

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	46
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f3222ar020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore! XP[®] F64xx Series Product Specification

9

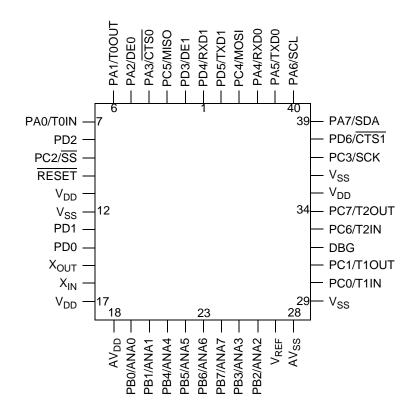


Figure 3. Z8 Encore! XP F64xx Series in 44-Pin Plastic Leaded Chip Carrier (PLCC)

Note: Timer 3 is not available in the 44-pin PLCC package.

Power-On Reset

Each device in the Z8 Encore! XP F64xx Series contains an internal Power-On Reset circuit. The POR circuit monitors the supply voltage and holds the device in the Reset state until the supply voltage reaches a safe operating level. After the supply voltage exceeds the POR voltage threshold (V_{POR}), the POR Counter is enabled and counts 66 cycles of the Watchdog Timer oscillator. After the POR counter times out, the XTAL Counter is enabled to count a total of 16 system clock pulses. The devices are held in the Reset state until both the POR Counter and XTAL counter have timed out. After the Z8 Encore! XP F64xx Series devices exit the POR reset state, the eZ8 CPU fetches the Reset vector. Following Power-On Reset, the POR status bit in the Watchdog Timer Control (WDTCTL) Register is set to 1.

Figure 8 displays Power-On Reset operation. For the POR threshold voltage (V_{POR}), see the <u>Electrical Characteristics</u> chapter on page 200.

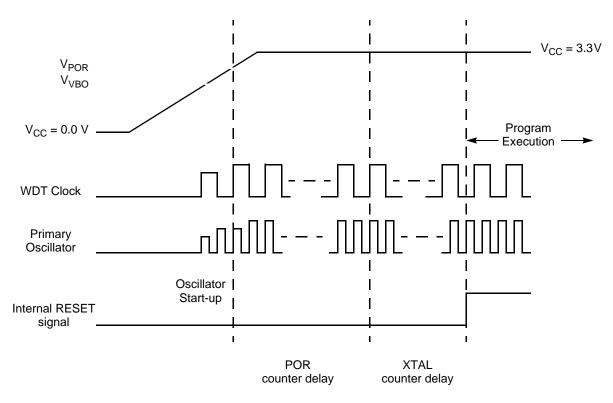


Figure 8. Power-On Reset Operation

Voltage Brown-Out Reset

The devices in the Z8 Encore! XP F64xx Series provide low Voltage Brown-Out protection. The VBO circuit senses when the supply voltage drops to an unsafe level (below the VBO threshold voltage) and forces the device into the Reset state. While the supply voltage remains below the Power-On Reset voltage threshold (V_{POR}), the VBO block holds the device in the Reset state.

After the supply voltage again exceeds the Power-On Reset voltage threshold, the devices progress through a full system reset sequence, as described in the Power-On Reset section. Following Power-On Reset, the POR status bit in the Watchdog Timer Control (WDTCTL) Register is set to 1. Figure 9 displays Voltage Brown-Out operation. For the VBO and POR threshold voltages (V_{VBO} and V_{POR}), see the <u>Electrical Characteristics</u> chapter on page 200.

The Voltage Brown-Out circuit can be either enabled or disabled during STOP Mode. Operation during STOP Mode is set by the VBO_AO option bit. For information about configuring VBO_AO, see the <u>Option Bits</u> chapter on page 180.

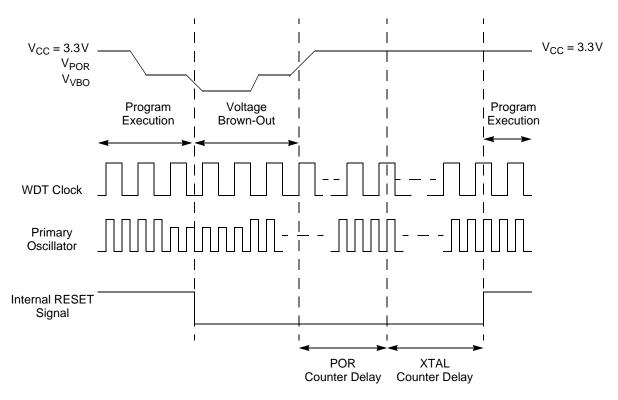


Figure 9. Voltage Brown-Out Reset Operation

Table 24. Interrupt Request 0 Register (IRQ0)

Bit	7	6	5	4	3	2	1	0			
Field	T2I	T1I	TOI	U0RXI	U0TXI	I2CI	SPII	ADCI			
RESET		0									
R/W				R/	W						
Address				FC	0H						
Bit	Description	n									
[7] T2I	0 = No inter	Timer 2 Interrupt Request 0 = No interrupt request is pending for Timer 2. 1 = An interrupt request from Timer 2 is awaiting service.									
[6] T1I	0 = No inter	Timer 1 Interrupt Request 0 = No interrupt request is pending for Timer 1. 1 = An interrupt request from Timer 1 is awaiting service.									
[5] T0I	0 = No inter	Timer 0 Interrupt Request 0 = No interrupt request is pending for Timer 0. 1 = An interrupt request from Timer 0 is awaiting service.									
[4] U0RXI	0 = No inter	rrupt reques	rrupt Reque t is pending t from the U	for the UAR							
[3] UOTXI	0 = No inter	UART 0 Transmitter Interrupt Request 0 = No interrupt request is pending for the UART 0 transmitter. 1 = An interrupt request from the UART 0 transmitter is awaiting service.									
[2] I2CI	0 = No inter	I ² C Interrupt Request 0 = No interrupt request is pending for the I ² C. 1 = An interrupt request from the I ² C is awaiting service.									
[1] SPII	0 = No inter	SPI Interrupt Request 0 = No interrupt request is pending for the SPI. 1 = An interrupt request from the SPI is awaiting service.									
[0] ADCI	0 = No inter		st t is pending t from the Ai				g service.				

Every subsequent appropriate transition (after the first) of the timer input signal captures the current count value. The Capture value is written to the Timer PWM High and Low Byte Registers. When the capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes.

If no capture event occurs, the timer counts up to the 16-bit compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

Observe the following procedure for configuring a timer for CAPTURE/COMPARE Mode and initiating the count:

- 1. Write to the Timer Control 1 Register to:
 - Disable the timer
 - Configure the timer for CAPTURE/COMPARE Mode
 - Set the prescale value
 - Set the Capture edge (rising or falling) for the timer input
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the compare value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the timer input alternate function.
- 6. Write to the Timer Control 1 Register to enable the timer.
- 7. Counting begins on the first appropriate transition of the timer input signal. No interrupt is generated by this first edge.

In COMPARE Mode, the elapsed time from timer start to capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

Reading the Timer Count Values

The current count value in the timers can be read while counting (enabled). This capability has no effect on timer operation. When the timer is enabled and the Timer High Byte Register is read, the contents of the Timer Low Byte Register are placed in a holding register. A subsequent read from the Timer Low Byte Register returns the value in the holding reg-

Watchdog Timer

The Watchdog Timer (WDT) helps protect against corrupt or unreliable software, power faults and other system-level problems which can place the Z8 Encore! XP F64xx Series MCU into unsuitable operating states. The features of the Watchdog Timer include:

- On-chip RC oscillator
- A selectable time-out response
- WDT time-out response: Reset or interrupt
- 24-bit programmable time-out value

Operation

The Watchdog Timer is a retriggerable one-shot timer that resets or interrupts the Z8 Encore! XP F64xx Series devices when the WDT reaches its terminal count. The Watchdog Timer uses its own dedicated on-chip RC oscillator as its clock source. The Watchdog Timer has only two modes of operation: ON and OFF. After it is enabled, it always counts and must be refreshed to prevent a time-out. An enable can be performed by executing the WDT instruction or by setting the WDT_AO option bit. This WDT_AO bit enables the Watchdog Timer to operate continuously, even if a WDT instruction has not been executed.

The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is calculated using the following equation:

WDT Time-out Period (ms) = $\frac{\text{WDT Reload Value}}{10}$

In the above equation, the WDT reload value is the decimal value of the 24-bit value provided by {WDTU[7:0], WDTH[7:0], WDTL[7:0]}; the typical Watchdog Timer RC oscillator frequency is 10kHz. The Watchdog Timer cannot be refreshed after it reaches 000002H. The WDT reload value must not be set to values below 000004H.

Table 47 lists approximate time-out delays for the minimum and maximum WDT reload values.

Infrared Encoder/Decoder

The Z8 Encore! XP F64xx Series products contain two fully-functional, high-performance UART-to-infrared encoders/decoders (endecs). Each infrared endec is integrated with an on-chip UART to allow easy communication between the Z8 Encore! XP F64xx Series and IrDA Physical Layer Specification Version 1.3-compliant infrared transceivers. Infrared communication provides secure, reliable, low-cost, point-to-point communication between PCs, PDAs, cell phones, printers, and other infrared enabled devices.

Architecture

Figure 19 displays the architecture of the infrared endec.

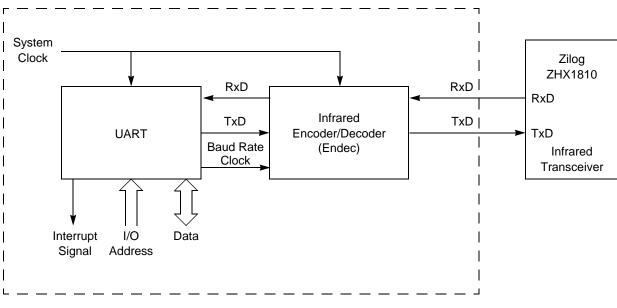


Figure 19. Infrared Data Communication System Block Diagram

Operation

When the infrared endec is enabled, the transmit data from the associated on-chip UART is encoded as digital signals in accordance with the IrDA standard and output to the infrared transceiver via the TxD pin. Likewise, data received from the infrared transceiver is passed to the infrared endec via the RxD pin, decoded by the infrared endec, and then

Transfer Format PHASE Equals One

Figure 26 displays the timing diagram for an SPI transfer in which PHASE is 1. Two waveforms are depicted for SCK, one for CLKPOL reset to 0 and another for CLKPOL set to 1.

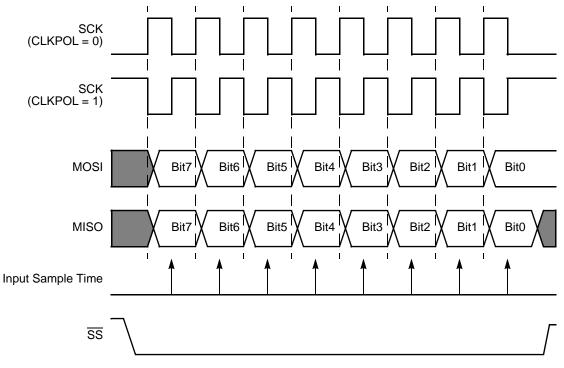


Figure 26. SPI Timing When PHASE is 1

Multimaster Operation

In a multimaster SPI system, all SCK pins are tied together, all MOSI pins are tied together and all MISO pins are tied together. All SPI pins must then be configured in OPEN-DRAIN mode to prevent bus contention. At any one time, only one SPI device is configured as the Master and all other SPI devices on the bus are configured as Slaves. The Master enables a single Slave by asserting the \overline{SS} pin on that Slave only. Then, the single Master drives data out its SCK and MOSI pins to the SCK and MOSI pins on the Slaves (including those which are not enabled). The enabled Slave drives data out its MISO pin to the MISO Master pin.

For a Master device operating in a multimaster system, if the \overline{SS} pin is configured as an input and is driven Low by another Master, the COL bit is set to 1 in the SPI Status Register. The COL bit indicates the occurrence of a multimaster collision (mode fault error condition).

DMAx Control Register

The DMA*x* Control Register, shown in Table 78, enables and selects the mode of operation for DMA*x*.

Table 78. DMAx Control Register (DMAxCTL)

Bit	7	6	5	4	3	2	1	0
Field	DEN	DLE	DDIR	IRQEN	WSEL	RSS		
RESET				()			
R/W				R/	W			
Address				FB0H,	FB8H			
Bit	Description	Description						
[7] DEN	 DMAx Enable 0 = DMAx is disabled and data transfer requests are disregarded. 1 = DMAx is enabled and initiates a data transfer upon receipt of a request from the trigger source. 							e trigger
[6] DLE	 DMAx Loop Enable 0 = DMAx reloads the original Start Address and is then disabled after the End Address data is transferred. 1 = DMAx, after the End Address data is transferred, reloads the original Start Address and continues operating. 							
[5] DDIR	DMA <i>x</i> Data Transfer Direction $0 = \text{Register File} \rightarrow \text{on-chip peripheral control register.}$ $1 = \text{On-chip peripheral control} \rightarrow \text{Register File.}$							
[4] IRQEN	 DMAx Interrupt Enable 0 = DMAx does not generate any interrupts. 1 = DMAx generates an interrupt when the End Address data is transferred. 							

DMA Control of the ADC

The Direct Memory Access (DMA) Controller can control operation of the ADC including analog input selection and conversion enable. For more information about the DMA and configuring for ADC operations, see the <u>Direct Memory Access Controller</u> chapter on page 150.

ADC Control Register Definitions

This section defines the features of the following ADC Control registers.

ADC Control Register: see page 165

ADC Data High Byte Register: see page 167

ADC Data Low Bits Register: see page 168

ADC Control Register

The ADC Control Register selects the analog input channel and initiates the analog-to-digital conversion.

Bit	7	6	5	4	3	2	1	0				
Field	CEN	Reserved	VREF	CONT	ANAIN[3:0]							
RESET	()	1		0				0			
R/W				R/W								
Address				F7	0H							

Table 87.	ADC Control	Register	(ADCCTL)
-----------	-------------	----------	----------

Bit	Description
[7] CEN	 Conversion Enable 0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears this bit to 0 when a conversion has been completed. 1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already in progress, the conversion restarts. This bit remains 1 until the conversion is complete.
[6]	Reserved This bit is reserved and must be programmed to 0.
[5] VREF	 Voltage Reference 0 = Internal voltage reference generator enabled. The V_{REF} pin should be left unconnected (or capacitively coupled to analog ground) if the internal voltage reference is selected as the ADC reference voltage. 1 = Internal voltage reference generator disabled. An external voltage reference must be provided through the V_{REF} pin.

ADC Data High Byte Register

The ADC Data High Byte Register, shown in Table 88, contains the upper eight bits of the 10-bit ADC output. During a single-shot conversion, this value is invalid. Access to the ADC Data High Byte Register is read-only. The full 10-bit ADC result is provided by {ADCD_H[7:0], ADCD_L[7:6]}. Reading the ADC Data High Byte Register latches data in the ADC Low Bits Register.

Bit	7	6	5	4	3	2	1	0	
Field	ADCD_H								
RESET		Х							
R/W		R							
Address	F72H								
Bit	Description								

Table 88. ADC Data High Byte Register (ADCD_H)

[7:0] ADC Data High Byte

ADCD_H This byte contains the upper eight bits of the 10-bit ADC output. These bits are not valid during a single-shot conversion. During a continuous conversion, the last conversion output is held in this register. These bits are undefined after a Reset.

For more information about bypassing the Flash Controller, refer to the <u>Third Party Flash</u> <u>Programming Support for Z8 Encore! MCUs Application Note (AN0117)</u>, which is available for download at <u>www.zilog.com</u>.

Flash Controller Behavior in Debug Mode

The following changes in Flash Controller behavior occur when the Flash Controller is accessed using the On-Chip Debugger:

- The Flash Write Protect option bit is ignored
- The Flash Sector Protect Register is ignored for programming and erase operations
- Programming operations are not limited to the page selected in the Page Select Register
- Bits in the Flash Sector Protect Register can be written to one or zero
- The second write of the Page Select Register to unlock the Flash Controller is not necessary
- The Page Select Register can be written when the Flash Controller is unlocked
- The Mass Erase command is enabled through the Flash Control Register

Caution: For security reasons, the Flash Controller allows only a single page to be opened for write/erase operations. When writing multiple Flash pages, the Flash Controller must go through the unlock sequence again to select another page.

Flash Control Register Definitions

This section defines the features of the following Flash Control registers.

Flash Control Register: see page 175

Flash Status Register: see page 177

Page Select Register: see page 177

Flash Sector Protect Register: see page 178

Flash Frequency High and Low Byte Registers: see page 179

Flash Control Register

The Flash Control Register, shown in Table 93, unlocks the Flash Controller for programming and erase operations, or to select the Flash Sector Protect Register.

PRELIMINARY

209

Figure 47 displays the maximum current consumption in STOP Mode with the VBO and Watchdog Timer enabled plotted opposite the power supply voltage. All GPIO pins are configured as outputs and driven High.

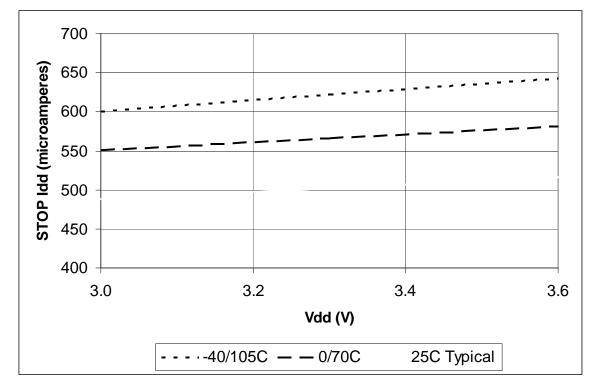


Figure 47. Maximum STOP Mode I_{DD} with VBO Enabled vs. Power Supply Voltage

Table 111 list the Flash memory electrical characteristics and timing.

		_{DD} = 3.0–3. –40°C to 1			
Parameter	Minimum	Typical	Maximum	Units	Notes
Flash Byte Read Time	50	_	-	ns	
Flash Byte Program Time	20	_	40	μs	
Flash Page Erase Time	10	_	-	ms	
Flash Mass Erase Time	200	_	-	ms	
Writes to Single Address Before Next Erase	-	_	2		
Flash Row Program Time	_	_	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.
Data Retention	100	_	_	years	25°C
Endurance, –40°C to 105°C	10,000	-	-	cycles	Program/erase cycles
Endurance, 106°C to 125°C	1,000	-	-	cycles	Program/erase cycles

Table 112 lists the Watchdog Timer electrical characteristics and timing.

			_{DD} = 3.0–3. –40°C to 1			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{WDT}	WDT Oscillator Frequency	5	10	20	kHz	
I _{WDT}	WDT Oscillator Current including internal RC Oscillator	_	<1	5	μA	

213

Table 113 provides electrical characteristics and timing information for the Analog-to-Digital Converter. Figure 49 displays the input frequency response of the ADC.

		V _{DI} T _A =	o = 3.0V–3 −40°C to 1	.6V 25°C		
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
	Resolution	10	_	_	bits	External V _{REF} = 3.0V;
	Differential Nonlinearity (DNL)	-1.0		+1.0	lsb	Guaranteed by design
	Integral Nonlinearity (INL)	-3.0	<u>+</u> 1.0	3.0	lsb	External $V_{REF} = 3.0 V$
	DC Offset Error	-35	-	25	mV	80-pin QFP and 64-pin LQFP packages.
	DC Offset Error	-50	_	25	mV	44-pin LQFP, 44-pin PLCC, and 68-pin PLCC packages.
V _{REF}	Internal Reference Voltage	1.9	2.0	2.4	V	$V_{DD} = 3.0 V - 3.6 V$ $T_A = -40^{\circ}C \text{ to } 105^{\circ}C$
VC _{REF}	Voltage Coefficient of Internal Reference Voltage	-	78	_	mV/V	V_{REF} variation as a function of AV_{DD} .
TC _{REF}	Temperature Coefficient of Internal Reference Voltage	-	1	_	mV/°C	
	Single-Shot Conversion Period	_	5129	_	cycles	System clock cycles
	Continuous Conversion Period	-	256	_	cycles	System clock cycles
R _S	Analog Source Impedance	-	-	150	W	Recommended
Zin	Input Impedance		150		kΩ	20MHz system clock. Input impedance increases with lower system clock frequency.
V _{REF}	External Reference Voltage			AV _{DD}	V	$AV_{DD} \le V_{DD}$. When using an external refer- ence voltage, decouplin capacitance should be placed from V_{REF} to AV_{SS} .

General-Purpose I/O Port Output Timing

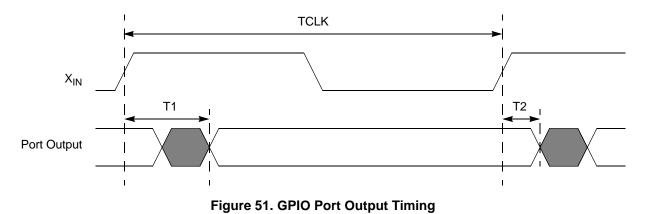


Figure 51 and Table 116 provide timing information for GPIO port pins.

Table 116	. GPIO	Port	Output	Timing

		Delay (ns)					
Parameter	Abbreviation	Minimum	Maximum				
GPIO port pins							
T ₁	X _{IN} Rise to Port Output Valid Delay	-	20				
T ₂	X _{IN} Rise to Port Output Hold Time	2	-				

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
COM	dst	Complement
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using Extended Addressing
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Address- ing

Table 133. Logical Instructions

Table 134. Program Control Instructions

Mnemonic	Operands	Instruction
BRK		On-Chip Debugger Break
BTJ	p, bit, src, DA	Bit Test and Jump
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero
BTJZ	bit, src, DA	Bit Test and Jump if Zero
CALL	dst	Call Procedure
DJNZ	dst, src, RA	Decrement and Jump Non-Zero
IRET	—	Interrupt Return
JP	dst	Jump
JP cc	dst	Jump Conditional
JR	DA	Jump Relative
JR cc	DA	Jump Relative Conditional
RET	—	Return
TRAP	vector	Software Trap

Assembly		Address Mode		_ Opcode(s)	Flags					Fetch	Instr.	
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		Cycles
POPX dst	dst $\leftarrow @SP$ SP \leftarrow SP + 1	ER		D8	-	-	-	_	_	-	3	2
PUSH src	$SP \leftarrow SP - 1$	R		70	_	_	_	_	_	_	2	2
	$@SP \leftarrow src$	IR		71	-						2	3
	-	IM		1F 70	-						3	2
PUSHX src	$SP \leftarrow SP - 1$ @SP \leftarrow src	ER		C8	-	_	_	_	_	-	3	2
RCF	C ← 0			CF	0	_	_	_	_	_	1	2
RET	$\begin{array}{l} PC \leftarrow @SP \\ SP \leftarrow SP + 2 \end{array}$			AF	-	-	-	_	_	-	1	4
RL dst		R		90	*	*	*	*	_	-	2	2
	C D7 D6 D5 D4 D3 D2 D1 D0 dst	IR		91	_						2	3
RLC dst		R		10	*	*	*	*	_	-	2	2
	C	IR		11	-						2	3
RR dst		R		E0	*	*	*	*	-	-	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C	IR		E1	-						2	3
RRC dst		R		C0	*	*	*	*	_	-	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C	IR		C1	-						2	3
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
	-	r	lr	33	-						2	4
	-	R	R	34	-						3	3
	-	R	IR	35	_						3	4
	-	R	IM	36	_						3	3
	-	IR	IM	37	_						3	4
SBCX dst, src	$dst \gets dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
	-	ER	IM	39	-						4	3
SCF	C ← 1			DF	1	_	-	_	_	-	1	2

Table 136. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

Packaging

Zilog's F64xx Series of MCUs includes the Z8F1621, Z8F2421, Z8F3221, Z8F4821 and Z8F6421 devices, which are available in the following packages:

- 40-pin Pin Dual Inline Package (PDIP)
- 44-pin Low Profile Quad Flat Package (LQFP)
- 44-pin Plastic Lead Chip Carrier (PLCC)

Zilog's F64xx Series of MCUs also includes the Z8F1622, Z8F2422, Z8F3222, Z8F4822 and Z8F6422 devices, which are available in the following packages:

- 64-pin Low-Profile Quad Flat Package (LQFP)
- 68-pin Plastic Lead Chip Carrier (PLCC)

Lastly, Zilog's F64xx Series of MCUs includes the Z8F4823 and Z8F6423 devices, which are available in the following package:

• 80-pin Quad Flat Package (QFP)

Current diagrams for each of these packages are published in Zilog's <u>Packaging Product</u> <u>Specification (PS0072)</u>, which is available free for download from the Zilog website.

SPI status (SPISTAT) 124, 265 status, I2C 143 status, SPI 124 UARTx baud rate high byte (UxBRH) 107, 259, 262 UARTx baud rate low byte (UxBRL) 107, 260, 262 UARTx Control 0 (UxCTL0) 103, 106, 258, 259, 261 UARTx control 1 (UxCTL1) 104, 259, 261 UARTx receive data (UxRXD) 100, 258, 260 UARTx status 0 (UxSTAT0) 101, 258, 260 UARTx status 1 (UxSTAT1) 102, 259, 261 UARTx transmit data (UxTXD) 100, 258, 260 watchdog timer control (WDTCTL) 85, 283 watchdog timer reload high byte (WDTH) 87, 284 watchdog timer reload low byte (WDTL) 87, 284 watchdog timer reload upper byte (WDTU) 86, 283 register file 19 register file address map 23 register pair 229 register pointer 229 reset and STOP mode characteristics 29 carry flag 232 controller 6 sources 30 **RET 234** return 234 RL 235 **RLC 235** rotate and shift instructions 235 rotate left 235 rotate left through carry 235 rotate right 235 rotate right through carry 235 RP 229 RR 229, 235 rr 229 **RRC 235**

S

SBC 232 SCF 232. 233 SDA and SCL (IrDA) signals 131 second opcode map after 1FH 248 serial clock 117 serial peripheral interface (SPI) 114 set carry flag 232, 233 set register pointer 233 shift right arithmetic 235 shift right logical 235 signal descriptions 15 single-shot conversion (ADC) 164 SIO 6 slave data transfer formats (I2C) 137 slave select 117 software trap 234 source operand 229 SP 229 SPI architecture 114 baud rate generator 121 baud rate high and low byte register 127 clock phase 117 configured as slave 115 control register 123 control register definitions 122 data register 122 error detection 120 interrupts 121 mode fault error 120 mode register 126 multi-master operation 119 operation 116 overrun error 120 signals 116 single master, multiple slave system 115 single master, single slave system 114 status register 124 timing, PHASE = 0.118timing, PHASE=1 119 SPI controller signals 15 SPI mode (SPIMODE) 126, 265 SPIBRH register 128, 266