



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                    |
|----------------------------|-----------------------------------------------------------|
| Core Processor             | eZ8                                                       |
| Core Size                  | 8-Bit                                                     |
| Speed                      | 20MHz                                                     |
| Connectivity               | I²C, IrDA, SPI, UART/USART                                |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                |
| Number of I/O              | 46                                                        |
| Program Memory Size        | 24KB (24K x 8)                                            |
| Program Memory Type        | FLASH                                                     |
| EEPROM Size                | -                                                         |
| RAM Size                   | 2K x 8                                                    |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                 |
| Data Converters            | A/D 12x10b                                                |
| Oscillator Type            | Internal                                                  |
| Operating Temperature      | -40°C ~ 105°C (TA)                                        |
| Mounting Type              | Surface Mount                                             |
| Package / Case             | 64-LQFP                                                   |
| Supplier Device Package    | -                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/zilog/z8f2422ar020eg |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Table 70.  | SPI Baud Rate Low Byte Register (SPIBRL)                        | 127 |
|------------|-----------------------------------------------------------------|-----|
| Table 71.  | I <sup>2</sup> C Data Register (I2CDATA)                        | 142 |
| Table 72.  | I2C Status Register (I2CSTAT)                                   | 142 |
| Table 73.  | I2C Control Register (I2CCTL)                                   | 144 |
| Table 74.  | I <sup>2</sup> C Baud Rate Low Byte Register (I2CBRL)           | 146 |
| Table 75.  | I <sup>2</sup> C Baud Rate High Byte Register (I2CBRH)          | 146 |
| Table 76.  | I <sup>2</sup> C Diagnostic State Register (I2CDST)             | 147 |
| Table 77.  | I <sup>2</sup> C Diagnostic Control Register (I2CDIAG)          | 149 |
| Table 78.  | DMAx Control Register (DMAxCTL)                                 | 153 |
| Table 79.  | DMAx I/O Address Register (DMAxIO)                              | 154 |
| Table 80.  | DMAx Address High Nibble Register (DMAxH)                       | 155 |
| Table 81.  | DMAx Start/Current Address Low Byte Register (DMAxSTART)        | 156 |
| Table 82.  | DMAx End Address Low Byte Register (DMAxEND)                    | 156 |
| Table 83.  | DMA_ADC Register File Address Example                           | 157 |
| Table 84.  | DMA_ADC Control Register (DMAACTL)                              | 158 |
| Table 85.  | DMA_ADC Address Register (DMAA_ADDR)                            | 158 |
| Table 86.  | DMA_ADC Status Register (DMAA_STAT)                             | 159 |
| Table 87.  | ADC Control Register (ADCCTL)                                   | 165 |
| Table 88.  | ADC Data High Byte Register (ADCD_H)                            | 167 |
| Table 89.  | ADC Data Low Bits Register (ADCD_L)                             | 168 |
| Table 90.  | Flash Memory Configurations                                     | 169 |
| Table 91.  | Flash Memory Sector Addresses                                   | 169 |
| Table 92.  | Z8 Encore! XP F64xx Series Information Area Map                 | 171 |
| Table 93.  | Flash Control Register (FCTL)                                   | 176 |
| Table 94.  | Flash Status Register (FSTAT)                                   | 177 |
| Table 95.  | Flash Sector Protect Register (FPROT)                           | 178 |
| Table 96.  | Page Select Register (FPS)                                      | 178 |
| Table 97.  | Flash Frequency High Byte Register (FFREQH)                     | 179 |
| Table 98.  | Flash Frequency Low Byte Register (FFREQL)                      | 179 |
| Table 99.  | Flash Option Bits At Flash Memory Address 0000H                 | 181 |
| Table 100. | Options Bits at Flash Memory Address 0001H                      | 182 |
| Table 101. | OCD Baud-Rate Limits                                            | 186 |
| Table 102. | On-Chip Debugger Commands                                       | 189 |
|            | OCD Control Register (OCDCTL)                                   |     |
| Table 104. | OCD Status Register (OCDSTAT)                                   | 194 |
| Table 105. | Recommended Crystal Oscillator Specifications (20MHz Operation) | 197 |

xv

| Program Memory<br>Address (Hex) | Function                                                                                                           |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| FE00H–FE3FH                     | Reserved                                                                                                           |
| FE40H–FE53H                     | Part Number<br>20-character ASCII alphanumeric code<br>Left-justified and filled with zeros (ASCII Null character) |
| FE54H–FFFFH                     | Reserved                                                                                                           |

## Table 6. Z8 Encore! XP F64xx Series Information Area Map

| Operating Mode | Stop Mode Recovery Source                                                    | Action                                                                |  |  |
|----------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| STOP Mode      | Watchdog Timer time-out when configured for Reset.                           | Stop Mode Recovery.                                                   |  |  |
|                | Watchdog Timer time-out when configured for interrupt.                       | Stop Mode Recovery followed by interrupt (if interrupts are enabled). |  |  |
|                | Data transition on any GPIO port pin enabled as a Stop Mode Recovery source. | Stop Mode Recovery.                                                   |  |  |

#### Table 10. Stop Mode Recovery Sources and Resulting Action

# Stop Mode Recovery Using Watchdog Timer Time-Out

If the Watchdog Timer times out during STOP Mode, the device undergoes a Stop Mode Recovery sequence. In the Watchdog Timer Control Register, the WDT and stop bits are set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and the Z8 Encore! XP F64xx Series devices are configured to respond to interrupts, the eZ8 CPU services the Watchdog Timer interrupt request following the normal Stop Mode Recovery sequence.

# Stop Mode Recovery Using a GPIO Port Pin Transition HALT

Each of the GPIO port pins may be configured as a Stop Mode Recovery input source. On any GPIO pin enabled as a Stop Mode Recovery source, a change in the input pin value (from High to Low or from Low to High) initiates Stop Mode Recovery. The GPIO Stop Mode Recovery signals are filtered to reject pulses less than 10 ns (typical) in duration. In the Watchdog Timer Control Register, the stop bit is set to 1.

**Caution:** In STOP Mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input Data registers record the Port transition only if the signal stays on the Port pin through the end of the Stop Mode Recovery delay. Thus, short pulses on the Port pin can initiate Stop Mode Recovery without being written to the Port Input Data Register or without initiating an interrupt (if enabled for that pin).

## Port A–H Alternate Function Subregisters

The Port A–H Alternate Function Subregister, shown in Table 17, is accessed through the Port A–H Control Register by writing 02H to the Port A–H Address Register. The Port A–H Alternate Function subregisters select the alternate functions for the selected pins. To determine the alternate function associated with each port pin, see the <u>GPIO Alternate</u> <u>Functions</u> section on page 37.

**Caution:** Do not enable alternate function for GPIO port pins which do not have an associated alternate function. Failure to follow this guideline may result in unpredictable operation.

| Bit                                                                                                             | 7         | 6   | 5   | 4   | 3   | 2   | 1   | 0   |  |
|-----------------------------------------------------------------------------------------------------------------|-----------|-----|-----|-----|-----|-----|-----|-----|--|
| Field                                                                                                           | AF7       | AF6 | AF5 | AF4 | AF3 | AF2 | AF1 | AF0 |  |
| RESET                                                                                                           |           | 0   |     |     |     |     |     |     |  |
| R/W                                                                                                             |           | R/W |     |     |     |     |     |     |  |
| Address                                                                                                         | See note. |     |     |     |     |     |     |     |  |
| Note: If a 02H exists in the Port A–H Address Register, it is accessible through the Port A–H Control Register. |           |     |     |     |     |     |     |     |  |

#### Table 17. Port A–H Alternate Function Subregisters

# Bit Description

#### [7:0] **Port Alternate Function Enabled**

- AFx 0 = The port pin is in NORMAL Mode and the DDx bit in the Port A–H Data Direction Subregister determines the direction of the pin.
  - 1 = The alternate function is selected. Port pin operation is controlled by the alternate function.

Note: x indicates register bits in the range [7:0].

# Port A–H Stop Mode Recovery Source Enable Subregisters

The Port A–H Stop Mode Recovery Source Enable Subregister, shown in Table 20, is accessed through the Port A–H Control Register by writing 05H to the Port A–H Address Register. Setting the bits in the Port A–H Stop Mode Recovery Source Enable subregisters to 1 configures the specified Port pins as a Stop Mode Recovery source. During STOP Mode, any logic transition on a Port pin enabled as a Stop Mode Recovery source initiates Stop Mode Recovery.

#### Table 20. Port A–H Stop Mode Recovery Source Enable Subregisters

| Bit          | 7 6 5 4 3                                                                                                       |           | 2      | 1      | 0      |        |        |        |  |
|--------------|-----------------------------------------------------------------------------------------------------------------|-----------|--------|--------|--------|--------|--------|--------|--|
| Field        | PSMRE7                                                                                                          | PSMRE6    | PSMRE5 | PSMRE4 | PSMRE3 | PSMRE2 | PSMRE1 | PSMRE0 |  |
| RESET        |                                                                                                                 | 0         |        |        |        |        |        |        |  |
| R/W          |                                                                                                                 | R/W       |        |        |        |        |        |        |  |
| Address      |                                                                                                                 | See note. |        |        |        |        |        |        |  |
| Note: If a ( | Note: If a 05H exists in the Port A–H Address Register, it is accessible through the Port A–H Control Register. |           |        |        |        |        |        |        |  |
| <b>D</b> ''  | D                                                                                                               |           |        |        |        |        |        |        |  |

| Bit   | Description                                                                                                                                                                                                                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | Port Stop Mode Recovery Source Enabled                                                                                                                                                                                                                                                                                      |
| PSMRE | <ul> <li>0 = The port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP Mode do not initiate Stop Mode Recovery.</li> <li>1 = The port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin during STOP Mode initiates Stop Mode Recovery.</li> </ul> |

Note: x indicates register bits in the range [7:0].

45

it is appropriate to have the timer output make a permanent state change upon a One-Shot time-out, first set the TPOL bit in the Timer Control 1 Register to the start value before beginning ONE-SHOT Mode. Then, after starting the timer, set TPOL to the opposite bit value.

Observe the following procedure for configuring a timer for ONE-SHOT Mode and initiating the count:

- 1. Write to the Timer Control 1 Register to:
  - Disable the timer
  - Configure the timer for ONE-SHOT Mode
  - Set the prescale value
  - If using the timer output alternate function, set the initial output level (High or Low)
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the timer output function, configure the associated GPIO port pin for the timer output alternate function.
- 6. Write to the Timer Control 1 Register to enable the timer and initiate counting.

In ONE-SHOT Mode, the system clock always provides the timer input. The timer period is calculated using the following equation:

ONE-SHOT Mode Time-Out Period (s) =  $\frac{(\text{Reload Value} - \text{Start Value}) \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$ 

## **CONTINUOUS Mode**

In CONTINUOUS Mode, the timer counts up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the timer output alternate function is enabled, the timer output pin changes state (from Low to High or from High to Low) upon timer reload.

Observe the following procedure for configuring a timer for CONTINUOUS Mode and initiating the count:

1. Write to the Timer Control 1 Register to:

If the TPOL bit in the Timer Control 1 Register is set to 1, the timer output signal begins as a High (1) and then transitions to a Low (0) when the timer value matches the PWM value. The timer output signal returns to a High (1) after the timer reaches the reload value and is reset to 0001H.

If the TPOL bit in the Timer Control 1 Register is set to 0, the timer output signal begins as a Low (0) and then transitions to a High (1) when the timer value matches the PWM value. The timer output signal returns to a Low (0) after the timer reaches the reload value and is reset to 0001h.

Observe the following procedure for configuring a timer for PWM Mode and initiating the PWM operation:

- 1. Write to the Timer Control 1 Register to:
  - Disable the timer
  - Configure the timer for PWM Mode
  - Set the prescale value
  - Set the initial logic level (High or Low) and PWM High/Low transition for the timer output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM Mode. After the first timer reset in PWM Mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM period). The reload value must be greater than the PWM value.
- 5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 6. Configure the associated GPIO port pin for the timer output alternate function.
- 7. Write to the Timer Control 1 Register to enable the timer and initiate counting.

The PWM period is calculated using the following equation:

PWM Period (s) =  $\frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$ 

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT Mode equation must be used to determine the first PWM timeout period.

# Timer 0–3 Control 0 Registers

The Timer 0–3 Control 0 (TxCTL0) registers, shown in Tables 45 and 46, allow cascading of the timers.

## Table 45. Timer 0–3 Control 0 Register (TxCTL0)

| Bit        | 7                                                                                                                                                                                                                                                                                                                                                | 6                      | 5            | 4           | 3           | 2    | 1     | 0 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|-------------|-------------|------|-------|---|
| Field      |                                                                                                                                                                                                                                                                                                                                                  | Reserved               |              | CSC         |             | Rese | erved |   |
| RESET      |                                                                                                                                                                                                                                                                                                                                                  |                        |              | (           | )           |      |       |   |
| R/W        |                                                                                                                                                                                                                                                                                                                                                  |                        |              | R/          | W           |      |       |   |
| Address    |                                                                                                                                                                                                                                                                                                                                                  | F06H, F0EH, F16H, F1EH |              |             |             |      |       |   |
| Bit        | Descriptio                                                                                                                                                                                                                                                                                                                                       | Description            |              |             |             |      |       |   |
| [7:5]      | Reserved<br>These bits                                                                                                                                                                                                                                                                                                                           | are reserved           | d and must b | be programn | ned to 000. |      |       |   |
| [4]<br>CSC | Cascade Timers<br>0 = Timer input signal comes from the pin.<br>1 = For Timer 0, the input signal is connected to Timer 3 output.<br>For Timer 1, the input signal is connected to the Timer 0 output.<br>For Timer 2, the input signal is connected to the Timer 1 output.<br>For Timer 3, the input signal is connected to the Timer 2 output. |                        |              |             |             |      |       |   |

# [3:0] **Reserved** These bits are reserved and must be programmed to 0000.

- 6. Read data from the UART Receive Data Register. If operating in MULTIPROCES-SOR (9-Bit) Mode, further actions may be required depending on the MULTIPRO-CESSOR Mode bits MPMD[1:0].
- 7. Return to <u>Step 5</u> to receive additional data.

# **Receiving Data using the Interrupt-Driven Method**

The UART Receiver interrupt indicates the availability of new data (as well as error conditions). Observe the following procedure to configure the UART receiver for interruptdriven operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set the appropriate priority.
- 5. Clear the UART Receiver interrupt in the applicable Interrupt Request Register.
- 6. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-Bit) Mode functions, if appropriate.
  - Set the MULTIPROCESSOR Mode Select (MPEN) to enable MULTIPROCES-SOR Mode.
  - Set the MULTIPROCESSOR Mode bits, MPMD[1:0], to select the appropriate address matching scheme.
  - Configure the UART to interrupt on received data and errors or errors only (interrupt on errors only is unlikely to be useful for Z8 Encore! XP devices without a DMA block).
- 7. Write the device address to the Address Compare Register (automatic multiprocessor modes only).
- 8. Write to the UART Control 0 Register to:
  - Set the receive enable bit (REN) to enable the UART for data reception
  - Enable parity, if appropriate and if MULTIPROCESSOR Mode is not enabled, and select either even or odd parity
- 9. Execute an EI instruction to enable interrupts.

In MULTIPROCESSOR (9-Bit) Mode, the parity bit location (9th bit) becomes the MUL-TIPROCESSOR control bit. The UART Control 1 and Status 1 registers provide MULTI-PROCESSOR (9-Bit) Mode control and status information. If an automatic address matching scheme is enabled, the UART Address Compare Register holds the network address of the device.

## MULTIPROCESSOR (9-bit) Mode Receive Interrupts

When MULTIPROCESSOR Mode is enabled, the UART only processes frames addressed to it. The determination of whether a frame of data is addressed to the UART can be made in hardware, software or some combination of the two, depending on the multiprocessor configuration bits. In general, the address compare feature reduces the load on the CPU, since it does not need to access the UART when it receives data directed to other devices on the multinode network. The following three MULTIPROCESSOR modes are available in hardware:

- Interrupt on all address bytes
- Interrupt on matched address bytes and correctly framed data bytes
- Interrupt only on correctly framed data bytes

These modes are selected with MPMD[1:0] in the UART Control 1 Register. For all MULTIPROCESSOR modes, bit MPEN of the UART Control 1 Register must be set to 1.

The first scheme is enabled by writing 01b to MPMD[1:0]. In this mode, all incoming address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt service routine must manually check the address byte that caused triggered the interrupt. If it matches the UART address, the software clears MPMD[0]. At this point, each new incoming byte interrupts the CPU. The software is then responsible for determining the end of the frame. It checks for end-of-frame by reading the MPRX bit of the UART Status 1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame is different from the UART's address, then set MPMD[0] to 1 causing the UART interrupts to go inactive until the next address byte. If the new frame's address matches the UART's, the data in the new frame is processed as well.

The second scheme is enabled by setting MPMD[1:0] to 10b and writing the UART's address into the UART Address Compare Register. This mode introduces more hardware control, interrupting only on frames that match the UART's address. When an incoming address byte does not match the UART's address, it is ignored. All successive data bytes in this frame are also ignored. When a matching address byte occurs, an interrupt is issued and further interrupts now occur on each successive data byte. The first data byte in the frame contains the NEWFRM=1 in the UART Status 1 Register. When the next address byte occurs, the hardware compares it to the UART's address. If there is a match, the interrupts continue sand the NEWFRM bit is set for the first byte of the new frame. If there is no match, then the UART ignores all incoming bytes until the next address match.

| S | Slave Address | W = 0 | А | Data | А | Data | А | Data | A/A | P/S |
|---|---------------|-------|---|------|---|------|---|------|-----|-----|
|   |               |       |   |      |   |      |   |      |     |     |

#### Figure 29. 7-Bit Addressed Slave Data Transfer Format

Observe the following procedure for a transmit operation to a 7-bit addressed slave:

- 1. Software asserts the IEN bit in the  $I^2C$  Control Register.
- 2. Software asserts the TXI bit of the  $I^2C$  Control Register to enable transmit interrupts.
- 3. The  $I^2C$  interrupt asserts, because the  $I^2C$  Data Register is empty
- 4. Software responds to the TDRE bit by writing a 7-bit slave address plus write bit (=0) to the  $I^2C$  Data Register.
- 5. Software asserts the start bit of the  $I^2C$  Control Register.
- 6. The  $I^2C$  Controller sends the start condition to the  $I^2C$  slave.
- 7. The I<sup>2</sup>C Controller loads the I<sup>2</sup>C Shift Register with the contents of the I<sup>2</sup>C Data Register.
- 8. After one bit of address has been shifted out by the SDA signal, the transmit interrupt is asserted (TDRE = 1).
- 9. Software responds by writing the transmit data into the  $I^2C$  Data Register.
- 10. The I<sup>2</sup>C Controller shifts the rest of the address and write bit out by the SDA signal.
- 11. If the I<sup>2</sup>C slave sends an acknowledge (by pulling the SDA signal Low) during the next High period of SCL the I<sup>2</sup>C Controller sets the ACK bit in the I<sup>2</sup>C Status Register. Continue with <u>Step 12</u>.

If the slave does not acknowledge, the Not Acknowledge interrupt occurs (NCKI bit is set in the Status Register, ACK bit is cleared). Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I<sup>2</sup>C Controller sends the stop condition on the bus and clears the stop and NCKI bits. The transaction is complete (ignore the following steps).

- 12. The I<sup>2</sup>C Controller loads the contents of the I<sup>2</sup>C Shift Register with the contents of the I<sup>2</sup>C Data Register.
- 13. The I<sup>2</sup>C Controller shifts the data out of using the SDA signal. After the first bit is sent, the transmit interrupt is asserted.
- 14. If more bytes remain to be sent, return to Step 9.
- 15. Software responds by setting the stop bit of the I<sup>2</sup>C Control Register (or start bit to initiate a new transaction). In the stop case, software clears the TXI bit of the I<sup>2</sup>C Control Register at the same time.

| Bit           | Description (Continued)                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1]<br>FLUSH  | <b>Flush Data</b><br>Setting this bit to 1 clears the $I^2C$ Data Register and sets the TDRE bit to 1. This bit allows flushing of the $I^2C$ Data Register when a Not Acknowledge interrupt is received after the data has been sent to the $I^2C$ Data Register. Reading this bit always returns 0.                                                                                          |
| [0]<br>FILTEN | <ul> <li>I<sup>2</sup>C Signal Filter Enable</li> <li>This bit enables low-pass digital filters on the SDA and SCL input signals. These filters reject any input pulse with periods less than a full system clock cycle. The filters introduce a 3-system clock cycle latency on the inputs.</li> <li>1 = low-pass filters are enabled.</li> <li>0 = low-pass filters are disabled.</li> </ul> |

# I<sup>2</sup>C Baud Rate High and Low Byte Registers

The I<sup>2</sup>C Baud Rate High and Low Byte registers, shown in Tables 74 and 75, combine to form a 16-bit reload value, BRG[15:0], for the I<sup>2</sup>C Baud Rate Generator.

When the  $I^2C$  is disabled, the Baud Rate Generator can function as a basic 16-bit timer with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Disable the  $I^2C$  by clearing the IEN bit in the  $I^2C$  Control Register to 0.
- 2. Load the appropriate 16-bit count value into the I<sup>2</sup>C Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BIRQ bit in the I<sup>2</sup>C Control Register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval (s) = System Clock Period (s)  $\times$  BRG[15:0]

# DMAx Control Register

The DMA*x* Control Register, shown in Table 78, enables and selects the mode of operation for DMA*x*.

# Table 78. DMAx Control Register (DMAxCTL)

| Bit          | 7                                                                                                                                                                                                                                                                                   | 6           | 5    | 4     | 3    | 2   | 1 | 0 |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|-------|------|-----|---|---|--|
| Field        | DEN                                                                                                                                                                                                                                                                                 | DLE         | DDIR | IRQEN | WSEL | RSS |   |   |  |
| RESET        |                                                                                                                                                                                                                                                                                     |             |      | (     | )    |     |   |   |  |
| R/W          |                                                                                                                                                                                                                                                                                     |             |      | R/    | W    |     |   |   |  |
| Address      |                                                                                                                                                                                                                                                                                     |             |      | FB0H, | FB8H |     |   |   |  |
| Bit          | Description                                                                                                                                                                                                                                                                         | Description |      |       |      |     |   |   |  |
| [7]<br>DEN   | <ul> <li>DMAx Enable</li> <li>0 = DMAx is disabled and data transfer requests are disregarded.</li> <li>1 = DMAx is enabled and initiates a data transfer upon receipt of a request from the trigger source.</li> </ul>                                                             |             |      |       |      |     |   |   |  |
| [6]<br>DLE   | <ul> <li>DMAx Loop Enable</li> <li>0 = DMAx reloads the original Start Address and is then disabled after the End Address data is transferred.</li> <li>1 = DMAx, after the End Address data is transferred, reloads the original Start Address and continues operating.</li> </ul> |             |      |       |      |     |   |   |  |
| [5]<br>DDIR  | <b>DMA</b> <i>x</i> <b>Data Transfer Direction</b><br>$0 = \text{Register File} \rightarrow \text{on-chip peripheral control register.}$<br>$1 = \text{On-chip peripheral control} \rightarrow \text{Register File.}$                                                               |             |      |       |      |     |   |   |  |
| [4]<br>IRQEN | <ul> <li>DMAx Interrupt Enable</li> <li>0 = DMAx does not generate any interrupts.</li> <li>1 = DMAx generates an interrupt when the End Address data is transferred.</li> </ul>                                                                                                    |             |      |       |      |     |   |   |  |

| Bit            | Description (Continued)                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [4]<br>BRKLOOP | <b>Breakpoint Loop</b><br>This bit determines what action the OCD takes when a BRK instruction is decoded if break-<br>points are enabled (BRKEN is 1). If this bit is 0, then the DBGMODE bit is automatically set<br>to 1 and the OCD entered DEBUG Mode. If BRKLOOP is set to 1, then the<br>eZ8 CPU loops on the BRK instruction.<br>0 = BRK instruction sets DBGMODE to 1.<br>1 = eZ8 CPU loops on BRK instruction. |
| [3:1]          | <b>Reserved</b><br>These bits are reserved and must be programmed to 000.                                                                                                                                                                                                                                                                                                                                                |
| [0]<br>RST     | ResetSetting this bit to 1 resets the Z8 Encore! XP F64xx Series devices. The devices go through<br>a normal Power-On Reset sequence with the exception that the On-Chip Debugger is not<br>reset. This bit is automatically cleared to 0 when the reset finishes.0 = No effect.1 = Reset the Z8 Encore! XP F64xx Series device.                                                                                         |

# **OCD Status Register**

The OCD Status Register, shown in Table 104, reports status information about the current state of the debugger and the system.

## Table 104. OCD Status Register (OCDSTAT)

| Bit   | 7    | 6    | 5    | 4        | 3 | 2 | 1 | 0 |  |
|-------|------|------|------|----------|---|---|---|---|--|
| Field | IDLE | HALT | RPEN | Reserved |   |   |   |   |  |
| RESET |      |      | -    | 0        |   |   |   |   |  |
| R/W   |      | R    |      |          |   |   |   |   |  |

| Bit         | Description                                                                                                                                                                                                                                                                                                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]<br>IDLE | <ul> <li>CPU Idle</li> <li>This bit is set if the part is in DEBUG Mode (DBGMODE is 1), or if a BRK instruction occurred since the last time OCDCTL was written. This can be used to determine if the CPU is running or if it is idling.</li> <li>0 = The eZ8 CPU is running.</li> <li>1 = The eZ8 CPU is either stopped or looping on a BRK instruction.</li> </ul> |
| [6]<br>HALT | HALT Mode<br>0 = The device is not in HALT Mode.<br>1 = The device is in HALT Mode.                                                                                                                                                                                                                                                                                  |

| Bit   | Description (Continued)                                                      |
|-------|------------------------------------------------------------------------------|
| [5]   | Read Protect Option Bit Enabled                                              |
| RPEN  | 0 = The Read Protect option bit is disabled (1).                             |
|       | 1 = The Read Protect option bit is enabled (0), disabling many OCD commands. |
| [4:0] | Reserved                                                                     |
|       | These bits are reserved and must be programmed to 00000.                     |

# eZ8 CPU Instruction Classes

eZ8 CPU instructions can be divided functionally into the following groups:

- Arithmetic
- Bit Manipulation
- Block Transfer
- CPU Control
- Load
- Logical
- Program Control
- Rotate and Shift

Tables 128 through 135 contain the instructions belonging to each group and the number of operands required for each instruction. Some instructions appear in more than one table; these instructions can be considered to be a subset of more than one category. Within these tables, the source operand is identified as src, the destination operand is dst and a condition code is cc.

| Mnemonic | Operands | Instruction                                  |
|----------|----------|----------------------------------------------|
| ADC      | dst, src | Add with Carry                               |
| ADCX     | dst, src | Add with Carry using Extended Addressing     |
| ADD      | dst, src | Add                                          |
| ADDX     | dst, src | Add using Extended Addressing                |
| СР       | dst, src | Compare                                      |
| CPC      | dst, src | Compare with Carry                           |
| CPCX     | dst, src | Compare with Carry using Extended Addressing |
| CPX      | dst, src | Compare using Extended Addressing            |
| DA       | dst      | Decimal Adjust                               |
| DEC      | dst      | Decrement                                    |
| DECW     | dst      | Decrement Word                               |
| INC      | dst      | Increment                                    |
| INCW     | dst      | Increment Word                               |

Table 128. Arithmetic Instructions

| Mnemonic | Operands | Instruction                                         |
|----------|----------|-----------------------------------------------------|
| AND      | dst, src | Logical AND                                         |
| ANDX     | dst, src | Logical AND using Extended Addressing               |
| COM      | dst      | Complement                                          |
| OR       | dst, src | Logical OR                                          |
| ORX      | dst, src | Logical OR using Extended Addressing                |
| XOR      | dst, src | Logical Exclusive OR                                |
| XORX     | dst, src | Logical Exclusive OR using Extended Address-<br>ing |

## Table 133. Logical Instructions

## Table 134. Program Control Instructions

| Mnemonic | Operands        | Instruction                   |
|----------|-----------------|-------------------------------|
| BRK      |                 | On-Chip Debugger Break        |
| BTJ      | p, bit, src, DA | Bit Test and Jump             |
| BTJNZ    | bit, src, DA    | Bit Test and Jump if Non-Zero |
| BTJZ     | bit, src, DA    | Bit Test and Jump if Zero     |
| CALL     | dst             | Call Procedure                |
| DJNZ     | dst, src, RA    | Decrement and Jump Non-Zero   |
| IRET     | —               | Interrupt Return              |
| JP       | dst             | Jump                          |
| JP cc    | dst             | Jump Conditional              |
| JR       | DA              | Jump Relative                 |
| JR cc    | DA              | Jump Relative Conditional     |
| RET      | —               | Return                        |
| TRAP     | vector          | Software Trap                 |

# Hex Address: FC5

## Table 222. IRQ1 Enable Low Bit Register (IRQ1ENL)

| Bit     | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |  |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Field   | PAD7ENL | PAD6ENL | PAD5ENL | PAD4ENL | PAD3ENL | PAD2ENL | PAD1ENL | PAD0ENL |  |  |
| RESET   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| R/W     |  |  |
| Address |         | FC5H    |         |         |         |         |         |         |  |  |

# Hex Address: FC6

## Table 223. Interrupt Request 2 Register (IRQ2)

| Bit     | 7   | 6     | 5     | 4    | 3    | 2    | 1    | 0    |  |  |
|---------|-----|-------|-------|------|------|------|------|------|--|--|
| Field   | T3I | U1RXI | U1TXI | DMAI | PC3I | PC2I | PC1I | PC0I |  |  |
| RESET   |     | 0     |       |      |      |      |      |      |  |  |
| R/W     |     | R/W   |       |      |      |      |      |      |  |  |
| Address |     |       |       | FC   | 6H   |      |      |      |  |  |

# Hex Address: FC7

## Table 224. IRQ2 Enable High Bit Register (IRQ2ENH)

| Bit     | 7     | 6      | 5      | 4      | 3     | 2     | 1     | 0     |  |  |
|---------|-------|--------|--------|--------|-------|-------|-------|-------|--|--|
| Field   | T3ENH | U1RENH | U1TENH | DMAENH | C3ENH | C2ENH | C1ENH | C0ENH |  |  |
| RESET   |       | 0      |        |        |       |       |       |       |  |  |
| R/W     |       | R/W    |        |        |       |       |       |       |  |  |
| Address |       |        |        | FC     | 7H    |       |       |       |  |  |

## Hex Address: FC8

## Table 225. IRQ2 Enable Low Bit Register (IRQ2ENL)

| Bit     | 7     | 6      | 5      | 4      | 3     | 2     | 1     | 0     |  |  |
|---------|-------|--------|--------|--------|-------|-------|-------|-------|--|--|
| Field   | T3ENL | U1RENL | U1TENL | DMAENL | C3ENL | C2ENL | C1ENL | C0ENL |  |  |
| RESET   |       | 0      |        |        |       |       |       |       |  |  |
| R/W     |       | R/W    |        |        |       |       |       |       |  |  |
| Address |       |        |        | FC     | 8H    |       |       |       |  |  |

compare with carry 231 compare with carry - extended addressing 231 complement 234 complement carry flag 232, 233 condition code 228 continuous conversion (ADC) 165 continuous mode 79 control register definition, UART 99 control register, I2C 145 counter modes 79 CP 231 CPC 231 **CPCX 231** CPU and peripheral overview 4 CPU control instructions 233 **CPX 231** Customer Feedback Form 305 customer feedback form 294 **Customer Information 305** 

# D

DA 228, 231 data register, I2C 142 DC characteristics 203 debugger, on-chip 184 DEC 231 decimal adjust 231 decrement 231 decrement and jump non-zero 234 decrement word 231 **DECW 231** destination operand 229 device, port availability 37 DI 233 direct address 228 direct memory access controller 151 disable interrupts 233 **DJNZ 234** DMA address high nibble register 156 configuring DMA0-1 data transfer 151 configuring for DMA\_ADC data transfer 153 control of ADC 166

control register 154 control register definitions 153 controller 6 DMA\_ADC address register 158 DMA ADC control register 159 DMA\_ADC operation 152 end address low byte register 157 I/O address register 155 operation 151 start/current address low byte register 157 status register 160 DMAA\_STAT register 160 **DMAACTL** register 159 DMAxCTL register 154, 268, 269 DMAxEND register 157, 269, 270 DMAxH register 156, 268, 270 DMAxI/O address (DMAxIO) 155, 268, 269 DMAxIO register 155, 268, 269 DMAxSTART register 157, 268, 270 dst 229

# Ε

EI 233 electrical characteristics 201 ADC 215 flash memory and timing 214 GPIO input data sample timing 218 watch-dog timer 214 enable interrupt 233 ER 228 extended addressing register 228 external pin reset 33 external RC oscillator 213 eZ8 CPU features 4 eZ8 CPU instruction classes 231 eZ8 CPU instruction notation 228 eZ8 CPU instruction set 226 eZ8 CPU instruction summary 235

# F

FCTL register 177, 285 features, Z8 Encore! 1

294

295

first opcode map 247 FLAGS 229 flags register 229 flash controller 5 option bit address space 181 option bit configuration - reset 181 program memory address 0001H 183 flash memory arrangement 171 byte programming 174 code protection 173 configurations 170 control register definitions 176 controller bypass 175 electrical characteristics and timing 214 flash control register 177, 285 flash status register 178 frequency high and low byte registers 180 mass erase 175 operation 172 operation timing 172 page erase 175 page select register 178 FPS register 178 FSTAT register 178

# G

gated mode 79 general-purpose I/O 37 GPIO 5, 37 alternate functions 38 architecture 38 control register definitions 40 input data sample timing 218 interrupts 40 port A-H address registers 41 port A-H alternate function sub-registers 43 port A-H control registers 42 port A-H data direction sub-registers 42 port A-H high drive enable sub-registers 45 port A-H input data registers 47 port A-H output control sub-registers 44 port A-H output data registers 47 port A-H Stop Mode Recovery sub-registers 46 port availability by device 37 port input timing 218 port output timing 219

# Η

H 229 HALT 233 halt mode 36, 233 hexadecimal number prefix/suffix 229

## | |2C 5

10-bit address read transaction 140 10-bit address transaction 137 10-bit addressed slave data transfer format 137 10-bit receive data format 140 7-bit address transaction 134 7-bit address, reading a transaction 139 7-bit addressed slave data transfer format 134, 135.136 7-bit receive data transfer format 139 baud high and low byte registers 146, 148, 150 C status register 143, 263 control register definitions 142 controller 129 controller signals 15 interrupts 131 operation 130 SDA and SCL signals 131 stop and start conditions 133 I2CBRH register 147, 148, 150, 263, 264 I2CBRL register 147, 263 I2CCTL register 145, 263 I2CDATA register 143, 262 I2CSTAT register 143, 263 IM 228 immediate data 228 immediate operand prefix 229 INC 231 increment 231