

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f3221vn020eg

Z8 Encore! XP[®] F64xx Series Product Specification

xiv

,	Γable 34.	IRQ2 Enable High Bit Register (IRQ2ENH)	58
,	Γable 35.	IRQ2 Enable Low Bit Register (IRQ2ENL)	59
,	Γable 36.	Interrupt Edge Select Register (IRQES)	60
,	Гable 37.	Interrupt Port Select Register (IRQPS)	60
,	Γable 38.	Interrupt Control Register (IRQCTL)	61
,	Гable 39.	Timer 0–3 High Byte Register (TxH)	73
,	Γable 40.	Timer 0–3 Low Byte Register (TxL)	73
,	Γable 41.	Timer 0–3 Reload High Byte Register (TxRH)	74
,	Гable 42.	Timer 0–3 Reload Low Byte Register (TxRL)	74
,	Гable 43.	Timer 0–3 PWM High Byte Register (TxPWMH)	75
,	Γable 44.	Timer 0–3 PWM Low Byte Register (TxPWML)	75
,	Гable 45.	Timer 0–3 Control 0 Register (TxCTL0)	76
,	Гable 46.	Timer 0–3 Control 1 Register (TxCTL1)	77
,	Γable 47.	Watchdog Timer Approximate Time-Out Delays	81
,	Γable 48.	Watchdog Timer Control Register (WDTCTL)	84
,	Гable 49.	Watchdog Timer Events	85
,	Γable 50.	Watchdog Timer Reload Upper Byte Register (WDTU)	85
,	Γable 51.	Watchdog Timer Reload High Byte Register (WDTH)	86
,	Γable 52.	Watchdog Timer Reload Low Byte Register (WDTL)	86
,	Γable 53.	UART Transmit Data Register (UxTXD)	99
,	Γable 54.	UART Receive Data Register (UxRXD)	99
,	Γable 55.	UART Status 0 Register (UxSTAT0)	. 100
,	Γable 56.	UART Status 1 Register (UxSTAT1)	. 101
,	Γable 57.	UART Control 0 Register (UxCTL0)	. 102
,	Γable 58.	UART Control 1 Register (UxCTL1)	. 103
,	Γable 59.	UART Address Compare Register (UxADDR)	. 105
,	Гable 60.	UART Baud Rate High Byte Register (UxBRH)	. 106
,	Γable 61.	UART Baud Rate Low Byte Register (UxBRL)	. 106
,	Γable 62.	UART Baud Rates	. 107
,	Гable 63.	SPI Clock Phase (PHASE) and Clock Polarity (CLKPOL) Operation $\ .$.	. 117
,	Γable 64.	SPI Data Register (SPIDATA)	. 122
,	Γable 65.	SPI Control Register (SPICTL)	. 122
,	Гable 66.	SPI Status Register (SPISTAT)	. 123
,	Гable 67.	SPI Mode Register (SPIMODE)	. 125
,	Гable 68.	SPI Diagnostic State Register (SPIDST)	. 126
,	Гable 69.	SPI Baud Rate High Byte Register (SPIBRH)	. 127

Z8 Encore! XP[®] F64xx Series Product Specification

XX

Table 249.	Port A–H GPIO Address Registers (PxADDR)	279
Table 250.	Port A-H Control Registers (PxCTL)	279
Table 251.	Port A–H Input Data Registers (PxIN)	279
Table 252.	Port A–H Output Data Register (PxOUT)	280
Table 253.	Port A-H GPIO Address Registers (PxADDR)	280
Table 254.	Port A–H Control Registers (PxCTL)	280
Table 255.	Port A–H Input Data Registers (PxIN)	280
Table 256.	Port A–H Output Data Register (PxOUT)	281
Table 257.	Port A-H GPIO Address Registers (PxADDR)	281
Table 258.	Port A-H Control Registers (PxCTL)	281
Table 259.	Port A–H Input Data Registers (PxIN)	281
Table 260.	Port A–H Output Data Register (PxOUT)	282
Table 261.	Watchdog Timer Control Register (WDTCTL)	282
Table 262.	Watchdog Timer Reload Upper Byte Register (WDTU)	282
Table 263.	Watchdog Timer Reload High Byte Register (WDTH)	283
Table 264.	Watchdog Timer Reload Low Byte Register (WDTL)	283
Table 265.	Flash Control Register (FCTL)	284
Table 266.	Flash Status Register (FSTAT)	284
Table 267.	Page Select Register (FPS)	284
Table 268.	Flash Frequency High Byte Register (FFREQH)	285
Table 269.	Flash Frequency Low Byte Register (FFREQL)	285
Table 270.	Flash Sector Protect Register (FPROT)	285
Table 271	78 Encore! XP F64xx Series Ordering Matrix	287

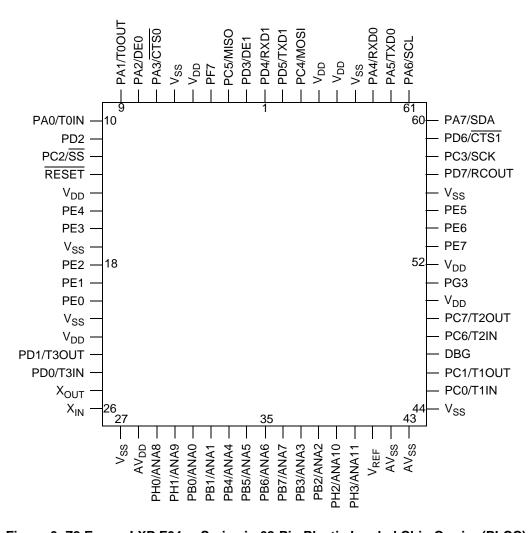


Figure 6. Z8 Encore! XP F64xx Series in 68-Pin Plastic Leaded Chip Carrier (PLCC)

Table 5. Z8 Encore! XP F64xx Series Program Memory Maps (Continued)

Program Memory Address (Hex)	Function			
0006-0007	Illegal Instruction Trap			
0008-0037	Interrupt Vectors*			
0038-BFFF	Program Memory			
Z8F642x Products				
0000-0001	Option Bits			
0002-0003	Reset Vector			
0004-0005	WDT Interrupt Vector			
0006-0007	Illegal Instruction Trap			
0008-0037	Interrupt Vectors*			
0038-FFFF	Program Memory			
Note: *See <u>Table 23</u> on page 48 for a list of the interrupt vectors.				

Data Memory

The Z8 Encore! XP F64xx Series does not use the eZ8 CPU's 64KB data memory address space.

Information Area

Table 6 describes the Z8 Encore! XP F64xx Series' Information Area. This 512-byte Information Area is accessed by setting bit 7 of the Page Select Register to 1. When access is enabled, the Information Area is mapped into program memory and overlays the 512 bytes at addresses FE00H to FFFFH. When the Information Area access is enabled, execution of the LDC and LDCI instructions from these program memory addresses return the Information Area data rather than the program memory data. Reads of these addresses through the On-Chip Debugger also returns the Information Area data. Execution of code from these addresses continues to correctly use program memory. Access to the Information Area is read-only.

Reset and Stop Mode Recovery

The Reset Controller within the Z8 Encore! XP F64xx Series controls Reset and Stop Mode Recovery operation. In typical operation, the following events cause a Reset to occur:

- Power-On Reset
- Voltage Brown-Out
- Watchdog Timer time-out (when configured via the WDT_RES option bit to initiate a Reset)
- External RESET pin assertion
- On-Chip Debugger initiated Reset (OCDCTL[0] set to 1)

When the Z8 Encore! XP F64xx Series devices are in STOP Mode, a Stop Mode Recovery is initiated by either of the following events:

- Watchdog Timer time-out
- GPIO port input pin transition on an enabled Stop Mode Recovery source
- DBG pin driven Low

Reset Types

The Z8 Encore! XP F64xx Series provides two different types of reset operation (system reset and Stop Mode Recovery). The type of Reset is a function of both the current operating mode of the Z8 Encore! XP F64xx Series devices and the source of the Reset. Table 8 lists the types of Reset and their operating characteristics.

Table 8. Reset and Stop Mode Recovery Characteristics and Latency

	Reset Characteristics and Latency					
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)			
System reset	Reset (as applicable)	Reset	66 WDT Oscillator cycles + 16 System Clock cycles			
Stop Mode Recovery	Unaffected, except WDT_CTL Register	Reset	66 WDT Oscillator cycles + 16 System Clock cycles			

• Writing a 1 to the IRQE bit in the Interrupt Control Register

Interrupts are globally disabled by any of the following operations:

- Execution of a Disable Interrupt (DI) instruction
- eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller
- Writing a 0 to the IRQE bit in the Interrupt Control Register
- Reset
- Executing a trap instruction
- Illegal instruction trap

Interrupt Vectors and Priority

The interrupt controller supports three levels of interrupt priority. Level 3 is the highest priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all of the interrupts were enabled with identical interrupt priority (all as Level 2 interrupts, for example), then the interrupt priority would be assigned from highest to lowest, as specified in Table 23. Level 3 interrupts always have higher priority than Level 2 interrupts which, in turn, always have higher priority than Level 1 interrupts. Within each interrupt priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in Table 23. Resets, Watchdog Timer interrupts (if enabled), and illegal instruction traps always have highest priority.

Interrupt Assertion

Interrupt sources assert their interrupt requests for only a single system clock period (single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the corresponding bit in the Interrupt Request Register is cleared until the next interrupt occurs. Writing a 0 to the corresponding bit in the Interrupt Request Register likewise clears the interrupt request.

Caution: Zilog recommends not using a coding style that clears bits in the Interrupt Request registers. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost. See Example 1, which follows.

Example 1. A poor coding style that can result in lost interrupt requests:

```
LDX r0, IRQ0
AND r0, MASK
LDX IRQ0, r0
```

Table 39. Timer 0-3 High Byte Register (TxH)

Bit	7	6	5	4	3	2	1	0
Field				Т	Н			
RESET	0							
R/W	R/W							
Address	F00H, F08H, F10H, F18H							

Table 40. Timer 0-3 Low Byte Register (TxL)

Bit	7	6	5	4	3	2	1	0
Field	TL							
RESET	0 1							
R/W	R/W							
Address	F01H, F09H, F11H, F19H							

Bit	Description
[7:0]	Timer High and Low Bytes
TH, TL	These 2 bytes, {TMRH[7:0], TMRL[7:0]}, contain the current 16-bit timer count value.

Bit	Description
[7]	Timer Enable
TEN	0 = Timer is disabled.
	1 = Timer enabled to count.
[6]	Timer Input/Output Polarity

TPOL Operation of this bit is a function of the current operating mode of the timer.

ONE-SHOT Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled, the timer output signal is complemented upon timer reload.

CONTINUOUS Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled, the timer output signal is complemented upon timer reload.

COUNTER Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled, the timer output signal is complemented upon timer reload.

- 0 = Count occurs on the rising edge of the timer input signal.
- 1 = Count occurs on the falling edge of the timer input signal.

PWM Mode

- 0 = timer output is forced Low (0) when the timer is disabled. When enabled, the timer output is forced High (1) upon PWM count match and forced Low (0) upon reload.
- 1 = timer output is forced High (1) when the timer is disabled. When enabled, the timer output is forced Low (0) upon PWM count match and forced High (1) upon reload.

CAPTURE Mode

- 0 = Count is captured on the rising edge of the timer input signal.
- 1 = Count is captured on the falling edge of the timer input signal.

COMPARE Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled, the timer output signal is complemented upon timer reload.

GATED Mode

- 0 = Timer counts when the timer input signal is High (1) and interrupts are generated on the falling edge of the timer input.
- 1 = Timer counts when the timer input signal is Low (0) and interrupts are generated on the rising edge of the timer input.

CAPTURE/COMPARE Mode

- 0 = Counting is started on the first rising edge of the timer input signal. The current count is captured on subsequent rising edges of the timer input signal.
- 1 = Counting is started on the first falling edge of the timer input signal. The current count is captured on subsequent falling edges of the timer input signal.

Caution: When the timer output alternate function TxOUT on a GPIO port pin is enabled, TxOUT will change to whatever state the TPOL bit is in. The timer does not need to be enabled for that to happen. Also, the Port Data Direction Subregister is not needed to be set to output on TxOUT. Changing the TPOL bit with the timer enabled and running does not immediately change the TxOUT.

- 5. After the first bit has been shifted out, a transmit interrupt is asserted.
- 6. Software responds by writing the lower eight bits of address to the I²C Data Register.
- 7. The I^2C Controller completes shifting of the two address bits and a 0 (write).
- 8. If the I²C slave acknowledges the first address byte by pulling the SDA signal Low during the next High period of SCL, the I²C Controller sets the ACK bit in the I²C Status Register. Continue with <u>Step 9</u>.

If the slave does not acknowledge the first address byte, the I²C Controller sets the NCKI bit and clears the ACK bit in the I²C Status Register. Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I²C Controller sends the stop condition on the bus and clears the stop and NCKI bits. The transaction is complete (ignore following steps).

- 9. The I²C Controller loads the I²C Shift Register with the contents of the I²C Data Register (second address byte).
- 10. The I²C Controller shifts out the second address byte. After the first bit is shifted, the I²C Controller generates a transmit interrupt.
- 11. Software responds by setting the start bit of the I²C Control Register to generate a repeated start by clearing the TXI bit.
- 12. Software responds by writing 11110B followed by the 2-bit slave address and a 1 (read) to the I²C Data Register.
- 13. If only one byte is to be read, software sets the NAK bit of the I²C Control Register.
- 14. After the I²C Controller shifts out the 2nd address byte, the I²C slave sends an acknowledge by pulling the SDA signal Low during the next High period of SCL, the I²C Controller sets the ACK bit in the I²C Status Register. Continue with Step 15.

If the slave does not acknowledge the second address byte, the I^2C Controller sets the NCKI bit and clears the ACK bit in the I^2C Status Register. Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I^2C Controller sends the stop condition on the bus and clears the stop and NCKI bits. The transaction is complete (ignore the following steps).

- 15. The I²C Controller sends the repeated start condition.
- 16. The I²C Controller loads the I²C Shift Register with the contents of the I²C Data Register (third address transfer).
- 17. The I²C Controller sends 11110B followed by the two most significant bits of the slave read address and a 1 (read).
- 18. The I²C slave sends an acknowledge by pulling the SDA signal Low during the next High period of SCL

Bit	Description (Continued)
[3] WSEL	 Word Select 0 = DMAx transfers a single byte per request. 1 = DMAx transfers a two-byte word per request. The address for the on-chip peripheral control register must be an even address.
[2:0] RSS	Request Trigger Source Select The Request Trigger Source Select field determines the peripheral that can initiate a DMA transfer. The corresponding interrupts do not need to be enabled within the Interrupt Controller to initiate a DMA transfer. However, if the Request Trigger Source can enable or disable the interrupt request sent to the Interrupt Controller, the interrupt request must be enabled within the Request Trigger Source block. 000 = Timer 0. 001 = Timer 1. 010 = Timer 2. 011 = Timer 3. 100 = DMA0 Control Register: UARTO Received Data Register contains valid data. DMA1 Control Register: UARTO Transmit Data Register empty. 101 = DMA0 Control Register: UART1 Received Data Register contains valid data. DMA1 Control Register: UART1 Transmit Data Register empty. 110 = DMA0 Control Register: I ² C Receiver Interrupt. DMA1 Control Register: I ² C Transmitter Interrupt Register empty.

DMAx I/O Address Register

The DMAx I/O Address Register, shown in Table 79, contains the low byte of the on-chip peripheral address for data transfer. The full 12-bit Register File address is provided by {FH, DMAx_IO[7:0]}. When the DMA is configured for two-byte word transfers, the DMAx I/O Address Register must contain an even-numbered address.

Table 79. DMAx I/O Address Register (DMAxIO)

Bit	7	6	5	4	3	2	1	0
Field	DMA_IO							
RESET	X							
R/W	R/W							
Address	FB1H, FB9H							

Bit	Description
[7:0]	DMA On-Chip Peripheral Control Register Address
DMA_IO	This byte sets the low byte of the on-chip peripheral control register address on Register File
	Page FH (addresses F00H to FFFH).

Table 84. DMA_ADC Address Register (DMAA_ADDR)

Bit	7	6	5	4	3	2	1	0				
Field		DMAA_ADDR Reserved										
RESET				>	<							
R/W		R/W										
Address				FB	DH							

Bit	Description
[7:1] DMAA_ADDR	DMA_ADC Address These bits specify the seven most significant bits of the 12-bit Register File addresses used for storing the ADC output data. The ADC analog input Number defines the five least significant bits of the Register File address. Full 12-bit address is {DMAA_ADDR[7:1], 4-bit ADC analog input Number, 0}.
0	Reserved This bit is reserved and must be programmed to 0.

DMA_ADC Control Register

The DMA_ADC Control Register, shown in Table 85, enables and sets options (DMA enable and interrupt enable) for ADC operation.

Table 85. DMA_ADC Control Register (DMAACTL)

Bit	7	6	5	4	3	2	1	0			
Field	DAEN	IRQEN	Reserved ADC_IN								
RESET		0									
R/W		R/W									
Address				FB	EH						

Bit	Description
[7] DAEN	DMA_ADC Enable 0 = DMA_ADC is disabled and the ADC analog input Number (ADC_IN) is reset to 0. 1 = DMA_ADC is enabled.
[6] IRQEN	Interrupt Enable 0 = DMA_ADC does not generate any interrupts. 1 = DMA_ADC generates an interrupt after transferring data from the last ADC analog input specified by the ADC_IN field.

Flash Memory Address 0000H

Table 99. Flash Option Bits At Flash Memory Address 0000H

Bit	7	6	5	4	3	2	1	0				
Field	WDT_RES	WDT_AO	OSC_S	SEL[1:0]	VBO_AO	RP	Reserved	FWP				
RESET		U										
R/W				RΛ	V							
Address		Program Memory 0000H										
Note: U =	Note: U = Unchanged by Reset; R/W = Read/Write.											

Bit	Description
[7] WDT_RES	Watchdog Timer Reset 0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request. 1 = Watchdog Timer time-out causes a Short Reset. This setting is the default for unprogrammed (erased) Flash.
[6] WDT_AO	Watchdog Timer Always On 0 = Watchdog Timer is automatically enabled upon application of system power. Watchdog Timer can not be disabled except during STOP Mode (if configured to power down during STOP Mode). 1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled, the Watchdog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is the default for unprogrammed (erased) Flash.
[5:4] OSC_SEL[1:0]	Oscillator Mode Selection 00 = On-chip oscillator configured for use with external RC networks (<4MHz). 01 = Minimum power for use with very low frequency crystals (32kHz to 1.0MHz). 10 = Medium power for use with medium frequency crystals or ceramic resonators (0.5MHz to 10.0MHz). 11 = Maximum power for use with high frequency crystals (8.0MHz to 20.0MHz). This setting is the default for unprogrammed (erased) Flash.
[3] VBO_AO	 Voltage Brown-Out Protection Always On 0 = Voltage Brown-Out Protection is disabled in STOP Mode to reduce total power consumption. 1 = Voltage Brown-Out Protection is always enabled including during STOP Mode. This setting is the default for unprogrammed (erased) Flash.
[2] RP	Read Protect 0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger. 1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.

Bit	Description (Continued)
[1]	Reserved
	This bit is reserved and must be programmed to 0.
[0]	Flash Write Protect (Flash version only)
FWP	 0 = Programming, Page Erase, and Mass Erase through User Code is disabled. Mass Erase is available through the On-Chip Debugger. 1 = Programming, and Page Erase are enabled for all of Flash program memory.

Flash Memory Address 0001H

Table 100. Options Bits at Flash Memory Address 0001H

Bit	7	6	5	4	3	2	1	0				
Field		Reserved										
RESET		U										
R/W				R/	W							
Address		Program Memory 0001H										
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.											

Bit	Description
[7:0]	Reserved
	These option bits are reserved for future use and must always be 1. This setting is the default
	for unprogrammed (erased) Flash.

Operation

The following section describes the operation of the OCD.

OCD Interface

The On-Chip Debugger uses the DBG pin for communication with an external host. This one-pin interface is a bidirectional open-drain interface that transmits and receives data. Data transmission is half-duplex, meaning that transmit and receive operations cannot occur simultaneously. The serial data on the DBG pin is sent using the standard asynchronous data format defined in RS-232. This pin can interface the Z8 Encore! XP F64xx Series products to the serial port of a host PC using minimal external hardware. Two different methods for connecting the DBG pin to an RS-232 interface are depicted in Figures 37 and 38.

Caution: For proper operation of the On-Chip Debugger, all power pins (V_{DD} and AV_{DD}) must be supplied with power, and all ground pins (V_{SS} and AV_{SS}) must be properly grounded. The DBG pin is open-drain and must always be connected to V_{DD} through an external pull-up resistor to ensure proper operation.

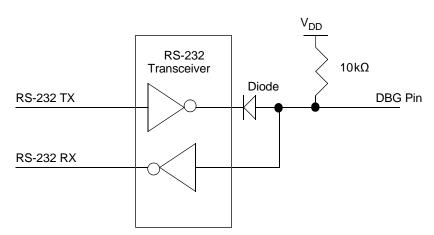


Figure 37. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #1 of 2

Hex Address: F19

Table 163. Timer 0-3 Low Byte Register (TxL)

Bit	7	6	5	4	3	2	1	0				
Field	TL											
RESET	0 1											
R/W	R/W											
Address			F	F01H, F09H,	F11H, F19H	1						

Hex Address: F1A

Table 164. Timer 0–3 Reload High Byte Register (TxRH)

Bit	7	6	5	4	3	2	1	0				
Field		TRH										
RESET		1										
R/W		R/W										
Address			F	02H, F0AH,	F12H, F1A	Н						

Hex Address: F1B

Table 165. Timer 0-3 Reload Low Byte Register (TxRL)

Bit	7	6	5	4	3	2	1	0				
Field		TRL										
RESET		1										
R/W		R/W										
Address			F	03H, F0BH,	F13H, F1B	Н						

Hex Address: F1C

Table 166. Timer 0-3 PWM High Byte Register (TxPWMH)

Bit	7	6	5	4	3	2	1	0	
Field		PWMH							
RESET		0							
R/W		R/W							
Address	F04H, F0CH, F14H, F1CH								

Hex Address: F4A

Table 182. UART Control 0 Register (UxCTL0)

Bit	7	6	5	4	3	2	1	0		
Field	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN		
RESET		0								
R/W				R/	W					
Address				F42H ar	nd F4AH					

Hex Address: F4B

Table 183. UART Control 1 Register (UxCTL1)

Bit	7	6	5	4	3	2	1	0						
Field	MPMD[1]	MPEN	MPMD[0]	MPBT	DEPOL	BRGCTL	RDAIRQ	IREN						
RESET		0												
R/W				R/	W									
Address				F43H ar	nd F4BH	F43H and F4BH								

Hex Address: F4C

Table 184. UART Status 1 Register (UxSTAT1)

Bit	7	6	5	4	3	2	1	0		
Field		Reserved NEWFRM MPR								
RESET		0								
R/W		R R/W R								
Address				F44H ar	nd F4CH					

Hex Address: F4D

Table 185. UART Address Compare Register (UxADDR)

Bit	7	6	5	4	3	2	1	0							
Field		COMP_ADDR													
RESET		0													
R/W				R/	W										
Address				F45H ar	nd F4DH		F45H and F4DH								

Hex Address: F51

Table 189. I²C Status Register (I2CSTAT)

Bit	7	6	5	4	3	2	1	0	
Field	TDRE	RDRF	ACK	10B	RD	TAS	DSS	NCKI	
RESET	1		0						
R/W			R						
Address		F51H							

Hex Address: F52

Table 190. I²C Control Register (I2CCTL)

Bit	7	6	5	4	3	2	1	0		
Field	IEN	START	STOP	BIRQ	TXI	NAK	FLUSH	FILTEN		
RESET		0								
R/W	R/W	R/W1	R/W1	R/W	R/W	R/W1	W1	R/W		
Address		F52H								

Hex Address: F53

Table 191. I²C Baud Rate High Byte Register (I2CBRH)

Bit	7	6	5	4	3	2	1	0
Field				BF	RH			
RESET		FFH						
R/W				R/	W			
Address				F5	3H			

Hex Address: F54

Table 192. I²C Baud Rate Low Byte Register (I2CBRL)

Bit	7	6	5	4	3	2	1	0	
Field				BF	₹L				
RESET		FFH							
R/W				R/	W				
Address		F54H							

Hex Address: F55

Table 193. I²C Diagnostic State Register (I2CDST)

Bit	7	6	5	5 4 3 2 1 0				
Field	SCLIN	SDAIN	STPCNT	CNT TXRXSTATE				
RESET	X 0							
R/W				F	₹			
Address		F55H						

Hex Address: F56

Table 194. I²C Diagnostic Control Register (I2CDIAG)

Bit	7	6	5	4	3	2	1	0		
Field				Reserved				DIAG		
RESET		0								
R/W		R								
Address		F56H								

Hex Addresses: F57-F5F

This address range is reserved.

Serial Peripheral Interface

For more information about these SPI Control registers, see the <u>SPI Control Register Definitions</u> section on page 121.

Hex Address: F60

Table 195. SPI Data Register (SPIDATA)

Bit	7	6	5	4	3	2	1	0	
Field				DA	TA				
RESET		X							
R/W				R/	W				
Address				F6	0H				

Table 268. Flash Sector Protect Register (FPROT)

Bit	7	6	5	4	3	2	1	0
Field	SECT7	SECT6	SECT5	SECT4	SECT3	SECT2	SECT1	SECT0
RESET	0							
R/W	R/W*							
Address	FF9H							
Note: *R/W = This register is accessible for read operations; it can be written to 1 only via user code.								

Hex Address: FFA

Table 269. Flash Frequency High Byte Register (FFREQH)

Bit	7	6	5	4	3	2	1	0
Field	FFREQH							
RESET	0							
R/W	R/W							
Address	FFAH							

Hex Address: FFB

Table 270. Flash Frequency Low Byte Register (FFREQL)

Bit	7	6	5	4	3	2	1	0
Field	FFREQL							
RESET	0							
R/W	R/W							
Address	FFBH							

Hex Addresses: FFC-FFF

Refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>

SPIBRL register 128, 266	continuous mode 65, 79
SPICTL register 123, 265	counter mode 66
SPIDATA register 123, 264	counter modes 79
SPIMODE register 126, 265	gated mode 71, 79
SPISTAT register 124, 265	one-shot mode 64, 79
SRA 235	operating mode 64
src 229	PWM mode 67, 79
SRL 235	reading the timer count values 72
SRP 233	reload high and low byte registers 75
stack pointer 229	timer control register definitions 73
status register, I2C 143	timer output signal operation 73
STOP 233	timers 0-3
STOP mode 35, 233	control 0 registers 77
Stop Mode Recovery	control 1 registers 78
sources 33	high and low byte registers 73, 76
using a GPIO port pin transition 34	TM 232
using watchdog timer time-out 34	TMX 232
SUB 232	transmit
subtract 232	IrDA data 111
subtract - extended addressing 232	transmit interrupt 131
subtract with carry 232	transmitting UART data-interrupt-driven method
subtract with carry - extended addressing 232	91
SUBX 232	transmitting UART data-polled method 90
SWAP 235	TRAP 234
swap nibbles 235	
symbols, additional 229	
system and core resets 30	U
	UART 5, 88
	architecture 88
T	asynchronous data format without/with parity
TCM 232	90
TCMX 232	baud rate generator 99
test complement under mask 232	baud rates table 108
test complement under mask 252 test complement under mask - extended addressing	control register definitions 99
232	controller signals 16
test under mask 232	interrupts 97
test under mask - extended addressing 232	multiprocessor mode 94
timer signals 16	receiving data using interrupt-driven method 93
timers 6, 63	receiving data using the polled method 92
architecture 63	transmitting data using the interrupt-driven
block diagram 64	method 91
capture mode 69, 79	transmitting data using the polled method 90
capture/compare mode 71, 79	x baud rate high and low registers 106
compare mode 70, 79	x control 0 and control 1 registers 103
compare mode 10, 17	A condoi o una common i registers 103