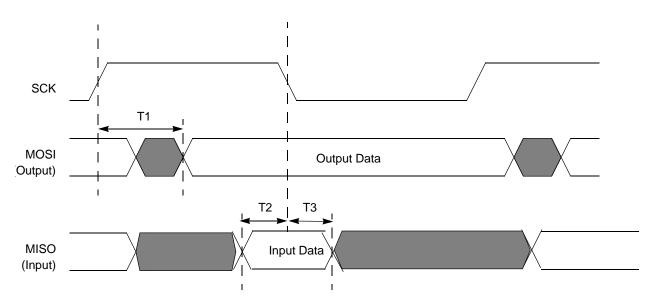


Figure 53. SPI Master Mode Timing

		Delay (ns)		
Parameter	Abbreviation	Min	Max	
SPI Master				
T ₁	SCK Rise to MOSI output Valid Delay	-5	+5	
T ₂	MISO input to SCK (receive edge) Setup Time	20		
T ₃	MISO input to SCK (receive edge) Hold Time	0		

Table 118. SPI Master Mode Timing

Mnemonic	Operands	Instruction
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 129. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF		Complement Carry Flag
RCF	—	Reset Carry Flag
SCF		Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
ТСМХ	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using Extended Addressing

Table 130. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from program memory and Auto-Incre- ment addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Incre- ment addresses

260

Hex Address: F4A

Table 182. UART Control 0 Register (UxCTL0)

Bit	7	6	5	4	3	2	1	0		
Field	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN		
RESET	0									
R/W		R/W								
Address		F42H and F4AH								

Hex Address: F4B

Table 183. UART Control 1 Register (UxCTL1)

Bit	7	6	5	4	3	2	1	0			
Field	MPMD[1]	MPEN	MPMD[0]	MPBT	DEPOL	BRGCTL	RDAIRQ	IREN			
RESET		0									
R/W		R/W									
Address				F43H ar	nd F4BH						

Hex Address: F4C

Table 184. UART Status 1 Register (UxSTAT1)

Bit	7	6	5	4	3	2	1	0		
Field	Reserved NEWFRM MPRX									
RESET	0									
R/W	R R/W R							2		
Address				F44H ar	nd F4CH					

Hex Address: F4D

Table 185. UART Address Compare Register (UxADDR)

Bit	7	6	5	4	3	2	1	0		
Field	COMP_ADDR									
RESET	0									
R/W		R/W								
Address				F45H ar	nd F4DH					

Hex Address: F55

Table 193. I²C Diagnostic State Register (I2CDST)

Bit	7	6	5	4	3	2	1	0	
Field	SCLIN	SDAIN	STPCNT	TXRXSTATE					
RESET	>	<		0					
R/W		R							
Address		F55H							

Hex Address: F56

Table 194. I²C Diagnostic Control Register (I2CDIAG)

Bit	7	6	5	4	3	2	1	0		
Field	Reserved									
RESET	0									
R/W	R									
Address		F56H								

Hex Addresses: F57–F5F

This address range is reserved.

Serial Peripheral Interface

For more information about these SPI Control registers, see the <u>SPI Control Register Def-initions</u> section on page 121.

Hex Address: F60

Table 195. SPI Data Register (SPIDATA)

Bit	7	6	5	4	3	2	1	0		
Field	DATA									
RESET	X									
R/W		R/W								
Address				F6	0H					

Hex Address: F64

Table 199. SPI Diagnostic State Register (SPIDST)

Bit	7	6	5	4	3	2	1	0		
Field	SCKEN	TCKEN	SPISTATE							
RESET		0								
R/W		R								
Address				F6	4H					

Hex Address: F65

This address is reserved.

Hex Address: F66

Table 200. SPI Baud Rate High Byte Register (SPIBRH)

Bit	7	6	5	4	3	2	1	0		
Field	BRH									
RESET	1									
R/W	R/W									
Address	F66H									

Hex Address: F67

Table 201. SPI Baud Rate Low Byte Register (SPIBRL)

Bit	7	6	5	4	3	2	1	0			
Field	BRL										
RESET	1										
R/W		R/W									
Address				F6	7H						

Hex Addresses: F68–F6F

This address range is reserved.

Hex Address: FC1

Table 218. IRQ0 Enable High Bit Register (IRQ0ENH)

Bit	7	6	5	4	3	2	1	0			
Field	T2ENH	T1ENH	T0ENH	U0RENH	U0TENH	I2CENH	SPIENH	ADCENH			
RESET	0										
R/W		R/W									
Address		FC1H									

Hex Address: FC2

Table 219. IRQ0 Enable Low Bit Register (IRQ0ENL)

Bit	7	6	5	4	3	2	1	0			
Field	T2ENL	T1ENL	T0ENL	U0RENL	U0TENL	I2CENL	SPIENL	ADCENL			
RESET	0										
R/W		R/W									
Address				FC	2H						

Hex Address: FC3

Table 220. Interrupt Request 1 Register (IRQ1)

Bit	7	6	5	4	3	2	1	0			
Field	PAD7I	PAD7I PAD6I PAD5I PAD4I PAD3I PAD2I PAD1I PAD									
RESET	0										
R/W		R/W									
Address				FC	3H						

Hex Address: FC4

Table 221. IRQ1 Enable High Bit Register (IRQ1ENH)

Bit	7	6	5	4	3	2	1	0			
Field	PAD7ENH	PAD6ENH	PAD5ENH	PAD4ENH	PAD3ENH	PAD2ENH	PAD1ENH	PAD0ENH			
RESET	0	0	0	0	0	0	0	0			
R/W											
Address		FC4H									

Hex Address: FDF

Table 244. Port A–H Output Data Register (PxOUT)

Bit	7	6	5	4	3	2	1	0			
Field	POUT7	POUT7 POUT6 POUT5 POUT4 POUT3 POUT2 POUT1 POUT									
RESET	0										
R/W		R/W									
Address		FD3H, FD7H, FDBH, FDFH, FE3H, FE7H, FEBH, FEFH									

Hex Address: FE0

Table 245. Port A–H GPIO Address Registers (PxADDR)

Bit	7	6	5	4	3	2	1	0			
Field	PADDR[7:0]										
RESET	00H										
R/W		R/W									
Address		FD0	H, FD4H, FI	D8H, FDCH	, FE0H, FE4	H, FE8H, F	ECH				

Hex Address: FE1

Table 246. Port A–H Control Registers (PxCTL)

Bit	7	7 6 5 4 3 2 1								
Field	PCTL									
RESET	00H									
R/W	R/W									
Address		FD1	H, FD5H, Fl	D9H, FDDH,	FE1H, FE5	H, FE9H, F	EDH			

Hex Address: FE2

Table 247. Port A-H Input Data Registers (PxIN)

Bit	7	6	5	4	3	2	1	0			
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0			
RESET	X										
R/W		R									
Address		FD2	H, FD6H, FD	DAH, FDEH,	FE2H, FE6	H, FEAH, F	EEH				

Packaging

Zilog's F64xx Series of MCUs includes the Z8F1621, Z8F2421, Z8F3221, Z8F4821 and Z8F6421 devices, which are available in the following packages:

- 40-pin Pin Dual Inline Package (PDIP)
- 44-pin Low Profile Quad Flat Package (LQFP)
- 44-pin Plastic Lead Chip Carrier (PLCC)

Zilog's F64xx Series of MCUs also includes the Z8F1622, Z8F2422, Z8F3222, Z8F4822 and Z8F6422 devices, which are available in the following packages:

- 64-pin Low-Profile Quad Flat Package (LQFP)
- 68-pin Plastic Lead Chip Carrier (PLCC)

Lastly, Zilog's F64xx Series of MCUs includes the Z8F4823 and Z8F6423 devices, which are available in the following package:

• 80-pin Quad Flat Package (QFP)

Current diagrams for each of these packages are published in Zilog's <u>Packaging Product</u> <u>Specification (PS0072)</u>, which is available free for download from the Zilog website.

Customer Support

To share comments, get your technical questions answered or report issues you may be experiencing with our products, please visit Zilog's Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation or to discover other facets about Zilog product offerings, please visit the Zilog Knowledge Base at <u>http://zilog.com/</u><u>kb</u> or consider participating in the Zilog Forum at <u>http://zilog.com/forum</u>.

This publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the Zilog website at <u>http://www.zilog.com</u>.