

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	29
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 20x10/12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8bb31f16a-b-5qfn32r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8BB3 device family are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - 50 MHz maximum operating frequency
- Memory:
 - Up to 64 kB flash memory (63 kB user-accessible), in-system re-programmable from firmware in 512-byte sectors
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- · Power:
 - Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 29 total multifunction I/O pins:
 - Up to 25 pins 5 V tolerant under bias
 - Selectable state retention through reset events
 - · Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 49 MHz oscillator with accuracy of ±2%
 - Internal 24.5 MHz oscillator with ±2% accuracy
 - · Internal 80 kHz low-frequency oscillator
 - External CMOS clock option
 - External crystal/RC Oscillator (up to 25 MHz)

- Analog:
 - 12/10-Bit Analog-to-Digital Converter (ADC)
 - Internal temperature sensor
 - 4 x 12-Bit Digital-to-Analog Converters (DAC)
 - 2 x Low-current analog comparators with adjustable reference
- · Communications and Digital Peripherals:
 - 2 x UART, up to 3 Mbaud
 - SPI™ Master / Slave, up to 12 Mbps
 - SMBus™/I2C™ Master / Slave, up to 400 kbps
 - I²C High-Speed Slave, up to 3.4 Mbps
 - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
 - 4 Configurable Logic Units
- · Timers/Counters and PWM:
 - 6-channel programmable counter array (PCA) supporting PWM, capture/compare, and frequency output modes
 - 6 x 16-bit general-purpose timers
 - Independent watchdog timer, clocked from the low frequency oscillator
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - · Four hardware breakpoints, single-stepping
- · Pre-programmed UART bootloader
- Temperature range -40 to 85 °C or -40 to 125 °C

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8BB3 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing nonvolatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Device operation is specified from 2.2 V up to a 3.6 V supply. Devices are AEC-Q100 qualified and available in 4x4 mm 32-pin QFN, 3x3 mm 24-pin QFN, 32-pin QFP, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

3. System Overview

3.1 Introduction

Figure 3.1. Detailed EFM8BB3 Block Diagram

Low Current Comparators (CMP0, CMP1)

An analog comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator includes the following features:

- · Up to 10 (CMP0) or 9 (CMP1) external positive inputs
- · Up to 10 (CMP0) or 9 (CMP1) external negative inputs
- · Additional input options:
 - Internal connection to LDO output
 - Direct connection to GND
 - Direct connection to VDD
 - · Dedicated 6-bit reference DAC
- Synchronous and asynchronous outputs can be routed to pins via crossbar
- Programmable hysteresis between 0 and ±20 mV
- · Programmable response time
- · Interrupts generated on rising, falling, or both edges
- · PWM output kill feature

3.8 Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- · Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- · External port pins are forced to a known state.
- Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. By default, the Port I/O latches are reset to 1 in open-drain mode, with weak pullups enabled during and after the reset. Optionally, firmware may configure the port I/O, DAC outputs, and precision reference to maintain state through system resets other than power-on resets. For Supply Monitor and power-on resets, the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.

Reset sources on the device include the following:

- Power-on reset
- · External reset pin
- · Comparator reset
- Software-triggered reset
- Supply monitor reset (monitors VDD supply)
- · Watchdog timer reset
- · Missing clock detector reset
- · Flash error reset

3.9 Debugging

The EFM8BB3 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

Device Package	Pin for Bootload Mode Entry
QFN32	P3.7 / C2D
QFP32	P3.7 / C2D
QFN24	P3.0 / C2D
QSOP24	P3.0 / C2D

Table 3.3. Summary of Pins for Bootload Mode Entry

4.1.6 Internal Oscillators

Parameter	Symbol	ymbol Test Condition		Тур	Мах	Unit			
High Frequency Oscillator 0 (24.5	High Frequency Oscillator 0 (24.5 MHz)								
Oscillator Frequency	f _{HFOSC0}	Full Temperature and Supply Range	24	24.5	25	MHz			
Power Supply Sensitivity	PSS _{HFOS} co	T _A = 25 °C	_	0.5	_	%/V			
Temperature Sensitivity	TS _{HFOSC0} V _{DD} = 3.0 V		_	40	_	ppm/°C			
High Frequency Oscillator 1 (49 M	High Frequency Oscillator 1 (49 MHz)								
Oscillator Frequency	f _{HFOSC1}	Full Temperature and Supply Range	48.02	49	49.98	MHz			
Power Supply Sensitivity	PSS _{HFOS} C1	T _A = 25 °C	_	300	_	ppm/V			
Temperature Sensitivity	TS _{HFOSC1}	V _{DD} = 3.0 V	_	103	—	ppm/°C			
Low Frequency Oscillator (80 kHz)									
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	75	80	85	kHz			
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	—	0.05	—	%/V			
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.0 V	—	65	—	ppm/°C			

Table 4.6. Internal Oscillators

4.1.7 External Clock Input

Table 4.7. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
External Input CMOS Clock	f _{CMOS}		0	—	50	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	t _{смозн}		9	—	—	ns
External Input CMOS Clock Low Time	t _{CMOSL}		9	—	_	ns

4.1.8 Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{XTAL}		0.02	_	25	MHz
Crystal Drive Current	I _{XTAL}	XFCN = 0	—	0.5	—	μA
		XFCN = 1	_	1.5	_	μA
		XFCN = 2	—	4.8	—	μA
		XFCN = 3	_	14	_	μA
		XFCN = 4	_	40	_	μA
		XFCN = 5	—	120	_	μA
		XFCN = 6	_	550	_	μA
		XFCN = 7		2.6		mA

Table 4.8. Crystal Oscillator

Table 4.9. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Resolution	N _{bits}	12 Bit Mode		12		Bits	
		10 Bit Mode		10		Bits	
Throughput Rate	f _S	10 Bit Mode	_	_	1.125	Msps	
(High Speed Mode)							
Throughput Rate	f _S	12 Bit Mode	—	—	340	ksps	
(Low Power Mode)		10 Bit Mode	_	—	360	ksps	
Tracking Time	t _{TRK}	High Speed Mode	230	—	—	ns	
		Low Power Mode	450	—	—	ns	
Power-On Time	t _{PWR}		1.2	—	—	μs	
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	18	MHz	
		Low Power Mode	_	_	12.25	MHz	
Conversion Time ¹	t _{CNV}	12-Bit Conversion,	2.0		1	μs	
		SAR Clock = 6.125 MHz,					
		System Clock = 49 MHz					
		10-Bit Conversion,		0.658			
		SAR Clock = 16.33 MHz,					
		System Clock = 49 MHz					
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5.2	_	pF	
		Gain = 0.75	_	3.9	_	pF	
		Gain = 0.5	_	2.6	_	pF	
		Gain = 0.25	—	1.3	—	pF	
Input Pin Capacitance	C _{IN}		_	20	_	pF	
Input Mux Impedance	R _{MUX}		_	550	_	Ω	
Voltage Reference Range	V _{REF}		1		V _{IO}	V	
Input Voltage Range ²	V _{IN}		0		V _{REF} / Gain	V	
Power Supply Rejection Ratio	PSRR _{ADC}	At 1 kHz		66	_	dB	
		At 1 MHz	_	43	_	dB	
DC Performance							

EFM8BB3 Data Sheet Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note: 1. Conversion Time does not inclu	ide Tracking	Time. Total Conversion Time is:				
Total Conversion Time = [RPT where RPT is the number of con 2. Absolute input pin voltage is lim 3. The offset is determined using of positive.	× (ADTK + N nversions re lited by the N curve fitting s	IUMBITS + 1) × T(SARCLK)] + (T(AD presented by the ADRPT field and AD $/_{IO}$ supply. since the specification is measured us	CCLK) × 4) DCCLK is the sing linear se	e clock selec	ted for the A	DC. is always

5.2 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

Figure 5.2. Debug Connection Diagram

5.3 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN203: "8-bit MCU Printed Circuit Board Design Notes" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/8bit-appnotes).

Functions Functions	
Number	
6 P3.7 / Multifunction I/O /	
C2D C2 Debug Data	
7 P3.3 Multifunction I/O DAC3	
8 P3.2 Multifunction I/O DAC2	
9 P3.1 Multifunction I/O DAC1	
10 P3.0 Multifunction I/O DAC0	
11 P2.6 Multifunction I/O ADC0.19)
CMP1P.	8
CMP1N.	8
12 P2.5 Multifunction I/O CLU3OUT ADC0.18	}
CMP1P.	7
CMP1N.	7
13 P2.4 Multifunction I/O ADC0.17	,
CMP1P.	6
CMP1N.	6
14 P2.3 Multifunction I/O Yes P2MAT.3 ADC0.16	6
CLU1B.15 CMP1P.	5
CLU2B.15 CMP1N.	5
CLU3A.15	
15 P2.2 Multifunction I/O Yes P2MAT.2 ADC0.15	5
CLU2OUT CMP1P.	4
CLU1A.15 CMP1N.	4
CLU2B.14	
CLU3A.14	
16 P2.1 Multifunction I/O Yes P2MAT.1 ADC0.14	
I2C0_SCL CMP1P.	3
CLU1B.14 CMP1N.	3
CLU2A.15	
CLU3B.15	
17 P2.0 Multifunction I/O Yes P2MAT.0 CMP1P.	2
I2C0 SDA CMP1N.	2
CLU1A.14	
CI U2A 14	
CLU3B 14	

6.3 EFM8BB3x-QFN24 Pin Definitions

Table 6.3. Pin Definitions for EFM8BB3x-QFN24

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				runctions	
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
12	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.10
				CLU2OUT	CMP1P.4
				CLU0B.14	CMP1N.4
				CLU1A.13	
				CLU2B.13	
13	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.9
				I2C0_SCL	CMP1P.3
				CLU0A.14	CMP1N.3
				CLU1A.12	
				CLU2B.12	
14	P1.3	Multifunction I/O	Yes	P1MAT.3	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	
15	GND	Ground			
16	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	
				CLU1A.11	
				CLU2B.10	
				CLU3A.12	
17	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	
				CLU1B.10	
				CLU2A.11	
				CLU3B.13	
18	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU0A.12	
				CLU1A.10	
				CLU2A.10	
				CLU3B.12	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU1OUT	CMP1P.1
				CLU0B.11	CMP1N.1
				CLU1B.9	
				CLU3A.11	
20	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	CMP1P.0
				CLU0A.11	CMP1N.0
				CLU1B.8	
				CLU3A.10	
21	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
				CLU3B.11	
22	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
				CLU3B.10	
23	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	

Figure 6.4. EFM8BB3x-QSOP24 Pinout

TADIE 0.4. FIII DEIIIIIUUIIS IUI EFINIODD3X-Q30F2	Table 6.4.	Pin Definitions	for EFM8BB3x	-QSOP24
---	------------	-----------------	--------------	---------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	
				CLU1A.11	
				CLU2B.10	
				CLU3A.12	
19	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	
				CLU1B.10	
				CLU2A.11	
				CLU3B.13	
20	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU0A.12	
				CLU1A.10	
				CLU2A.10	
				CLU3B.12	
21	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU1OUT	CMP1P.1
				CLU0B.11	CMP1N.1
				CLU1B.9	
				CLU3A.11	
22	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	CMP1P.0
				CLU0A.11	CMP1N.0
				CLU1B.8	
				CLU3A.10	
23	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
				CLU3B.11	

7.2 QFN32 PCB Land Pattern

Figure 7.2. QFN32 PCB Land Pattern Drawing

Table 7.2.	QFN32 PCB L	and Pattern	Dimensions
------------	-------------	-------------	------------

Dimension	Min	Мах
C1	_	4.10
C2	—	4.10
X1	—	0.2
X2	_	3.0
Y1	—	0.7
Y2	_	3.0
e	_	0.4

8. QFP32 Package Specifications

8.1 QFP32 Package Dimensions

Figure 8.1. QFP32 Package Drawing

Table 8.1. QFP32 Package Dimensions

Dimension	Min	Тур	Мах
A	—	—	1.20
A1	0.05	—	0.15
A2	0.95	1.00	1.05
b	0.30	0.37	0.45
с	0.09	_	0.20
D	9.00 BSC		
D1	7.00 BSC		
е	0.80 BSC		
E	9.00 BSC		
E1	7.00 BSC		
L	0.50 0.60 0.70		

8.2 QFP32 PCB Land Pattern

Figure 8.2. QFP32 PCB Land Pattern Drawing

Table 8.2.	QFP32 PCB	Land Pattern	Dimensions
------------	-----------	--------------	------------

Dimension	Min	Мах
C1	8.40	8.50
C2	8.40	8.50
E	0.80 BSC	
X1	0.	55
Y1	1.5	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Dimension	Min	Мах			
Note:					
1. All dimensions shown are in millimeters	(mm) unless otherwise noted.				
2. Dimensioning and Tolerancing is per the	2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.				
3. This Land Pattern Design is based on the IPC-SM-782 guidelines.					
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.					
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release					
6. The stencil thickness should be 0.125 mm (5 mils).					
7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.					
8. A 2 x 1 array of 0.7 mm x 1.6 mm openings on a 0.9 mm pitch should be used for the center pad.					
9. A No-Clean, Type-3 solder paste is reco	mmended.				

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN24 Package Marking

Figure 9.3. QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

10.2 QSOP24 PCB Land Pattern

Figure 10.2. QSOP24 PCB Land Pattern Drawing

Table 10.2. QSOP24 PCB Land Pattern Dimension

Dimension	Min	Мах	
С	5.20	5.30	
E	0.635 BSC		
x	0.30	0.40	
Y	1.50	1.60	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This land pattern design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.