

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	46
Program Memory Size	48KB (48K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f4822vs020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Operation	. 109
Transmitting IrDA Data	. 110
Receiving IrDA Data	. 111
Infrared Encoder/Decoder Control Register Definitions	. 112
Serial Peripheral Interface	. 113
Architecture	. 113
Operation	. 115
SPI Signals	. 115
SPI Clock Phase and Polarity Control	. 116
Multimaster Operation	. 118
Slave Operation	. 119
Error Detection	. 119
SPI Interrupts	. 120
SPI Baud Rate Generator	
SPI Control Register Definitions	. 121
SPI Data Register	
SPI Control Register	
SPI Status Register	
SPI Mode Register	
SPI Diagnostic State Register	
SPI Baud Rate High and Low Byte Registers	. 126
I ² C Controller	. 128
Architecture	. 128
Operation	. 129
SDA and SCL Signals	. 130
I ² C Interrupts	. 130
Software Control of I ² C Transactions	. 131
Start and Stop Conditions	. 132
Master Write and Read Transactions	. 132
Address Only Transaction with a 7-bit Address	. 133
Write Transaction with a 7-Bit Address	
Address Only Transaction with a 10-bit Address	. 135
Write Transaction with a 10-Bit Address	. 136
Read Transaction with a 7-Bit Address	
Read Transaction with a 10-Bit Address	
I ² C Control Register Definitions	
I ² C Data Register	
I ² C Status Register	
I^2C Control Register	
I ² C Baud Rate High and Low Byte Registers	. 145

vii

xi

List of Figures

Figure 1.	Z8 Encore! XP F64xx Series Block Diagram
Figure 2.	Z8 Encore! XP F64xx Series in 40-Pin Dual Inline Package (PDIP) 8
Figure 3.	Z8 Encore! XP F64xx Series in 44-Pin Plastic Leaded Chip Carrier (PLCC) 9
Figure 4.	Z8 Encore! XP F64xx Series in 44-Pin Low-Profile Quad Flat
	Package (LQFP) 10
Figure 5.	Z8 Encore! XP F64xx Series in 64-Pin Low-Profile Quad Flat
F'	Package (LQFP)
Figure 6.	Z8 Encore! XP F64xx Series in 68-Pin Plastic Leaded Chip Carrier (PLCC)
Figure 7.	Z8 Encore! XP F64xx Series in 80-Pin Quad Flat Package (QFP) 13
Figure 8.	Power-On Reset Operation
Figure 9.	Voltage Brown-Out Reset Operation
Figure 10.	GPIO Port Pin Block Diagram
Figure 11.	Interrupt Controller Block Diagram
Figure 12.	Timer Block Diagram
Figure 13.	UART Block Diagram
Figure 14.	UART Asynchronous Data Format without Parity
Figure 15.	UART Asynchronous Data Format with Parity
Figure 16.	UART Asynchronous MULTIPROCESSOR Mode Data Format
Figure 17.	UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity) . 95
Figure 18.	UART Receiver Interrupt Service Routine Flow
Figure 19.	Infrared Data Communication System Block Diagram 109
Figure 20.	Infrared Data Transmission 110
Figure 21.	Infrared Data Reception 111
Figure 22.	SPI Configured as a Master in a Single-Master, Single-Slave System 113
Figure 23.	SPI Configured as a Master in a Single-Master, Multiple-Slave System . 114
Figure 24.	SPI Configured as a Slave 114
Figure 25.	SPI Timing When PHASE is 0 117
Figure 26.	SPI Timing When PHASE is 1 118
Figure 27.	I ² C Controller Block Diagram 129
Figure 28.	7-Bit Address Only Transaction Format
Figure 29.	7-Bit Addressed Slave Data Transfer Format
Figure 30.	10-Bit Address Only Transaction Format

Introduction

Zilog's Z8 Encore! XP F64xx Series MCU family of products are a line of Zilog microcontroller products based upon the 8-bit eZ8 CPU. The Z8 Encore! XP F64xx Series adds Flash memory to Zilog's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8 CPU is upward-compatible with existing Z8 instructions. The rich-peripheral set of the Z8 Encore! XP F64xx Series makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices, and sensors.

Features

The features of Z8 Encore! XP F64xx Series include:

- 20MHz eZ8 CPU
- Up to 64KB Flash with in-circuit programming capability
- Up to 4KB register RAM
- 12-channel, 10-bit Analog-to-Digital Converter (ADC)
- Two full-duplex 9-bit UARTs with bus transceiver Driver Enable control
- Inter-integrated circuit (I²C)
- Serial Peripheral Interface (SPI)
- Two Infrared Data Association (IrDA)-compliant infrared encoder/decoders
- Up to four 16-bit timers with capture, compare and PWM capability
- Watchdog Timer (WDT) with internal RC oscillator
- Three-channel DMA
- Up to 60 input/output (I/O) pins
- 24 interrupts with configurable priority
- On-Chip Debugger
- Voltage Brown-Out (VBO) Protection
- Power-On Reset (POR)
- Operating voltage of 3.0V to 3.6V with 5V-tolerant inputs
- 0° C to $+70^{\circ}$ C, -40° C to $+105^{\circ}$ C, and -40° C to $+125^{\circ}$ C operating temperature ranges

Signal Mnemonic	I/O	Description
Oscillators		
X _{IN}	I	External Crystal Input. This is the input pin to the crystal oscillator. A crystal can be connected between it and the X_{OUT} pin to form the oscillator. This signal is usable with external RC networks and an external clock driver.
X _{OUT}	0	External Crystal Output. This pin is the output of the crystal oscillator. A crystal can be connected between it and the X_{IN} pin to form the oscillator. When the system clock is referred to in this manual, it refers to the frequency of the signal at this pin. This pin must be left unconnected when not using a crystal.
RC _{OUT}	0	RC Oscillator Output. This signal is the output of the RC oscillator. It is multi- plexed with a general-purpose I/O pin. This signal must be left unconnected when not using a crystal.
On-Chip Deb	ougger	
DBG	I/O	Debug. This pin is the control and data input and output to and from the On- Chip Debugger. This pin is open-drain.
		Caution: For operation of the On-Chip Debugger, all power pins (V_{DD} and AV_{DD}) must be supplied with power and all ground pins (V_{SS} and AV_{SS}) must be properly grounded. The DBG pin is open-drain and must have an external pull-up resistor to ensure proper operation.
Reset		
RESET	Ι	RESET. Generates a Reset when asserted (driven Low).
Power Supp	ly	
V _{DD}	I	Power Supply.
AV _{DD}	Ι	Analog Power Supply.
V _{SS}	I	Ground.
AV _{SS}	Ι	Analog Ground.

Table 3. Signal Descriptions (Continued)

Pin Characteristics

Table 4 lists the characteristics for each pin available on the Z8 Encore! XP F64xx Series products and the data is sorted alphabetically by the pin symbol mnemonic.

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tri-State Output	Internal Pull-Up or Pull-Down	Schmitt- Trigger Input	Open-Drain Output
AV _{SS}	N/A	N/A	N/A	N/A	No	No	N/A
AV _{DD}	N/A	N/A	N/A	N/A	No	No	N/A
DBG	I/O	I	N/A	Yes	No	Yes	Yes
V _{SS}	N/A	N/A	N/A	N/A	No	No	N/A
PA[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, programmable
PB[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, programmable
PC[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, programmable
PD[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, programmable
PE7:0]	I/O	I	N/A	Yes	No	Yes	Yes, programmable
PF[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, programmable
PG[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, programmable
PH[3:0]	I/O	I	N/A	Yes	No	Yes	Yes, programmable
RESET	I	I	Low	N/A	Pull-up	Yes	N/A
V _{DD}	N/A	N/A	N/A	N/A	No	No	N/A
X _{IN}	I	I	N/A	N/A	No	No	N/A
X _{OUT}	0	0	N/A	Yes, in STOP Mode	No	No	No

Table 4. Pin Characteristics of the Z8 Encore! XP F64xx Series

Address Space

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral and general-purpose I/O port control registers
- The program memory contains addresses for all memory locations having executable code and/or data
- The Data Memory consists of the addresses for all memory locations that hold only data

These three address spaces are covered briefly in the following sections. For more information about the eZ8 CPU and its address space, refer to the <u>eZ8 CPU Core User Manual</u> (<u>UM0128</u>), which is available for download on <u>www.zilog.com</u>.

Register File

The Register File address space in the Z8 Encore! XP F64xx Series is 4KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers are read from when defined as sources and written to when defined as destinations. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256-byte control register section are reserved (unavailable). Reading from an reserved Register File addresses returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. The Z8 Encore! XP F64xx Series provide 2KB to 4KB of on-chip RAM depending upon the device. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect. To determine the amount of RAM available for the specific Z8 Encore! XP F64xx Series device, see the <u>Part Selection Guide</u> section on page 2.

Address (Hex) Register Description	Mnemonic	Reset (Hex)	Page
GPIO Port	A (continued)			
FD3	Port A Output Data	PAOUT	00	<u>46</u>
GPIO Port	В			
FD4	Port B Address	PBADDR	00	<u>40</u>
FD5	Port B Control	PBCTL	00	<u>41</u>
FD6	Port B Input Data	PBIN	XX	<u>46</u>
FD7	Port B Output Data	PBOUT	00	<u>46</u>
GPIO Port	С			
FD8	Port C Address	PCADDR	00	<u>40</u>
FD9	Port C Control	PCCTL	00	<u>41</u>
FDA	Port C Input Data	PCIN	XX	<u>46</u>
FDB	Port C Output Data	PCOUT	00	<u>46</u>
GPIO Port	D			
FDC	Port D Address	PDADDR	00	<u>40</u>
FDD	Port D Control	PDCTL	00	<u>41</u>
FDE	Port D Input Data	PDIN	XX	<u>46</u>
FDF	Port D Output Data	PDOUT	00	<u>46</u>
GPIO Port	E			
FE0	Port E Address	PEADDR	00	<u>40</u>
FE1	Port E Control	PECTL	00	<u>41</u>
FE2	Port E Input Data	PEIN	XX	<u>46</u>
FE3	Port E Output Data	PEOUT	00	<u>46</u>
GPIO Port	F			
FE4	Port F Address	PFADDR	00	<u>40</u>
FE5	Port F Control	PFCTL	00	<u>41</u>
FE6	Port F Input Data	PFIN	XX	<u>46</u>
FE7	Port F Output Data	PFOUT	00	<u>46</u>
GPIO Port	G			
FE8	Port G Address	PGADDR	00	<u>40</u>
FE9	Port G Control	PGCTL	00	<u>41</u>
FEA	Port G Input Data	PGIN	XX	<u>46</u>
FEB	Port G Output Data	PGOUT	00	<u>46</u>

Table 7. Z8 Encore! XP F64xx Series Register File Address Map (Continued)

Note: XX = Undefined.

Port A–H Control Registers

The Port A–H Control registers, shown in Table 15, set the GPIO port operation. The value in the corresponding Port A–H Address Register determines the control subregisters accessible using the Port A–H Control Register.

Table 15. Port A–H Control Registers (PxCTL)

Bit	7	6	5	4	3	2	1	0
Field	PCTL							
RESET	00H							
R/W	R/W							
Address		FD1	H, FD5H, FI	D9H, FDDH	, FE1H, FE5	H, FE9H, F	EDH	

Bit	Description
[7:0]	Port Control
PCTL	The Port Control Register provides access to all subregisters that configure the GPIO Port operation.

Port A–H Data Direction Subregisters

The Port A–H Data Direction Subregister, shown in Table 16, is accessed through the Port A–H Control Register by writing 01H to the Port A–H Address Register.

Table 16.	Port A–H	Data Direction	Subregisters
-----------	----------	----------------	--------------

Bit	7	6	5	4	3	2	1	0
Field	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0
RESET		1						
R/W	R/W							
Address	See note.							
Note: If a (e. If a 01H exists in the Port A-H Address Register, it is accessible through the Port A-H Control Register							

0

BIt	Description
[7:0]	Data Direction
DDx	 These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction Register setting. 0 = Output. Data in the Port A–H Output Data Register is driven onto the port pin. 1 = Input. The port pin is sampled and the value written into the Port A–H Input Data Register. The output driver is tri-stated.
Note:	x indicates register bits in the range [7:0].

D:4

Decerintien

Port A–H Alternate Function Subregisters

The Port A–H Alternate Function Subregister, shown in Table 17, is accessed through the Port A–H Control Register by writing 02H to the Port A–H Address Register. The Port A–H Alternate Function subregisters select the alternate functions for the selected pins. To determine the alternate function associated with each port pin, see the <u>GPIO Alternate</u> <u>Functions</u> section on page 37.

Caution: Do not enable alternate function for GPIO port pins which do not have an associated alternate function. Failure to follow this guideline may result in unpredictable operation.

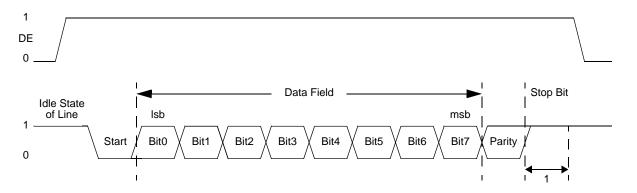
Bit	7	6	5	4	3	2	1	0			
Field	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0			
RESET		0									
R/W		R/W									
Address	See note.										
Note: If a 02H exists in the Port A–H Address Register, it is accessible through the Port A–H Control Register.											

Table 17. Port A–H Alternate Function Subregisters

Bit Description

[7:0] **Port Alternate Function Enabled**

- AFx 0 = The port pin is in NORMAL Mode and the DDx bit in the Port A–H Data Direction Subregister determines the direction of the pin.
 - 1 = The alternate function is selected. Port pin operation is controlled by the alternate function.


Note: x indicates register bits in the range [7:0].

The third scheme is enabled by setting MPMD[1:0] to 11b and by writing the UART's address into the UART Address Compare Register. This mode is identical to the second scheme, except that there are no interrupts on address bytes. The first data byte of each frame is still accompanied by a NEWFRM assertion.

External Driver Enable

The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature reduces the software overhead associated with using a GPIO pin to control the transceiver when communicating on a multitransceiver bus, such as RS-485.

Driver Enable is an active High signal that envelopes the entire transmitted data frame including parity and stop bits as displayed in Figure 17. The Driver Enable signal asserts when a byte is written to the UART Transmit Data Register. The Driver Enable signal asserts at least one UART bit period and no greater than two UART bit periods before the start bit is transmitted. This timing allows a setup time to enable the transceiver. The Driver Enable signal deasserts one system clock period after the last stop bit is transmitted. This one system clock delay allows both time for data to clear the transceiver before disabling it, as well as the ability to determine if another character follows the current character. In the event of back to back characters (new data must be written to the Transmit Data Register before the previous character is completely transmitted) the DE signal is not deasserted between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of the Driver Enable signal.

The Driver Enable-to-start-bit set-up time is calculated as:

$$\left(\frac{1}{\text{Baud Rate (Hz)}}\right) \le \text{DE to Start Bit Setup Time (s)} \le \left(\frac{2}{\text{Baud Rate (Hz)}}\right)$$

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 Registers, shown in Tables 57 and 58, configure the properties of the UART's transmit and receive operations. The UART Control registers must not been written while the UART is enabled.

Table 57. UART Control 0 Register (UxCTL0)

Bit	7	6	5	4	3	2	1	0			
Field	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN			
RESET	0										
R/W				R/	W						
Address		F42H and F4AH									
Bit	Descriptio	Description									
[7] TEN	This bit ena and the CT 0 = Transm	Transmit Enable This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled. 0 = Transmitter disabled. 1 = Transmitter enabled.									
[6] REN	This bit ena 0 = Receive	Receive Enable This bit enables or disables the receiver. 0 = Receiver disabled. 1 = Receiver enabled.									
[5] CTSE		l <u>e</u> S signal has RT recogniz				ntrol from the	e transmitter	:			
[4] PEN	 Parity Enable This bit enables or disables parity. Even or odd is determined by the PSEL bit. It is overridden by the MPEN bit. 0 = Parity is disabled. 1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit. 										
[3] PSEL	Parity Select 0 = Even parity is transmitted and expected on all received data. 1 = Odd parity is transmitted and expected on all received data.										
[2] SBRK	 1 = Odd parity is transmitted and expected on all received data. Send Break This bit pauses or breaks data transmission. Sending a break interrupts any transmission in progress, so ensure that the transmitter has finished sending data before setting this bit. 0 = No break is sent. 1 = The output of the transmitter is zero. 										

UART Address Compare Register

The UART Address Compare Register, shown in Table 59, stores the multinode network address of the UART. When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare Register. Receive interrupts and RDA assertions only occur in the event of a match.

Bit	7	6	5	4	3	2	1	0				
Field	COMP_ADDR											
RESET	0											
R/W	R/W											
Address	F45H and F4DH											
Bit	Description											
[7:0]	Compare Address											

UART Baud Rate High and Low Byte Registers

COMP ADDR This 8-bit value is compared to the incoming address bytes.

The UART Baud Rate High and Low Byte registers, shown in Tables 60 and 61, combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. To configure the Baud Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 Register to 0.
- 2. Load the appropriate 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BRGCTL bit in the UART Control 1 Register to 1.

When configured as a general-purpose timer, the UART BRG interrupt interval is calculated using the following equation:

UART BRG Interrupt Interval(s) = System Clock Period (s) \times BRG[15:0]

Bit	Description (Continued)
[1] FLUSH	Flush Data Setting this bit to 1 clears the I^2C Data Register and sets the TDRE bit to 1. This bit allows flushing of the I^2C Data Register when a Not Acknowledge interrupt is received after the data has been sent to the I^2C Data Register. Reading this bit always returns 0.
[0] FILTEN	 I²C Signal Filter Enable This bit enables low-pass digital filters on the SDA and SCL input signals. These filters reject any input pulse with periods less than a full system clock cycle. The filters introduce a 3-system clock cycle latency on the inputs. 1 = low-pass filters are enabled. 0 = low-pass filters are disabled.

I²C Baud Rate High and Low Byte Registers

The I²C Baud Rate High and Low Byte registers, shown in Tables 74 and 75, combine to form a 16-bit reload value, BRG[15:0], for the I²C Baud Rate Generator.

When the I^2C is disabled, the Baud Rate Generator can function as a basic 16-bit timer with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Disable the I^2C by clearing the IEN bit in the I^2C Control Register to 0.
- 2. Load the appropriate 16-bit count value into the I²C Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BIRQ bit in the I²C Control Register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval (s) = System Clock Period (s) \times BRG[15:0]

148	
-----	--

Bit	Description (0	Continued)					
[4:0] TXRXSTATE	Internal State Value of the internal I ² C state machine.						
	TXRXSTATE	State Description					
[4:0]	0_000	Idle State.					
TXRXSTATE	0_0001	Start State.					
(continued)	0_0010	Send/Receive data bit 7.					
	0_0011	Send/Receive data bit 6.					
	0_0100	Send/Receive data bit 5.					
	0_0101	Send/Receive data bit 4.					
	0_0110	Send/Receive data bit 3.					
	0_0111	Send/Receive data bit 2.					
	0_1000	Send/Receive data bit 1.					
	0_1001	Send/Receive data bit 0.					
	0_1010	Data Acknowledge State.					
	0_1011	Second half of data Acknowledge State used only for not acknowledge.					
	0_1100	First part of stop state.					
	0_1101	Second part of stop state.					
	0_1110	10-bit addressing: Acknowledge State for 2nd address byte					
		7-bit addressing: Address Acknowledge State.					
	0_1111	10-bit address: Bit 0 (Least significant bit) of 2nd address byte					
		7-bit address: Bit 0 (Least significant bit) (R/W) of address byte.					
	1_0000	10-bit addressing: Bit 7 (Most significant bit) of 1st address byte.					
	1_0001	10-bit addressing: Bit 6 of 1st address byte.					
	1_0010	10-bit addressing: Bit 5 of 1st address byte.					
	1_0011	10-bit addressing: Bit 4 of 1st address byte.					
	1_0100	10-bit addressing: Bit 3 of 1st address byte.					
	1_0101	10-bit addressing: Bit 2 of 1st address byte.					
	1_0110	10-bit addressing: Bit 1 of 1st address byte.					
	1_0111	10-bit addressing: Bit 0 (R/W) of 1st address byte.					
	1_1000	10-bit addressing: Acknowledge state for 1st address byte.					
	1_1001	10-bit addressing: Bit 7 of 2nd address byte					
		7-bit addressing: Bit 7 of address byte.					
	1_1010	10-bit addressing: Bit 6 of 2nd address byte					
		7-bit addressing: Bit 6 of address byte.					
	1_1011	10-bit addressing: Bit 5 of 2nd address byte					
		7-bit addressing: Bit 5 of address byte.					
	1_1100	10-bit addressing: Bit 4 of 2nd address byte					
	_	7-bit addressing: Bit 4 of address byte.					
	1_1101	10-bit addressing: Bit 3 of 2nd address byte					
	—	7-bit addressing: Bit 3 of address byte.					
	1_1110	10-bit addressing: Bit 2 of 2nd address byte					
		7-bit addressing: Bit 2 of address byte.					
	1_1111	10-bit addressing: Bit 1 of 2nd address byte					
		7-bit addressing: Bit 1 of address byte.					

Flash Memory

The products in the Z8 Encore! XP F64xx Series feature up to 64KB (65,536 bytes) of non-volatile Flash memory with read/write/erase capability. The Flash memory can be programmed and erased in-circuit by either user code or through the On-Chip Debugger.

The Flash memory array is arranged in 512 byte per page. The 512 byte page is the minimum Flash block size that can be erased. The Flash memory is also divided into 8 sectors which can be protected from programming and erase operations on a per sector basis.

Table 90 describes the Flash memory configuration for each device in the Z8 Encore! XP F64xx Series. Table 91 lists the sector address ranges. Figure 35 displays the Flash memory arrangement.

Part Number	Flash Size	Number of Pages	Flash Memory Addresses	Sector Size	Number of Sectors	Pages per Sector
Z8F162x	16K (16,384)	32	0000H–3FFFH	2K (2048)	8	4
Z8F242x	24K (24,576)	48	0000H–5FFFH	4K (4096)	6	8
Z8F322x	32K (32,768)	64	0000H-7FFFH	4K (4096)	8	8
Z8F482x	48K (49,152)	96	0000H-BFFFH	8K (8192)	6	16
Z8F642x	64K (65,536)	128	0000H-FFFFH	8K (8192)	8	16

Table 90. Flash Memory Configurations

Table 91. Flash Memory Sector Addresses

Sector	Flash Sector Address Ranges									
Number	Z8F162x	Z8F242x	Z8F322x	Z8F482x	Z8F642x					
0	0000H-07FFH	0000H-0FFFH	0000H-0FFFH	0000H-1FFFH	0000H–1FFFH					
1	0800H–0FFFH	1000H–1FFFH	1000H–1FFFH	2000H-3FFFH	2000H-3FFFH					
2	1000H–17FFH	2000H–2FFFH	2000H–2FFFH	4000H–5FFFH	4000H–5FFFH					
3	1800H–1FFFH	3000H–3FFFH	3000H–3FFFH	6000H–7FFFH	6000H–7FFFH					
4	2000H–27FFH	4000H–4FFFH	4000H–4FFFH	8000H–9FFFH	8000H–9FFFH					
5	2800H–2FFFH	5000H–5FFFH	5000H–5FFFH	A000H-BFFFH	A000H–BFFFH					
6	3000H–37FFH	N/A	6000H–6FFFH	N/A	C000H-DFFFH					
7	3800H–3FFFH	N/A	7000H–7FFFH	N/A	E000H–FFFFH					

Table 95. Page Select Register (FPS)

Bit	7	6	5	4	3	2	1	0		
Field	INFO_EN	NFO_EN PAGE								
RESET		0								
R/W		R/W								
Address		FF9H								

Bit	Description
[7]	Information Area Enable
INFO_EN	0 = Information Area is not selected.
	1 = Information Area is selected. The Information area is mapped into the Flash memory address space at addresses FE00H through FFFFH.
[6:0]	Page Select
PAGE	This 7-bit field selects the Flash memory page for programming and Page Erase operations.
	Flash Memory Address[15:9] = PAGE[6:0].

Flash Sector Protect Register

The Flash Sector Protect Register, shown in Table 96, protects Flash memory sectors from being programmed or erased from user code. The Flash Sector Protect Register shares its Register File address with the Page Select Register. The Flash Sector Protect Register can be accessed only after writing the Flash Control Register with 5EH.

User code can only write bits in this register to 1 (bits cannot be cleared to 0 by user code). To determine the appropriate Flash memory sector address range and sector number for your Z8F64xx Series product, please refer to <u>Table 91</u> on page 169.

Bit	7	6	5	4	3	2	1	0			
Field	SECT7	SECT6	SECT5	SECT4	SECT3	SECT2	SECT1	SECT0			
RESET		0									
R/W		R/W*									
Address		FF9H									
Note: *R/W = This register is accessible for read operations; it can be written to 1 only via user code.											

Bit	Description
[7:0]	Sector Protect**
SECT <i>n</i>	0 = Sector <i>n</i> can be programmed or erased from user code.
	1 = Sector <i>n</i> is protected and cannot be programmed or erased from user code.
Note: **U	lser code can only write bits from 0 to 1.

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers, shown in Tables 97 and 98, combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit Flash Frequency registers must be written with the system clock frequency in kHz for Program and Erase operations. Calculate the Flash Frequency value using the following equation:

 $FFREQ[15:0] = \{FFREQH[7:0], FFREQL[7:0]\} = \frac{System Clock Frequency}{1000}$

Caution: Flash programming and erasure is not supported for system clock frequencies below 20kHz, above 20MHz, or outside of the valid operating frequency range for the device. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure proper program and erase times.

Table 97. Flash Frequency High Byte Register (FFREQH)

Bit	7	6	5	4	3	2	1	0		
Field		FFREQH								
RESET	0									
R/W		R/W								
Address	FFAH									

Table 98. Flash Frequency Low Byte Register (FFREQL)

Bit	7	6	5	4	3	2	1	0				
Field				FFR	FFREQL							
RESET	0											
R/W	R/W											
Address	FFBH											

Bit Description

[7:0]	Flash Frequency High and Low Bytes
FFREQH,	, These 2 bytes, {FFREQH[7:0], FFREQL[7:0]}, contain the 16-bit Flash Frequency value.
FFREQL	

Ordering Information

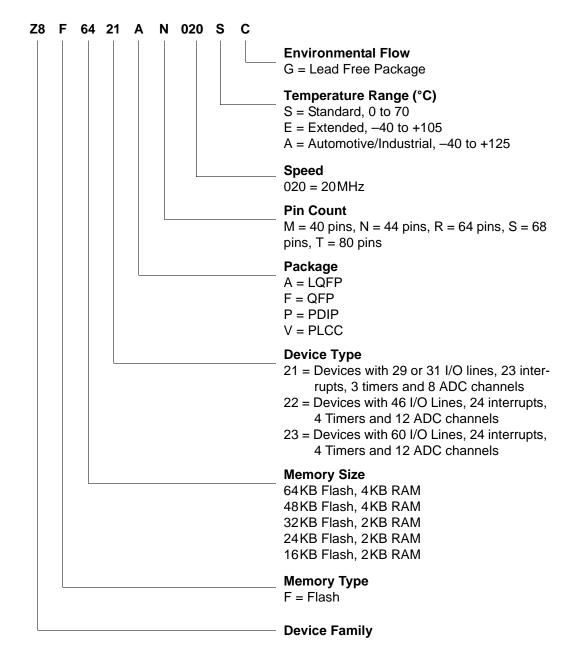

Order your F64xx Series products from Zilog using the part numbers shown in Table 271. For more information about ordering, please consult your local Zilog sales office. The <u>Sales Location page</u> on the Zilog website lists all regional offices.

Table 271. 20 Elicore: XI T 04XX Genes Ordening Matrix										
Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	I ² C	SPI	UARTs with IrDA	Description
Z8F642x with 64KB FI		-	to-Di	igital	Со	nvert	er			
Standard Temperature	e: 0°C to 70	°C								
Z8F6421PM020SG	64 KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F6421AN020SG	64KB	4KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F6421VN020SG	64 KB	4KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F6422AR020SG	64 KB	4KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F6422VS020SG	64 KB	4KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F6423FT020SG	64KB	4KB	60	24	4	12	1	1	2	QFP 80-pin package
Extended Temperatur	e: –40°C to	+105°C								
Z8F6421PM020EG	64 KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F6421AN020EG	64KB	4KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F6421VN020EG	64 K B	4KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F6422AR020EG	64 KB	4KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F6422VS020EG	64 KB	4KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F6423FT020EG	64KB	4KB	60	24	4	12	1	1	2	QFP 80-pin package
Automotive/Industrial Temperature: –40°C to +125°C										
Z8F6421PM020AG	64KB	2KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F6421AN020AG	64KB	4KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F6421VN020AG	64KB	4KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F6422AR020AG	64KB	4KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F6422VS020AG	64KB	4KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F6423FT020AG	64KB	4KB	60	24	4	12	1	1	2	QFP 80-pin package

Table 271. Z8 Encore! XP F64xx Series Ordering Matrix

Part Number Suffix Designations

Zilog part numbers consist of a number of component. In the following example, part number Z8F6421AN020SG is an 8-bit Flash MCU with 4KB of program memory in a 44-pin LQFP package, operating with a maximum 20MHz external clock frequency over a 0°C to +70°C temperature range and built using environmentally friendly (lead-free) solder.

counter 79 gated 79 one-shot 79 PWM 79 modes 79 MULT 232 multiply 232 multiprocessor mode, UART 94

Ν

NOP (no operation) 233 not acknowledge interrupt 131 notation b 228 cc 228 DA 228 ER 228 IM 228 **IR 228** Ir 228 **IRR 228** Irr 228 p 228 R 228 r 228 RA 229 RR 229 rr 229 vector 229 X 229 notational shorthand 228

0

OCD architecture 184 auto-baud detector/generator 187 baud rate limits 187 block diagram 184 breakpoints 188 commands 189 control register 194 data format 187

DBG pin to RS-232 Interface 185 debug mode 186 debugger break 234 interface 185 serial errors 188 status register 195 timing 220 OCD commands execute instruction (12H) 193 read data memory (0DH) 193 read OCD control register (05H) 191 read OCD revision (00H) 190 read OCD status register (02H) 191 read program counter (07H) 191 read program memory (0BH) 192 read program memory CRC (0EH) 193 read register (09H) 192 step instruction (10H) 193 stuff instruction (11H) 193 write data memory (0CH) 192 write OCD control register (04H) 191 write program counter (06H) 191 write program memory (0AH) 192 write register (08H) 191 on-chip debugger 6 on-chip debugger (OCD) 184 on-chip debugger signals 17 on-chip oscillator 197 one-shot mode 79 opcode map abbreviations 245 cell description 245 first 247 second after 1FH 248 OR 234 ordering information 288 **ORX 234** oscillator signals 17

Ρ

p 228 Packaging 287 part number description 293 298