
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f4821an020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore! XP[®] F64xx Series Product Specification

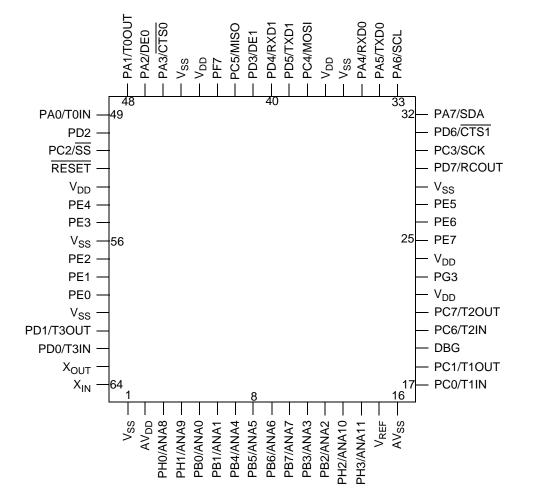


Figure 5. Z8 Encore! XP F64xx Series in 64-Pin Low-Profile Quad Flat Package (LQFP)

Z8 Encore! XP[®] F64xx Series Product Specification

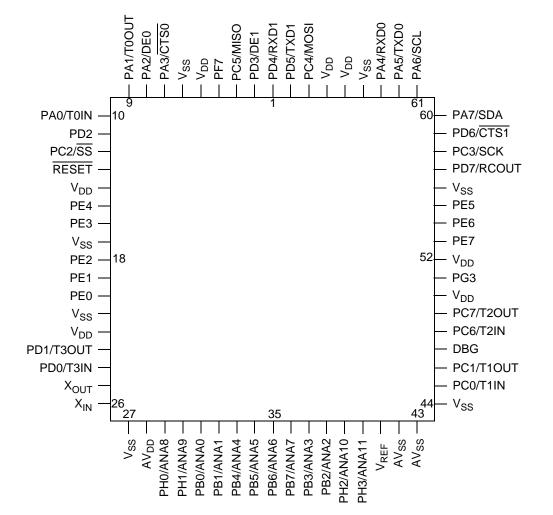


Figure 6. Z8 Encore! XP F64xx Series in 68-Pin Plastic Leaded Chip Carrier (PLCC)

			Alternate i unction mapping
Port	Pin	Mnemonic	Alternate Function Description
Port A	PA0	TOIN	Timer 0 Input
	PA1	TOOUT	Timer 0 Output
	PA2	DE0	UART 0 Driver Enable
	PA3	CTS0	UART 0 Clear to Send
	PA4	RXD0/IRRX0	UART 0/IrDA 0 Receive Data
	PA5	TXD0/IRTX0	UART 0/IrDA 0 Transmit Data
	PA6	SCL	I ² C Clock (automatically open-drain)
	PA7	SDA	I ² C Data (automatically open-drain)
Port B	PB0	ANA0	ADC analog input 0
	PB1	ANA1	ADC analog input 1
	PB2	ANA2	ADC analog input 2
	PB3	ANA3	ADC analog input 3
	PB4	ANA4	ADC analog input 4
	PB5	ANA5	ADC analog input 5
	PB6	ANA6	ADC analog input 6
	PB7	ANA7	ADC analog input 7
Port C	PC0	T1IN	Timer 1 Input
	PC1	T1OUT	Timer 1 Output
	PC2	SS	SPI Slave Select
	PC3	SCK	SPI Serial Clock
	PC4	MOSI	SPI Master Out/Slave In
	PC5	MISO	SPI Master In/Slave Out
	PC6	T2IN	Timer 2 In
	PC7	T2OUT	Timer 2 Out
Port D	PD0	T3IN	Timer 3 In (unavailable in the 44-pin package)
	PD1	T3OUT	Timer 3 Out (unavailable in the 44-pin package)
	PD2	N/A	No alternate function
	PD3	DE1	UART 1 Driver Enable
	PD4	RXD1/IRRX1	UART 1/IrDA 1 Receive Data
	PD5	TXD1/IRTX1	UART 1/IrDA 1 Transmit Data
	PD6	CTS1	UART 1 Clear to Send
	PD7	RCOUT	Watchdog Timer RC Oscillator Output
Port E	PE[7:0]	N/A	No alternate functions

Table 12. Port Alternate Function Mapping

Table 53. UART Transmit Data Register (UxTXD)

Bit	7	6	5	4	3	2	1	0		
Field	TXD									
RESET		X								
R/W		W								
Address				F40H ar	nd F48H					

Bit	Description
[7:0]	Transmit Data
TXD	UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXD*x* pin are stored in the UART Receive Data Register, shown in Table 54. The read-only UART Receive Data Register shares a Register File address with the write-only UART Transmit Data Register.

Table 54. UART Receive Data Register (UxRXD)

Bit	7	6	5	4	3	2	1	0		
Field	RXD									
RESET		X								
R/W		R								
Address				F40H ar	nd F48H					

Bit	Description
[7:0]	Receive Data
RXD	UART receiver data byte from the RXDx pin.

PHASE	CLKPOL	SCK Transmit Edge	SCK Receive Edge	SCK Idle State
0	0	Falling	Rising	Low
0	1	Rising	Falling	High
1	0	Rising	Falling	Low
1	1	Falling	Rising	High

Table 63. SPI Clock Phase (PHASE) and Clock Polarity (CLKPOL) Operation

Transfer Format PHASE Equals Zero

Figure 25 displays the timing diagram for an SPI transfer in which PHASE is cleared to 0. The two SCK waveforms show polarity with CLKPOL reset to 0 and with CLKPOL set to one. The diagram may be interpreted as either a Master or Slave timing diagram because the SCK Master-In/Slave-Out (MISO) and Master-Out/Slave-In (MOSI) pins are directly connected between the Master and the Slave.

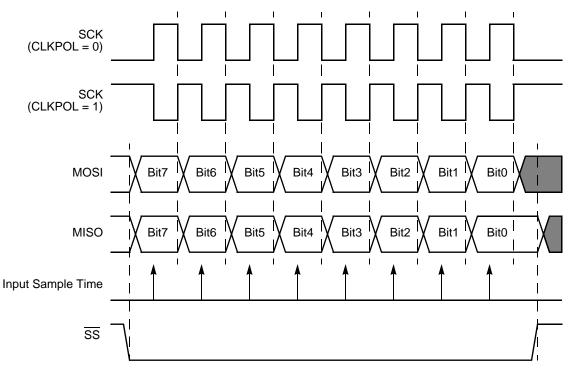


Figure 25. SPI Timing When PHASE is 0

- 2. Software asserts the TXI bit of the I^2C Control Register to enable transmit interrupts.
- 3. The I^2C interrupt asserts because the I^2C Data Register is empty.
- 4. Software responds to the TDRE interrupt by writing the first slave address byte to the I²C Data Register. The least significant bit must be 0 for the write operation.
- 5. Software asserts the start bit of the I^2C Control Register.
- 6. The I²C Controller sends the start condition to the I²C slave.
- 7. The I²C Controller loads the I²C Shift Register with the contents of the I²C Data Register.
- 8. After one bit of address is shifted out by the SDA signal, the transmit interrupt is asserted.
- 9. Software responds by writing the second byte of address into the contents of the I²C Data Register.
- 10. The I²C Controller shifts the rest of the first byte of address and write bit out the SDA signal.
- 11. If the I²C slave acknowledges the first address byte by pulling the SDA signal Low during the next High period of SCL, the I²C Controller sets the ACK bit in the I²C Status Register. Continue with <u>Step 12</u>.

If the slave does not acknowledge the first address byte, the I²C Controller sets the NCKI bit and clears the ACK bit in the I²C Status Register. Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I²C Controller sends the stop condition on the bus and clears the stop and NCKI bits. The transaction is complete (ignore the following steps).

- 12. The I²C Controller loads the I²C Shift Register with the contents of the I²C Data Register.
- 13. The I²C Controller shifts the second address byte out the SDA signal. After the first bit has been sent, the transmit interrupt is asserted.
- 14. Software responds by writing a data byte to the I^2C Data Register.
- 15. The I²C Controller completes shifting the contents of the shift register on the SDA signal.
- 16. If the I²C slave sends an acknowledge by pulling the SDA signal Low during the next High period of SCL, the I²C Controller sets the ACK bit in the I²C Status Register. Continue with <u>Step 17</u>.

If the slave does not acknowledge the second address byte or one of the data bytes, the I^2C Controller sets the NCKI bit and clears the ACK bit in the I^2C Status Register. Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I^2C Controller sends the stop condition on the bus and

Table 71. I²C Data Register (I2CDATA)

Bit	7	6	5	4	3	2	1	0		
Field	DATA									
RESET		0								
R/W		R/W								
Address				F5	0H					

I²C Status Register

The read-only I^2C Status Register, shown in Table 72, indicates the status of the I^2C Controller.

Table 72. I²C Status Register (I2CSTAT)

Bit	7	6	5	4	3	2	1	0
Field	TDRE	RDRF	ACK	10B	RD	TAS	DSS	NCKI
RESET	1				0			
R/W				F	२			
Address				F5	1H			

Bit	Description
[7]	Transmit Data Register Empty
TDRE	When the I ² C Controller is enabled, this bit is 1 when the I ² C Data Register is empty. When this bit is set, an interrupt is generated if the TXI bit is set, except when the I ² C Controller is shifting in data during the reception of a byte or when shifting an address and the RD bit is set. This bit is cleared by writing to the I2CDATA Register.
[6]	Receive Data Register Full
RDRF	This bit is set = 1 when the I ² C Controller is enabled and the I ² C Controller has received a byte of data. When asserted, this bit causes the I ² C Controller to generate an interrupt. This bit is cleared by reading the I ² C Data Register (unless the read is performed using execution of the On-Chip Debugger's Read Register command).

DMAx Control Register

The DMA*x* Control Register, shown in Table 78, enables and selects the mode of operation for DMA*x*.

Table 78. DMAx Control Register (DMAxCTL)

Bit	7	6	5	4	3	2	1	0			
Field	DEN	DLE	DDIR	IRQEN	WSEL		RSS				
RESET				()						
R/W				R/	W						
Address				FB0H,	FB8H						
Bit	Description	Description									
[7] DEN	0 = DMAx is	 DMAx Enable 0 = DMAx is disabled and data transfer requests are disregarded. 1 = DMAx is enabled and initiates a data transfer upon receipt of a request from the trigger source. 									
[6] DLE	transfer 1 = DMA <i>x</i> ,	eloads the c red.	d Address d		d is then dis erred, reload						
[5] DDIR	0 = Registe	DMAx Data Transfer Direction $0 = \text{Register File} \rightarrow \text{on-chip peripheral control register.}$ $1 = \text{On-chip peripheral control} \rightarrow \text{Register File.}$									
[4] IRQEN	0 = DMAx c	-	nerate any ir		l Address da	ata is transfe	erred.				

DMAx Address High Nibble Register

The DMAx Address High Register, shown in Table 80, specifies the upper four bits of address for the Start/Current and End addresses of DMAx.

Table 80. DMAx Address High Nibble Register (DMAxH)

Bit	7	6	5	4	3	2	1	0		
Field	DMA_END_H DMA_START_H									
RESET		X								
R/W		R/W								
Address				FB2H,	FBAH					

Bit	Description
[7:4] DMA_END_H	DMAx End Address High Nibble These bits, used with the DMAx End Address Low Register, form a 12-bit End Address. The full 12-bit address is provided by {DMA_END_H[3:0], DMA_END[7:0]}.
[3:0] DMA_START_H	DMA <i>x</i> Start/Current Address High Nibble These bits, used with the DMA <i>x</i> Start/Current Address Low Register, form a 12-bit Start/ Current Address. The full 12-bit address is provided by {DMA_START_H[3:0], DMA_START[7:0]}.

Table 95. Page Select Register (FPS)

Bit	7	6	5	4	3	2	1	0
Field	INFO_EN				PAGE			
RESET				()			
R/W				R/	W			
Address				FF	9H			

Bit	Description
[7]	Information Area Enable
INFO_EN	0 = Information Area is not selected.
	1 = Information Area is selected. The Information area is mapped into the Flash memory address space at addresses FE00H through FFFFH.
[6:0]	Page Select
PAGE	This 7-bit field selects the Flash memory page for programming and Page Erase operations.
	Flash Memory Address[15:9] = PAGE[6:0].

Flash Sector Protect Register

The Flash Sector Protect Register, shown in Table 96, protects Flash memory sectors from being programmed or erased from user code. The Flash Sector Protect Register shares its Register File address with the Page Select Register. The Flash Sector Protect Register can be accessed only after writing the Flash Control Register with 5EH.

User code can only write bits in this register to 1 (bits cannot be cleared to 0 by user code). To determine the appropriate Flash memory sector address range and sector number for your Z8F64xx Series product, please refer to <u>Table 91</u> on page 169.

Bit	7	6	5	4	3	2	1	0
Field	SECT7	SECT6	SECT5	SECT4	SECT3	SECT2	SECT1	SECT0
RESET				()			
R/W				R/	N*			
Address				FF	9H			
Note: *R/V	V = This regis	ter is accessi	ble for read o	perations; it c	an be written	to 1 only via	user code.	

Bit	Description
[7:0]	Sector Protect**
SECTn	0 = Sector <i>n</i> can be programmed or erased from user code.
	1 = Sector <i>n</i> is protected and cannot be programmed or erased from user code.
Note: **U	ser code can only write bits from 0 to 1.

On-Chip Debugger Control Register Definitions

This section describes the features of the On-Chip Debugger Control and Status registers.

OCD Control Register

The OCD Control Register, shown in Table 103, controls the state of the On-Chip Debugger. This register enters or exits DEBUG Mode and enables the BRK instruction.

A *reset and stop* function can be achieved by writing 81H to this register. A *reset and go* function can be achieved by writing 41H to this register. If the device is operating in DEBUG Mode, a *run* function can be implemented by writing 40H to this register.

Bit	7	6	5	4	3	2	1	0
Field	DBGMODE	BRKEN	DBGACK	BRKLOOP		Reserved		RST
RESET				0				
R/W		R/W			F	२		R/W
Bit	Descriptio	on						
[7] DBGMODE	eZ8 CPU s ning again are enable ting the de 0 = TheZ8	s bit to 1 ca stops fetchir . This bit is d. If the Re- vice, it can Encore! XF	ng new instr automatical ad Protect c not be writte P F64xx Ser	vice to enter uctions. Clea ly set when a option bit is e in to 0. ies device is ries device is	aring this bi a BRK instru- nabled, this operating i	t causes the uction is dee s bit can onl n NORMAL	e eZ8 CPU t coded and b ly be cleared	to start run- preakpoints
[6] BRKEN	are disable instruction 0 = BRK ir	ntrols the be ed and the E	BRK instruct , the OCD ta disabled.	ne BRK instru tion behaves akes action c	like a NOF	P. If this bit is	s set to 1 an	d a BRK
[5] DBGACK	This bit en an Debug 0 = Debug	Acknowled Acknowled	ebug acknov					CD sends

Table 103. OCD Control Register (OCDCTL)

Parameter	Minimum	Maximum	Units	Notes
64-pin LQFP maximum ratings at -40°C to 70°C				
Total power dissipation		1000	mW	
Maximum current into V_{DD} or out of V_{SS}		275	mA	
64-pin LQFP maximum ratings at 70°C to 125°C				
Total power dissipation		540	mW	
Maximum current into V_{DD} or out of V_{SS}		150	mA	
44-pin PLCC maximum ratings at -40°C to 70°C				
Total power dissipation		750	mW	
Maximum current into V_{DD} or out of V_{SS}		200	mA	
44-pin PLCC maximum ratings at 70°C to 125°C				
Total power dissipation		295	mW	
Maximum current into V_{DD} or out of V_{SS}		83	mA	
44-pin LQFP maximum ratings at –40°C to 70°C				
Total power dissipation		750	mW	
Maximum current into V_{DD} or out of V_{SS}		200	mA	
44-pin LQFP maximum ratings at 70°C to 125°C				
Total power dissipation		360	mW	
Maximum current into V_{DD} or out of V_{SS}		100	mA	
Note: This voltage applies to all pins, with the exception of V	/ _{DD} , AV _{DD} , pins	supporting ana	log input (po	orts B and I

Table 106. Absolute Maximum Ratings (Continued)

Note: This voltage applies to all pins, with the exception of V_{DD}, AV_{DD}, pins supporting analog input (ports B and H), RESET, and where noted otherwise.

Figure 43 displays the typical active mode current consumption while operating at 25 °C plotted opposite the system clock frequency. All GPIO pins are configured as outputs and driven High.

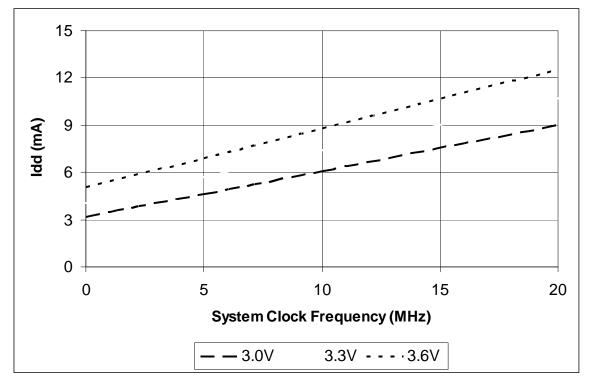


Figure 43. Typical Active Mode I_{DD} vs. System Clock Frequency

Table 111 list the Flash memory electrical characteristics and timing.

		_{DD} = 3.0–3. –40°C to 1			
Parameter	Minimum	Typical	Maximum	Units	Notes
Flash Byte Read Time	50	_	-	ns	
Flash Byte Program Time	20	_	40	μs	
Flash Page Erase Time	10	_	-	ms	
Flash Mass Erase Time	200	_	-	ms	
Writes to Single Address Before Next Erase	-	_	2		
Flash Row Program Time	_	_	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.
Data Retention	100	_	_	years	25°C
Endurance, –40°C to 105°C	10,000	-	-	cycles	Program/erase cycles
Endurance, 106°C to 125°C	1,000	-	-	cycles	Program/erase cycles

Table 112 lists the Watchdog Timer electrical characteristics and timing.

			_{DD} = 3.0–3. –40°C to 1			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{WDT}	WDT Oscillator Frequency	5	10	20	kHz	
I _{WDT}	WDT Oscillator Current including internal RC Oscillator	_	<1	5	μA	

Z8 Encore! XP[®] F64xx Series Product Specification

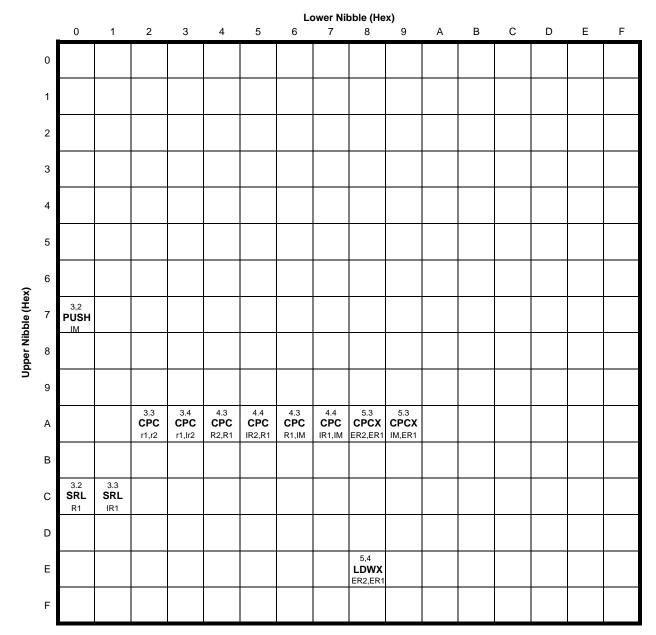


Figure 61. Second Op Code Map after 1FH

Hex Address: F15

Table 159. Timer 0–3 PWM Low Byte Register (TxPWML)

Bit	7	1	0							
Field		PWML								
RESET		0								
R/W				R/	W					
Address		F05H, F0DH, F15H, F1DH								

Hex Address: F16

Table 160. Timer 0–3 Control 0 Register (TxCTL0)

Bit	7	6	5	4	3	2	1	0			
Field		Reserved CSC Reserved									
RESET		0									
R/W				R/	W						
Address		F06H, F0EH, F16H, F1EH									

Hex Address: F17

Table 161. Timer 0–3 Control 1 Register (TxCTL1)

Bit	7	6	5	4	3	2	1	0			
Field	TEN	TPOL		PRES		TMODE					
RESET		0									
R/W				R/	W						
Address		F07H, F0FH, F17H, F1FH									

Hex Address: F18

Table 162. Timer 0–3 High Byte Register (TxH)

Bit	7	6	2	1	0						
Field		TH									
RESET		0									
R/W				R/	W						
Address		F00H, F08H, F10H, F18H									

Hex Address: FBA

Table 211. DMAx Address High Nibble Register (DMAxH)

Bit	7	6	5	4	3 2 1						
Field		DMA_END_H DMA_START_H									
RESET		X									
R/W				R/	W						
Address		FB2H, FBAH									

Hex Address: FBB

Table 212. DMAx Start/Current Address Low Byte Register (DMAxSTART)

Bit	7	1	0								
Field		DMA_START									
RESET		X									
R/W				R/	W						
Address		FB3H, FBBH									

Hex Address: FBC

Table 213. DMAx End Address Low Byte Register (DMAxEND)

Bit	7 6 5 4 3 2 1										
Field		DMA_END									
RESET		X									
R/W				R/	W						
Address		FB4H, FBCH									

Hex Address: FBD

Table 214. DMA_ADC Address Register (DMAA_ADDR)

Bit	7	1	0								
Field		DMAA_ADDR									
RESET		X									
R/W				R/	W						
Address	FBDH										

Hex Address: FF2

Table 263. Watchdog Timer Reload High Byte Register (WDTH)

Bit	7	6	5	4	3	1	0				
Field		WDTH									
RESET		1									
R/W				R/	W*						
Address		FF2H									
Note: *R/V	e: *R/W = Read returns the current WDT count value; write sets the appropriate reload value.										

Hex Address: FF3

Table 264. Watchdog Timer Reload Low Byte Register (WDTL)

Bit	7	7 6 5 4 3 2 1									
Field		WDTL									
RESET		1									
R/W				R/	W*						
Address		FF3H									
Note: *R/\	*R/W = Read returns the current WDT count value; write sets the appropriate reload value.										

Hex Addresses: FF4–FF7

This address range is reserved.

Ordering Information

Order your F64xx Series products from Zilog using the part numbers shown in Table 271. For more information about ordering, please consult your local Zilog sales office. The <u>Sales Location page</u> on the Zilog website lists all regional offices.

					777	Serie	3 01	uenni	J 1010	
Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	I ² C	SPI	UARTs with IrDA	Description
Z8F642x with 64KB FI		-	to-Di	igital	Со	nvert	er			
Standard Temperature	e: 0°C to 70	°C								
Z8F6421PM020SG	64 KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F6421AN020SG	64KB	4KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F6421VN020SG	64 KB	4KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F6422AR020SG	64 KB	4KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F6422VS020SG	64KB	4KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F6423FT020SG	64KB	4KB	60	24	4	12	1	1	2	QFP 80-pin package
Extended Temperatur	e: -40°C to	+105°C								
Z8F6421PM020EG	64 KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F6421AN020EG	64KB	4KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F6421VN020EG	64 KB	4KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F6422AR020EG	64 KB	4KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F6422VS020EG	64 KB	4KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F6423FT020EG	64KB	4KB	60	24	4	12	1	1	2	QFP 80-pin package
Automotive/Industrial	Temperatu	re: –40°	C to	+125	5°C					
Z8F6421PM020AG	64KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F6421AN020AG	64KB	4KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F6421VN020AG	64KB	4KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F6422AR020AG	64KB	4KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F6422VS020AG	64KB	4KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F6423FT020AG	64KB	4KB	60	24	4	12	1	1	2	QFP 80-pin package

Table 271. Z8 Encore! XP F64xx Series Ordering Matrix

					-					
Part Number	Flash	RAM	//O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	I ² C	SPI	UARTs with IrDA	Description
Z8F162x with 16KB Fla	sh, 10-Bit	Analog	-to-Di	igital	Со	nvert	er			
Standard Temperature:	0°C to 70	°C								
Z8F1621PM020SG	16KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F1621AN020SG	16KB	2KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F1621VN020SG	16KB	2KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F1622AR020SG	16KB	2KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F1622VS020SG	16KB	2KB	46	24	4	12	1	1	2	PLCC 68-pin package
Extended Temperature	: –40°C to	+105°C								
Z8F1621PM020EG	16KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F1621AN020EG	16KB	2KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F1621VN020EG	16KB	2KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F1622AR020EG	16KB	2KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F1622VS020EG	16KB	2KB	46	24	4	12	1	1	2	PLCC 68-pin package
Automotive/Industrial 1	Femperatu	re: –40°	C to	+125	5°C					
Z8F1621PM020AG	16KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F1621AN020AG	16KB	2KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F1621VN020AG	16KB	2KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F1622AR020AG	16KB	2KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F1622VS020AG	16KB	2KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F64200100KITG										Development Kit
ZUSBSC00100ZACG										USB Smart Cable Accessory Kit
ZUSBOPTSC01ZACG										Opto-Isolated USB Smart Cable Accessory Kit
ZENETSC0100ZACG										Ethernet Smart Cable Accessory Kit

Table 271. Z8 Encore! XP F64xx Series Ordering Matrix