
Zilog - Z8F4821AN020SG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f4821an020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

Each instance in the Revision History table reflects a change to this document from its previous revision. For more details, refer to the corresponding pages or appropriate links listed in the table below.

Data	Revision	Description	Denn
Date	Level	Description	Page
Jan 2013	24	Restored 40-pin PDIP package to Signal and Pin Descriptions and Packag- ing chapters.	<u>7, 286</u>
Feb 2012	23	Corrected formatting of I _{DDS} section, Table 107; corrected language in the General Purpose RAM section of Appendix A;	<u>202, 248</u>
Sep 2011	22	Revised Flash Sector Protect Register description; revised Packaging chapter.	<u>178, 286</u>
Mar 2008	21	Changed title to Z8 Encore! XP F64xx Series.	All
Feb 2008	20	Changed Z8 Encore! XP 64K Series Flash Microcontrollers to Z8 Encore! XP F64xx Series Flash Microcontrollers. Deleted three sentences that men- tioned Z8R642. Removed the 40 PDIP package. Added ZENETSC0100ZACG to the end of the Ordering Information table. Changed the flag status to unaffected for BIT, BSET, and BCLR in the eZ8 CPU Instruction Summary table.	<u>287, 234</u>
Dec 2007	19	Updated Zilog logo, Disclaimer section, and implemented style guide. Updated Table 113. Changed Z8 Encore! 64K Series to Z8 Encore! XP 64K Series Flash Microcontrollers throughout the document.	All
Dec 2006	18	Updated Flash Memory Electrical Characteristics and Timing table and Ordering Information chapter.	<u>213, 287</u>
Nov 2006	17	Updated Part Number Suffix Designations section.	<u>292</u>

Register File Address Map

Table 7 provides the address map for the Register File of the Z8 Encore! XP F64xx Series products. Not all devices and package styles in the Z8 Encore! XP F64xx Series support Timer 3 and all of the GPIO ports. Consider registers for unimplemented peripherals to be reserved.

Address (H	ex) Register Description	Mnemonic	Reset (Hex)	Page
General-Pu	rpose RAM			
000-EFF	General-Purpose Register File RAM		XX	
Timer 0				
F00	Timer 0 High Byte	T0H	00	<u>72</u>
F01	Timer 0 Low Byte	TOL	01	<u>72</u>
F02	Timer 0 Reload High Byte	TORH	FF	<u>74</u>
F03	Timer 0 Reload Low Byte	TORL	FF	<u>74</u>
F04	Timer 0 PWM High Byte	TOPWMH	00	<u>75</u>
F05	Timer 0 PWM Low Byte	TOPWML	00	<u>75</u>
F06	Timer 0 Control 0	TOCTLO	00	<u>76</u>
F07	Timer 0 Control 1	T0CTL1	00	<u>77</u>
Timer 1				
F08	Timer 1 High Byte	T1H	00	<u>72</u>
F09	Timer 1 Low Byte	T1L	01	<u>72</u>
F0A	Timer 1 Reload High Byte	T1RH	FF	<u>74</u>
F0B	Timer 1 Reload Low Byte	T1RL	FF	<u>74</u>
F0C	Timer 1 PWM High Byte	T1PWMH	00	<u>75</u>
F0D	Timer 1 PWM Low Byte	T1PWML	00	<u>75</u>
F0E	Timer 1 Control 0	T1CTL0	00	<u>76</u>
F0F	Timer 1 Control 1	T1CTL1	00	<u>77</u>
Timer 2				
F10	Timer 2 High Byte	T2H	00	<u>72</u>
F11	Timer 2 Low Byte	T2L	01	<u>72</u>
F12	Timer 2 Reload High Byte	T2RH	FF	<u>74</u>
F13	Timer 2 Reload Low Byte	T2RL	FF	<u>74</u>

Table 7. Z8 Encore! XP F64xx Series Register File Address Map

Note: XX = Undefined.

Interrupt Controller

The interrupt controller on the Z8 Encore! XP F64xx Series products prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of the interrupt controller include:

- 24 unique interrupt vectors:
 - 12 GPIO port pin interrupt sources
 - 12 on-chip peripheral interrupt sources
- Flexible GPIO interrupts
 - Eight selectable rising and falling edge GPIO interrupts
 - Four dual-edge interrupts
- Three levels of individually programmable interrupt priority
- Watchdog Timer can be configured to generate an interrupt

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt service routine is involved with the exchange of data, status information, or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the interrupt control has no effect on operation. For more information about interrupt servicing by the eZ8 CPU, refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>, which is available for download on <u>www.zilog.com</u>.

Interrupt Vector Listing

Table 23 lists all of the interrupts available in order of priority. The interrupt vector is stored with the most significant byte (MSB) at the even program memory address and the least significant byte (LSB) at the following odd program memory address.

- 6. Configure the associated GPIO port pin for the timer input alternate function.
- 7. Write to the Timer Control 1 Register to enable the timer and initiate counting.

In CAPTURE Mode, the elapsed time from timer start to capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

COMPARE Mode

In COMPARE Mode, the timer counts up to the 16-bit maximum compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Also, if the timer output alternate function is enabled, the timer output pin changes state (from Low to High or from High to Low) upon compare.

If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.

Observe the following procedure for configuring a timer for COMPARE Mode and initiating the count:

- 1. Write to the Timer Control 1 Register to:
 - Disable the timer
 - Configure the timer for COMPARE Mode
 - Set the prescale value
 - Set the initial logic level (High or Low) for the timer output alternate function, if appropriate
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the compare value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the timer output function, configure the associated GPIO port pin for the timer output alternate function.
- 6. Write to the Timer Control 1 Register to enable the timer and initiate counting.

In COMPARE Mode, the system clock always provides the timer input. The compare time is calculated using the following equation:

ister. This operation allows accurate reads of the full 16-bit timer count value while enabled. When the timers are not enabled, a read from the Timer Low Byte Register returns the actual value in the counter.

Timer Output Signal Operation

A timer output is a GPIO port pin alternate function. Generally, the timer output is toggled every time the counter is reloaded.

Timer Control Register Definitions

This section defines the features of the following Timer Control registers.

Timer 0-3 High and Low Byte Registers: see page 72

Timer Reload High and Low Byte Registers: see page 74

Timer 0-3 PWM High and Low Byte Registers: see page 75

Timer 0-3 Control 0 Registers: see page 76

Timer 0-3 Control 1 Registers: see page 77

Timers 0–2 are available in all packages. Timer 3 is only available in 64-, 68- and 80-pin packages.

Timer 0–3 High and Low Byte Registers

The Timer 0–3 High and Low Byte (TxH and TxL) registers, shown in Tables 39 and 40, contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TMRL always returns this temporary register when the timers are enabled. When the timer is disabled, reads from the TMRL read the register directly.

Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations, so simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low Byte) at the next clock edge. The counter continues counting from the new value.

Timer 3 is unavailable in 44-pin packages.

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 Registers, shown in Tables 57 and 58, configure the properties of the UART's transmit and receive operations. The UART Control registers must not been written while the UART is enabled.

Table 57. UART Control 0 Register (UxCTL0)

Bit	7	6	5	4	3	2	1	0
Field	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN
RESET		0						
R/W				R/	W			
Address				F42H ar	nd F4AH			
Bit	Descriptio	Description						
[7] TEN	Transmit Enable This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled. 0 = Transmitter disabled. 1 = Transmitter enabled.							
[6] REN	This bit ena 0 = Receive	Receive Enable This bit enables or disables the receiver. 0 = Receiver disabled. 1 = Receiver enabled.						
[5] CTSE	$0 = \text{The } \overline{\text{CT}}$	CTS Enable 0 = The CTS signal has no effect on the transmitter. 1 = The UART recognizes the CTS signal as an enable control from the transmitter.						:
[4] PEN	 Parity Enable This bit enables or disables parity. Even or odd is determined by the PSEL bit. It is overridder by the MPEN bit. 0 = Parity is disabled. 1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit. 							
[3] PSEL	Parity Select 0 = Even parity is transmitted and expected on all received data.							
[2] SBRK	 1 = Odd parity is transmitted and expected on all received data. Send Break This bit pauses or breaks data transmission. Sending a break interrupts any transmission ir progress, so ensure that the transmitter has finished sending data before setting this bit. 0 = No break is sent. 1 = The output of the transmitter is zero. 							

	10.0MHz Sy	stem Clock		5	5.5296 MHz S	ystem Clock	
Desired Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)	Desired Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)
1250.0	N/A	N/A	N/A	1250.0	N/A	N/A	N/A
625.0	1	625.0	0.00	625.0	N/A	N/A	N/A
250.0	3	208.33	-16.67	250.0	1	345.6	38.24
115.2	5	125.0	8.51	115.2	3	115.2	0.00
57.6	11	56.8	-1.36	57.6	6	57.6	0.00
38.4	16	39.1	1.73	38.4	9	38.4	0.00
19.2	33	18.9	0.16	19.2	18	19.2	0.00
9.60	65	9.62	0.16	9.60	36	9.60	0.00
4.80	130	4.81	0.16	4.80	72	4.80	0.00
2.40	260	2.40	-0.03	2.40	144	2.40	0.00
1.20	521	1.20	-0.03	1.20	288	1.20	0.00
0.60	1042	0.60	-0.03	0.60	576	0.60	0.00
0.30	2083	0.30	0.2	0.30	1152	0.30	0.00
3.	579545MHz \$	System Clock		1	.8432MHz S	ystem Clock	
Desired Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)	Desired Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)
1250.0	N/A	N/A	N/A	1250.0	N/A		N/A
625.0				1200.0		N/A	1 1/7 1
025.0	N/A	N/A	N/A	625.0	N/A	N/A N/A	N/A
250.0	N/A 1	N/A 223.72	N/A -10.51		N/A N/A		
				625.0		N/A	N/A
250.0	1	223.72	-10.51	625.0 250.0	N/A	N/A N/A	N/A N/A
250.0 115.2	1 2	223.72 111.9	-10.51 -2.90	625.0 250.0 115.2	N/A 1	N/A N/A 115.2	N/A N/A 0.00
250.0 115.2 57.6	1 2 4	223.72 111.9 55.9	-10.51 -2.90 -2.90	625.0 250.0 115.2 57.6	N/A 1 2	N/A N/A 115.2 57.6	N/A N/A 0.00 0.00
250.0 115.2 57.6 38.4	1 2 4 6	223.72 111.9 55.9 37.3	-10.51 -2.90 -2.90 -2.90	625.0 250.0 115.2 57.6 38.4	N/A 1 2 3	N/A N/A 115.2 57.6 38.4	N/A N/A 0.00 0.00 0.00
250.0 115.2 57.6 38.4 19.2	1 2 4 6 12	223.72 111.9 55.9 37.3 18.6	-10.51 -2.90 -2.90 -2.90 -2.90	625.0 250.0 115.2 57.6 38.4 19.2	N/A 1 2 3 6	N/A N/A 115.2 57.6 38.4 19.2	N/A N/A 0.00 0.00 0.00 0.00
250.0 115.2 57.6 38.4 19.2 9.60	1 2 4 6 12 23	223.72 111.9 55.9 37.3 18.6 9.73	-10.51 -2.90 -2.90 -2.90 -2.90 1.32	625.0 250.0 115.2 57.6 38.4 19.2 9.60	N/A 1 2 3 6 12	N/A N/A 115.2 57.6 38.4 19.2 9.60	N/A N/A 0.00 0.00 0.00 0.00 0.00
250.0 115.2 57.6 38.4 19.2 9.60 4.80	1 2 4 6 12 23 47	223.72 111.9 55.9 37.3 18.6 9.73 4.76	-10.51 -2.90 -2.90 -2.90 -2.90 1.32 -0.83	625.0 250.0 115.2 57.6 38.4 19.2 9.60 4.80	N/A 1 2 3 6 12 24	N/A N/A 115.2 57.6 38.4 19.2 9.60 4.80	N/A N/A 0.00 0.00 0.00 0.00 0.00 0.00
250.0 115.2 57.6 38.4 19.2 9.60 4.80 2.40	1 2 4 6 12 23 47 93	223.72 111.9 55.9 37.3 18.6 9.73 4.76 2.41	-10.51 -2.90 -2.90 -2.90 1.32 -0.83 0.23	625.0 250.0 115.2 57.6 38.4 19.2 9.60 4.80 2.40	N/A 1 2 3 6 12 24 48	N/A N/A 115.2 57.6 38.4 19.2 9.60 4.80 2.40	N/A N/A 0.00 0.00 0.00 0.00 0.00 0.00

Table 62. UART Baud Rates (Continued) _ __

SPI Diagnostic State Register

The SPI Diagnostic State Register, shown in Table 68, provides observability of internal state. This register is a read-only register that is used for SPI diagnostics.

Table 68. SPI Diagnostic State Register (SPIDST)

Bit	7	6	5	4	3	2	1	0
Field	SCKEN	TCKEN	SPISTATE					
RESET		0						
R/W		R						
Address		F64H						

Bit	Description
[7] SCKEN	 Shift Clock Enable 0 = The internal Shift Clock Enable signal is deasserted. 1 = The internal Shift Clock Enable signal is asserted (shift register is updates on next system clock).
[6] TCKEN	 Transmit Clock Enable 0 = The internal Transmit Clock Enable signal is deasserted. 1 = The internal Transmit Clock Enable signal is asserted. When this is asserted the serial data out is updated on the next system clock (MOSI or MISO).
[5:0] SPISTATE	SPI State Machine Defines the current state of the internal SPI State Machine.

SPI Baud Rate High and Low Byte Registers

The SPI Baud Rate High and Low Byte registers, shown in Tables 69 and 70, combine to form a 16-bit reload value, BRG[15:0], for the SPI Baud Rate Generator.

When configured as a general purpose timer, the SPI BRG interrupt interval is calculated using the following equation:

SPI BRG Interrupt Interval (s) = System Clock Period (s) \times BRG[15:0]

- The first bit of the byte of an address is shifting out and the RD bit of the I²C Status Register is deasserted.
- The first bit of a 10-bit address shifts out
- The first bit of write data shifts out

Note: Writing to the I²C Data Register always clears the TRDE bit to 0. When TDRE is asserted, the I²C Controller pauses at the beginning of the Acknowledge cycle of the byte currently shifting out. It does not resume until the Data Register is written with the next value to send or until the stop or start bits are set, indicating that the current byte is the last one to send.

The fourth interrupt source is the baud rate generator. If the I²C Controller is disabled (IEN bit in the I2CCTL Register = 0) and the BIRQ bit in the I2CCTL Register = 1, an interrupt is generated when the baud rate generator counts down to 1. This allows the I²C baud rate generator to be used by software as a general purpose timer when IEN = 0.

Software Control of I²C Transactions

Software can control I^2C transactions by using the I^2C Controller interrupt, by polling the I^2C Status Register or by DMA. Note that not all products include a DMA Controller.

To use interrupts, the I^2C interrupt must be enabled in the Interrupt Controller. The TXI bit in the I^2C Control Register must be set to enable transmit interrupts.

To control transactions by polling, the interrupt bits (TDRE, RDRF and NCKI) in the I^2C Status Register should be polled. The TDRE bit asserts regardless of the state of the TXI bit.

Either or both transmit and receive data movement can be controlled by the DMA Controller. The DMA Controller channel(s) must be initialized to select the I²C transmit and receive requests. Transmit DMA requests require that the TXI bit in the I²C Control Register be set.

Caution: A transmit (write) DMA operation hangs if the slave responds with a Not Acknowledge before the last byte has been sent. After receiving the Not Acknowledge, the I²C Controller sets the NCKI bit in the Status Register and pauses until either the stop or start bits in the Control Register are set.

For a receive (read) DMA transaction to send a Not Acknowledge on the last byte, the receive DMA must be set up to receive n-1 bytes, then software must set the NAK bit and receive the last (nth) byte directly.

- 2. Software asserts the TXI bit of the I^2C Control Register to enable transmit interrupts.
- 3. The I^2C interrupt asserts because the I^2C Data Register is empty.
- 4. Software responds to the TDRE interrupt by writing the first slave address byte to the I²C Data Register. The least significant bit must be 0 for the write operation.
- 5. Software asserts the start bit of the I^2C Control Register.
- 6. The I²C Controller sends the start condition to the I²C slave.
- 7. The I²C Controller loads the I²C Shift Register with the contents of the I²C Data Register.
- 8. After one bit of address is shifted out by the SDA signal, the transmit interrupt is asserted.
- 9. Software responds by writing the second byte of address into the contents of the I²C Data Register.
- 10. The I²C Controller shifts the rest of the first byte of address and write bit out the SDA signal.
- 11. If the I²C slave acknowledges the first address byte by pulling the SDA signal Low during the next High period of SCL, the I²C Controller sets the ACK bit in the I²C Status Register. Continue with <u>Step 12</u>.

If the slave does not acknowledge the first address byte, the I²C Controller sets the NCKI bit and clears the ACK bit in the I²C Status Register. Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I²C Controller sends the stop condition on the bus and clears the stop and NCKI bits. The transaction is complete (ignore the following steps).

- 12. The I²C Controller loads the I²C Shift Register with the contents of the I²C Data Register.
- 13. The I²C Controller shifts the second address byte out the SDA signal. After the first bit has been sent, the transmit interrupt is asserted.
- 14. Software responds by writing a data byte to the I^2C Data Register.
- 15. The I²C Controller completes shifting the contents of the shift register on the SDA signal.
- 16. If the I²C slave sends an acknowledge by pulling the SDA signal Low during the next High period of SCL, the I²C Controller sets the ACK bit in the I²C Status Register. Continue with <u>Step 17</u>.

If the slave does not acknowledge the second address byte or one of the data bytes, the I^2C Controller sets the NCKI bit and clears the ACK bit in the I^2C Status Register. Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I^2C Controller sends the stop condition on the bus and

For more information about bypassing the Flash Controller, refer to the <u>Third Party Flash</u> <u>Programming Support for Z8 Encore! MCUs Application Note (AN0117)</u>, which is available for download at <u>www.zilog.com</u>.

Flash Controller Behavior in Debug Mode

The following changes in Flash Controller behavior occur when the Flash Controller is accessed using the On-Chip Debugger:

- The Flash Write Protect option bit is ignored
- The Flash Sector Protect Register is ignored for programming and erase operations
- Programming operations are not limited to the page selected in the Page Select Register
- Bits in the Flash Sector Protect Register can be written to one or zero
- The second write of the Page Select Register to unlock the Flash Controller is not necessary
- The Page Select Register can be written when the Flash Controller is unlocked
- The Mass Erase command is enabled through the Flash Control Register

Caution: For security reasons, the Flash Controller allows only a single page to be opened for write/erase operations. When writing multiple Flash pages, the Flash Controller must go through the unlock sequence again to select another page.

Flash Control Register Definitions

This section defines the features of the following Flash Control registers.

Flash Control Register: see page 175

Flash Status Register: see page 177

Page Select Register: see page 177

Flash Sector Protect Register: see page 178

Flash Frequency High and Low Byte Registers: see page 179

Flash Control Register

The Flash Control Register, shown in Table 93, unlocks the Flash Controller for programming and erase operations, or to select the Flash Sector Protect Register.

PRELIMINARY

Table 95. Page Select Register (FPS)

Bit	7	6	5	4	3	2	1	0
Field	INFO_EN	PAGE						
RESET		0						
R/W		R/W						
Address		FF9H						

Bit	Description
[7]	Information Area Enable
INFO_EN	0 = Information Area is not selected.
	1 = Information Area is selected. The Information area is mapped into the Flash memory address space at addresses FE00H through FFFFH.
[6:0]	Page Select
PAGE	This 7-bit field selects the Flash memory page for programming and Page Erase operations.
	Flash Memory Address[15:9] = PAGE[6:0].

Flash Sector Protect Register

The Flash Sector Protect Register, shown in Table 96, protects Flash memory sectors from being programmed or erased from user code. The Flash Sector Protect Register shares its Register File address with the Page Select Register. The Flash Sector Protect Register can be accessed only after writing the Flash Control Register with 5EH.

User code can only write bits in this register to 1 (bits cannot be cleared to 0 by user code). To determine the appropriate Flash memory sector address range and sector number for your Z8F64xx Series product, please refer to <u>Table 91</u> on page 169.

Bit	7	6	5	4	3	2	1	0
Field	SECT7	SECT6	SECT5	SECT4	SECT3	SECT2	SECT1	SECT0
RESET		0						
R/W		R/W*						
Address	FF9H							
Note: *R/W = This register is accessible for read operations; it can be written to 1 only via user code.								

Bit	Description
[7:0]	Sector Protect**
SECTn	0 = Sector <i>n</i> can be programmed or erased from user code.
	1 = Sector <i>n</i> is protected and cannot be programmed or erased from user code.
Note: **U	ser code can only write bits from 0 to 1.

197

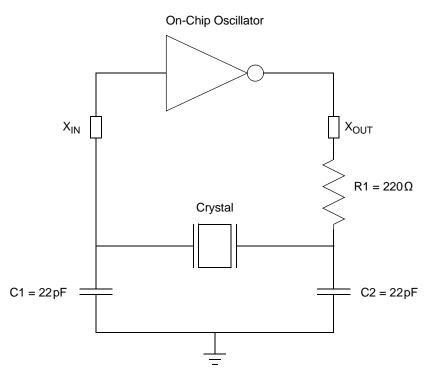


Figure 40. Recommended 20MHz Crystal Oscillator Configuration

Parameter	Value	Units	Comments	
Frequency	20	MHz		
Resonance	Parallel			
Mode	Fundamental			
Series Resistance (R _S)	25	W	Maximum	
Load Capacitance (C _L)	20	pF	Maximum	
Shunt Capacitance (C ₀)	7	pF	Maximum	
Drive Level	1	mW	Maximum	

Table 105. Recommended Crystal Oscillator Specifications (20MHz Operation)

eZ8 CPU Instruction Classes

eZ8 CPU instructions can be divided functionally into the following groups:

- Arithmetic
- Bit Manipulation
- Block Transfer
- CPU Control
- Load
- Logical
- Program Control
- Rotate and Shift

Tables 128 through 135 contain the instructions belonging to each group and the number of operands required for each instruction. Some instructions appear in more than one table; these instructions can be considered to be a subset of more than one category. Within these tables, the source operand is identified as src, the destination operand is dst and a condition code is cc.

Mnemonic	Operands	Instruction
ADC	dst, src	Add with Carry
ADCX	dst, src	Add with Carry using Extended Addressing
ADD	dst, src	Add
ADDX	dst, src	Add using Extended Addressing
СР	dst, src	Compare
CPC	dst, src	Compare with Carry
CPCX	dst, src	Compare with Carry using Extended Addressing
CPX	dst, src	Compare using Extended Addressing
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
INC	dst	Increment
INCW	dst	Increment Word

Table 128. Arithmetic Instructions

Mnemonic	Operands	Instruction
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 129. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF		Complement Carry Flag
RCF	—	Reset Carry Flag
SCF		Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
ТСМХ	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using Extended Addressing

Table 130. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from program memory and Auto-Incre- ment addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Incre- ment addresses

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
COM	dst	Complement
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using Extended Addressing
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Address- ing

Table 133. Logical Instructions

Table 134. Program Control Instructions

Mnemonic	Operands	Instruction
BRK		On-Chip Debugger Break
BTJ	p, bit, src, DA	Bit Test and Jump
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero
BTJZ	bit, src, DA	Bit Test and Jump if Zero
CALL	dst	Call Procedure
DJNZ	dst, src, RA	Decrement and Jump Non-Zero
IRET	—	Interrupt Return
JP	dst	Jump
JP cc	dst	Jump Conditional
JR	DA	Jump Relative
JR cc	DA	Jump Relative Conditional
RET	—	Return
TRAP	vector	Software Trap

245

Abbreviation	Description	Abbreviation	Description
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address
Ir	Indirect working register	RA	Relative
IR	Indirect register	rr	Working register pair
Irr	Indirect working register pair	RR	Register pair

Table 137. Op Code Map Abbreviations (Continued)

Hex Address: FD7

Table 236. Port A–H Output Data Register (PxOUT)

Bit	7	6	5	4	3	2	1	0		
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0		
RESET	0									
R/W		R/W								
Address		FD3H, FD7H, FDBH, FDFH, FE3H, FE7H, FEBH, FEFH								

Hex Address: FD8

Table 237. Port A–H GPIO Address Registers (PxADDR)

Bit	7	6	5	4	3	2	1	0		
Field		PADDR[7:0]								
RESET	00H									
R/W		R/W								
Address		FD0	H, FD4H, FI	D8H, FDCH	, FE0H, FE4	H, FE8H, F	ECH			

Hex Address: FD9

Table 238. Port A–H Control Registers (PxCTL)

Bit	7	6	5	4	3	2	1	0	
Field	PCTL								
RESET	00H								
R/W	R/W								
Address		FD1	H, FD5H, Fl	D9H, FDDH,	FE1H, FE5	H, FE9H, F	EDH		

Hex Address: FDA

Table 239. Port A-H Input Data Registers (PxIN)

Bit	7	6	5	4	3	2	1	0	
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0	
RESET	X								
R/W	R								
Address		FD2	H, FD6H, FD	DAH, FDEH,	, FE2H, FE6	H, FEAH, F	EEH		

Hex Address: FE7

Table 252. Port A–H Output Data Register (PxOUT)

Bit	7	6	5	4	3	2	1	0	
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0	
RESET	0								
R/W	R/W								
Address		FD3H, FD7H, FDBH, FDFH, FE3H, FE7H, FEBH, FEFH							

Hex Address: FE8

Table 253. Port A–H GPIO Address Registers (PxADDR)

Bit	7	6	5	4	3	2	1	0		
Field		PADDR[7:0]								
RESET		00H								
R/W		R/W								
Address		FD0	H, FD4H, F	D8H, FDCH	, FE0H, FE4	H, FE8H, F	ECH			

Hex Address: FE9

Table 254. Port A–H Control Registers (PxCTL)

Bit	7	6	5	4	3	2	1	0		
Field		PCTL								
RESET		00H								
R/W		R/W								
Address		FD1	H, FD5H, Fl	D9H, FDDH,	, FE1H, FE5	H, FE9H, F	EDH			

Hex Address: FEA

Table 255. Port A–H Input Data Registers (PxIN)

Bit	7	6	5	4	3	2	1	0		
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0		
RESET		X								
R/W		R								
Address		FD2H, FD6H, FDAH, FDEH, FE2H, FE6H, FEAH, FEEH								

counter 79 gated 79 one-shot 79 PWM 79 modes 79 MULT 232 multiply 232 multiprocessor mode, UART 94

Ν

NOP (no operation) 233 not acknowledge interrupt 131 notation b 228 cc 228 DA 228 ER 228 IM 228 **IR 228** Ir 228 **IRR 228** Irr 228 p 228 R 228 r 228 RA 229 RR 229 rr 229 vector 229 X 229 notational shorthand 228

0

OCD architecture 184 auto-baud detector/generator 187 baud rate limits 187 block diagram 184 breakpoints 188 commands 189 control register 194 data format 187

DBG pin to RS-232 Interface 185 debug mode 186 debugger break 234 interface 185 serial errors 188 status register 195 timing 220 OCD commands execute instruction (12H) 193 read data memory (0DH) 193 read OCD control register (05H) 191 read OCD revision (00H) 190 read OCD status register (02H) 191 read program counter (07H) 191 read program memory (0BH) 192 read program memory CRC (0EH) 193 read register (09H) 192 step instruction (10H) 193 stuff instruction (11H) 193 write data memory (0CH) 192 write OCD control register (04H) 191 write program counter (06H) 191 write program memory (0AH) 192 write register (08H) 191 on-chip debugger 6 on-chip debugger (OCD) 184 on-chip debugger signals 17 on-chip oscillator 197 one-shot mode 79 opcode map abbreviations 245 cell description 245 first 247 second after 1FH 248 OR 234 ordering information 288 **ORX 234** oscillator signals 17

Ρ

p 228 Packaging 287 part number description 293 298